RU2633517C1 - Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке - Google Patents

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке Download PDF

Info

Publication number
RU2633517C1
RU2633517C1 RU2016130655A RU2016130655A RU2633517C1 RU 2633517 C1 RU2633517 C1 RU 2633517C1 RU 2016130655 A RU2016130655 A RU 2016130655A RU 2016130655 A RU2016130655 A RU 2016130655A RU 2633517 C1 RU2633517 C1 RU 2633517C1
Authority
RU
Russia
Prior art keywords
measuring
vacuum chamber
plasma
volume
processing unit
Prior art date
Application number
RU2016130655A
Other languages
English (en)
Inventor
Александр Александрович Медведев
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2016130655A priority Critical patent/RU2633517C1/ru
Application granted granted Critical
Publication of RU2633517C1 publication Critical patent/RU2633517C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/23Optical systems, e.g. for irradiating targets, for heating plasma or for plasma diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения в виде ФЭУ и блоком обработки электрического сигнала. Измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенным с катодами тлеющего разряда. В качестве модулятора тока тлеющего разряда используют генератор напряжения. Техническим результатом является возможность измерения концентрации примесей путем измерения характеристик спектральных линий на значительной площади поверхности плазменного шнура с низкой статистической погрешностью измерений при высоком уровне фонового излучения. 4 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области экспериментальной физики плазмы. Предлагаемое устройство может быть применено, например, в программе управляемого термоядерного синтеза на базе установок с магнитным удержанием плазмы, в частности токамаков. Конечной целью этой программы является создание промышленного термоядерного реактора-токамака. В настоящее время сооружаются установки, сравнимые по размерам и параметрам с промышленным реактором. Примером является международный проект ИТЭР. Работа реактора невозможна без надежного и точного измерения концентрации примесей на периферии плазменного шнура. Контроль содержания примесей необходим, поскольку их присутствие критически ухудшает удержание энергии (а следовательно, и интенсивность реакций синтеза) в плазме. В ИТЭР эту диагностическую задачу предполагается решать при помощи спектроскопии видимой области спектра. Однако уже на протяжении последних лет констатируется невозможность проведения таких измерений из-за крайне высокого уровня фонового излучения, и, соответственно, неприемлемо высокой статистической ошибки результата. Это связано с отражением света, испускаемого различными участками плазмы (в первую очередь - областью дивертора), от бериллиевой стенки вакуумной камеры. Для осуществления измерений в данных условиях и разработано описываемое устройство.
Известно устройство для измерения относительной концентрации водорода, дейтерия и трития на периферии плазмы вакуумной камеры реактора-токамака путем измерения характеристик их спектральных линий [А.А. Медведев, Использование вспомогательного тлеющего разряда для измерения изотопного состава в ИТЭР, ВАНТ, Сер. Термоядерный синтез, 2013, т. 36, вып. 2, с. 51 - прототип]. В конструкции первой стенки вакуумной камеры реактора-токамака, там, где это технологически возможно, создается небольшой (характерный размер - несколько см) измерительный объем с источником тлеющего разряда. Внутри этого объема при помощи анода и катодов организуется тлеющий разряд, ток которого направлен вдоль тороидального поля установки. Измерительный объем сообщается с объемом вакуумной камеры реактора при помощи короткого лабиринтного трубопровода. Трубопровод обеспечивает газообмен между вакуумной камерой реактора и измерительным объемом и предотвращает проникновение видимого излучения из плазмы реактора в измерительный объем. Трубопровод не позволяет фотонам видимого излучения, двигающимся прямолинейно, попадать непосредственно из плазмы в измерительный объем. Отражение фотонов от внутренних стенок трубопровода минимизировано использованием материала, имеющего низкий коэффициент отражения в видимой области спектра, а также использованием диафрагм, обеспечивающих практически полное поглощение фотонов, испытывающих многократные отражения.
Излучение, возбуждаемое в измерительным объеме тлеющим разрядом, направляется на вход диагностического канала, который расположен в непосредственной близости от измерительного объема и передается к измерительной аппаратуре, измеряющей сигнал, накопленный за время экспозиции и позволяющей регистрировать спектральную характеристику линий плазмы: форму линий суммарного спектра водорода/дейтерия/трития, по которой и определяют относительную концентрацию водорода, дейтерия и трития на периферии плазмы.
Измерительная аппаратура представляет собой последовательно соединенные:
1. Средство для выделения спектральной линии примеси плазмы, выполненное в виде спектрометра высокого разрешения с высокой линейной дисперсией;
2. Детектор излучения - светочувствительная ПЗС матрица.
Полученная информация с помощью блока обработки электрического сигнала позволяет получить величину изотопного соотношения.
Таким образом, в прототипе решается задача измерения соотношения концентраций водорода, дейтерия и трития, т.е. изотопного состава. Дейтерий и тритий представляют рабочий газ, т.к. именно за счет синтеза этих частиц и выделяется энергия, которую предполагается использовать. Примеси - это более тяжелые элементы (С, О, Be, W и т.д.), поступающие с элементов конструкции внутренней камеры или из других источников. Эти элементы не участвуют в реакциях синтеза, а только ухудшают параметры плазмы. Диагностические подходы и аппаратура, применяемые для решения этих задач (измерения изотопного отношения водорода, дейтерия и трития и концентрации примесей), существенно отличаются друг от друга.
Прототип обладает следующими недостатками.
Первый недостаток связан с тем, что концентрация линий примесей в измерительном объеме может, по целому ряду причин, значительно отличаться от таковой на периферии основной плазмы;
Второй недостаток заключается в том, что в существующем проекте ИТЭР размещение значительного по объему диагностического оборудования нигде, кроме как в диагностических патрубках, не предусмотрено, поэтому измерения на большей части поверхности плазмы невозможны.
Технический результат изобретения - возможность измерения концентрации ряда примесей путем измерения характеристик спектральных линий на значительной площади поверхности плазменного шнура с низкой статистической погрешностью измерений при высоком уровне фонового излучения.
Для достижения указанного результата предложено устройство для измерения спектральных характеристик плазмы реактора-токамака, содержащее измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения и блоком обработки электрического сигнала, при этом измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенный с катодами тлеющего разряда
Кроме того:
- в качестве модулятора тока тлеющего разряда используют генератор напряжения;
- средство измерения спектральных характеристик плазмы выполнено в виде n параллельных измерительных трактов, содержащих спектрально-селективный зеркальный расщепитель светового пучка и установленный за ним узкополосный пропускающий интерференционный фильтр, каждый из которых настроен на длину волны измеряемой спектральной линии и соединен со своим детектором излучения и блоком обработки электрического сигнала;
- средство измерения спектральных характеристик плазмы содержит спектрометр, рабочий спектральный диапазон которого включает длины волн нескольких линий примесей и соединен линиями волоконно-оптического коллектора со своим детектором излучения для регистрации яркости определенной линии примеси и блоком обработки электрического сигнала;
- детектор излучения выполнен в виде фотоэлектронного умножителя.
На фиг. 1 показан один из возможных вариантов геометрии эксперимента с использованием предлагаемого устройства в реакторе ИТЭР.
На фиг. 2 приведена схема диагностического канала измерительного тракта для одной линии примесей.
На фиг. 3 показана блок-схема регистрации электрического сигнала с выхода детектора излучения.
На фиг. 4 приведена схема многоканальной системы регистрации с использованием интерференционных фильтров для измерения нескольких линий примесей.
На фиг. 5 приведена схема многоканальной системы регистрации с использованием спектрометра для измерения нескольких линий примесей.
Позициями обозначены:
1 - стенка вакуумной камеры;
2 - вход диагностического канала регистрации излучения;
3 - граница плазменного шнура;
4 - измерительный объем;
5 - анод тлеющего разряда;
6 - катод тлеющего разряда;
7 - модулятор тока тлеющего разряда;
8 - синхронный детектор;
9 - диагностический порт установки;
10 - оптический канал;
11 - металлические зеркала;
12 - вакуумное окно;
13 - интерференционный фильтр;
14 - средства измерения спектральных характеристик плазмы;
15 - детектор излучения;
16 - блок обработки электрического сигнала;
17 - световой сигнал;
18 - электрический сигнал с выхода детектора излучения;
19 - цепь опорного сигнала
20 - электрический сигнал с выхода синхронного детектора;
21 - аналогово-цифровой преобразователь;
22 - спектрометр;
23 - спектрально-селективный расщепитель светового потока;
24 - линии волоконно-оптического коллектора.
На внутренней стенке 1 (со стороны сильного тороидального поля) вакуумной камеры установки создается измерительный объем 4 произвольной формы с характерным размером в несколько см. Измерительный объем 4 напрямую соединен с объемом вакуумной камеры, что обеспечивает, в отличие от прототипа, не только обмен частицами между измерительным объемом 4 и основной плазмой, но и беспрепятственный выход видимого излучения. В измерительном объеме 4 организуется продольный (по отношению к тороидальному магнитному полю установки) тлеющий разряд. Ток разряда модулируется по гармоническому закону. Для этого катоды 6 соединены с модулятором тока тлеющего разряда 7, соединенного линией опорного сигнала 19 с синхронным детектором 8. В качестве модулятора тока тлеющего разряда используют, например, генератор напряжения.
В прототипе модуляция отсутствует. Частота модуляции может лежать в диапазоне от единиц кГц до десятков МГц (оптимальное значение зависит от конкретных условий эксперимента).
Излучение, возбуждаемое в измерительным объеме 4 тлеющим разрядом, направляется на вход диагностического канала 2, который расположен на противоположной относительно измерительного объема стенке вакуумной камеры. Входная оптическая система канала 2 построена таким образом, чтобы наблюдаемая область включала объем тлеющего разряда.
Выше приведен только один из возможных вариантов геометрии эксперимента. В общем случае измерительный объем может быть расположен на любом участке поверхности внутренней стенки вакуумной камеры, где он доступен для наблюдения при помощи системы регистрации, размещенной в одном из диагностических портов реактора.
Излучение по оптическому каналу 10 сложной конфигурации (фиг. 2) (например, как в прототипе), расположенному в диагностическом порту 9, с системой металлических зеркал, через вакуумное окно 12, систему фокусирующих линз (не показаны), направляется на блок измерения спектральных характеристик плазмы 14, соединенным через детектор излучения 15 с блоком обработки электрического сигнала 16.
Таким образом, вся регистрирующая аппаратура располагается в экваториальном диагностическом порту 9 вдали от границы плазмы, в то время как в прототипе она размещалась в непосредственной близости от объема тлеющего разряда в структуре внутренней стенки вакуумной камеры. Это позволит обеспечить доступ персонала для текущего ремонта и наладки оборудования.
Блок измерения спектральных характеристик для нескольких линий примесей плазмы 14, на который направляется световой сигнал 17, может состоять (фиг. 4) из n концептуально-идентичных измерительных трактов каналов, каждый из которых включает зеркальный спектрально-селективный расщепитель 23, узкополосный интерференционный фильтр 13, при помощи которого выделяется необходимая спектральная линия, и быстродействующий детектор излучения 15 (например, фотоэлектронный умножитель (ФЭУ)), электрический сигнал с которого 18 поступает в блок обработки электрического сигнала 16.
Таких каналов может быть до 20-ти, каждый из которых отвечает за измерение яркости определенной линии.
Блок измерения спектральных характеристик плазмы 14, на который направляется световой сигнал 17, может состоять (фиг. 5) из спектрометра 22, соединенного линиями 24 волоконно-оптического коллектора с детектором излучения 15, сигнал 18 с выхода которого подается на блок обработки электрического сигнала 16.
Рабочий спектральный диапазон спектрометра 22 включает длины волн нескольких линий примесей и соединен линиями волоконно-оптического коллектора со своим детектором излучения 15 для регистрации яркости определенной линии примеси и своим блоком обработки электрического сигнала 16.
Блок-схема регистрации электрического сигнала показана на фиг. 3. Световой сигнал 17 поступает на вход блока измерения спектральных характеристик плазмы 14, соединенного с детектором излучения 15.
Выход детектора излучения 15 соединен с блоком обработки электрического сигнала 16. Электрический сигнал 18 поступает на вход синхронного детектора 8, на другой вход которого по цепи опорного сигнала 19 поступает модулирующий сигнал тлеющего разряда. Использование частотной селекции позволяет кардинально повысить отношение сигнал-помеха. Напряжение с выхода 20 синхронного детектора 8 поступает на аналогово-цифровой преобразователь 21, где регистрируется амплитуда сигнала. При известных параметрах плазмы и значениях коэффициента скоростного возбуждения с излучением фотона соответствующей линии величина амплитуды сигнала с выхода детектора позволяет рассчитать концентрацию соответствующей примеси.
Для реализации устройства не требуется изготовление специальных приборов, а используется стандартная аппаратура.
Для проверки эффективности предлагаемого устройства в НИЦ «Курчатовский институт» создана численная модель, в которой используются релевантные параметры плазмы и установки ИТЭР. Проведенные расчеты показывают, что использованные в устройстве решения позволяют улучшить отношение сигнал-помеха на два-три порядка величины.
Таким образом, предлагаемое устройство позволит проводить измерения концентрации линий ряда примесей в нескольких зонах на периферии плазменного шнура с улучшенным отношением сигнал-помеха.

Claims (5)

1. Устройство для измерения спектральных характеристик плазмы реактора-токамака, содержащее измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с расположенными за вакуумной камерой средствами измерения спектральных характеристик плазмы с детектором излучения и блоком обработки электрического сигнала, отличающееся тем, что измерительный объем напрямую соединен с объемом вакуумной камеры, вход диагностического канала расположен на противоположной относительно измерительного объема стенке вакуумной камеры, а блок обработки электрического сигнала содержит синхронный детектор, соединенный с модулятором амплитуды тока тлеющего разряда по гармоническому закону, соединенным с катодами тлеющего разряда.
2. Устройство по п. 1, отличающееся тем, что в качестве модулятора тока тлеющего разряда используют генератор напряжения.
3. Устройство по п. 1, отличающееся тем, что средство измерения спектральных характеристик плазмы выполнено в виде n параллельных измерительных трактов, содержащих спектрально-селективный зеркальный расщепитель светового пучка и установленный за ним узкополосный пропускающий интерференционный фильтр, каждый из которых настроен на длину волны измеряемой спектральной линии и соединен со своим детектором излучения и блоком обработки электрического сигнала.
4. Устройство по п. 1, отличающееся тем, что средство измерения спектральных характеристик плазмы содержит спектрометр, рабочий спектральный диапазон которого включает длины волн нескольких линий примесей, и соединен линиями волоконно-оптического коллектора со своим детектором излучения для регистрации яркости определенной линии примеси и блоком обработки электрического сигнала.
5. Устройство по п. 1, отличающееся тем, что детектор излучения выполнен в виде фотоэлектронного умножителя.
RU2016130655A 2016-07-25 2016-07-25 Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке RU2633517C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016130655A RU2633517C1 (ru) 2016-07-25 2016-07-25 Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016130655A RU2633517C1 (ru) 2016-07-25 2016-07-25 Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Publications (1)

Publication Number Publication Date
RU2633517C1 true RU2633517C1 (ru) 2017-10-13

Family

ID=60129341

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016130655A RU2633517C1 (ru) 2016-07-25 2016-07-25 Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Country Status (1)

Country Link
RU (1) RU2633517C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702137C1 (ru) * 2018-09-17 2019-10-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ формирования модели магнитного управления формой и током плазмы с обратной связью в токамаке
RU2787571C1 (ru) * 2022-06-30 2023-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ быстродействующего определения формы плазмы в камере токамака в течение диверторной фазы плазменных разрядов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230694B2 (en) * 2009-08-06 2016-01-05 Osaka University Method of determining nuclear fusion irradiation coordinates, device for determining nuclear fusion irradiation coordinates, and nuclear fusion device
CN105469837A (zh) * 2015-12-29 2016-04-06 中国科学院西安光学精密机械研究所 激光聚变背向散射光束模拟装置
CN103514966B (zh) * 2012-06-20 2016-04-20 同济大学 等离子体诊断用x射线光学系统的瞄准装置及瞄准方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230694B2 (en) * 2009-08-06 2016-01-05 Osaka University Method of determining nuclear fusion irradiation coordinates, device for determining nuclear fusion irradiation coordinates, and nuclear fusion device
CN103514966B (zh) * 2012-06-20 2016-04-20 同济大学 等离子体诊断用x射线光学系统的瞄准装置及瞄准方法
CN105469837A (zh) * 2015-12-29 2016-04-06 中国科学院西安光学精密机械研究所 激光聚变背向散射光束模拟装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.А. Медведев, Использование вспомогательного тлеющего разряда для измерения изотопного состава в ИТЭР, ВАНТ, Сер. Термоядерный синтез, 2013, т. 36, вып. 2. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2702137C1 (ru) * 2018-09-17 2019-10-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ формирования модели магнитного управления формой и током плазмы с обратной связью в токамаке
RU2787571C1 (ru) * 2022-06-30 2023-01-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ быстродействующего определения формы плазмы в камере токамака в течение диверторной фазы плазменных разрядов
RU2788188C1 (ru) * 2022-06-30 2023-01-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Способ импульсного цифрового каскадного управления положением плазмы в d-образном токамаке

Similar Documents

Publication Publication Date Title
Durst et al. Density fluctuation measurements via beam emission spectroscopy
CN101661000B (zh) 一种基于分光镜的应用于单离子微束装置的新型离子探测系统
RU2633517C1 (ru) Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке
KR20130099641A (ko) 톰슨 산란 분광 장치
McLean et al. Plasma diagnostics for the sustained spheromak physics experiment
CN104730564A (zh) 基于闪烁光纤阵列的超快伽马射线能谱测量仪
Stutzin et al. VUV laser absorption spectrometer system for measurement of H0 density and temperature in a plasma
CN107631796B (zh) 一种光纤辐照监测装置及监测方法
CN105372042A (zh) 光学滤光片高精度透过率测试装置
Tsang et al. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet
Beurskens et al. ITER LIDAR performance analysis
Xie et al. A novel polychromator calibration method for Thomson scattering diagnostics
CN108931716B (zh) 太阳能电池的量测设备
McLean et al. Quantification of radiating species in the DIII-D divertor in the transition to detachment using extreme ultraviolet spectroscopy
Johnston et al. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems
Hurwitz et al. Detector array for measurement of high‐frequency fluctuations in visible and near‐UV emission from tokamaks
Devlin et al. Update on beam loss monitoring at CTF3 for CLIC
Hatae et al. First operation results of YAG laser Thomson scattering system on JT-60U
Deka et al. Spectral modelling of neutral beam for Doppler shift spectroscopy diagnostics of INTF
Akent'ev et al. Spectral diagnostics for plasma research at the GOL-3 facility
Feng et al. Research in absolute calibration of single photon detectors by means of correlated photons
CN117130038A (zh) 一种等离子体局域辐射功率测量的x射线探测系统及方法
Field et al. Techniques of the FLASH Thin Target Experiment
Zheleznov et al. Experimental technique of passive optical diagnostics of plasma
Burdakov et al. A complex of imaging diagnostic devices of vacuum UV radiation for the GOL-3 multimirror trap