RU2632575C1 - Чувствительный элемент для акустического жидкостного сенсора - Google Patents

Чувствительный элемент для акустического жидкостного сенсора Download PDF

Info

Publication number
RU2632575C1
RU2632575C1 RU2016120232A RU2016120232A RU2632575C1 RU 2632575 C1 RU2632575 C1 RU 2632575C1 RU 2016120232 A RU2016120232 A RU 2016120232A RU 2016120232 A RU2016120232 A RU 2016120232A RU 2632575 C1 RU2632575 C1 RU 2632575C1
Authority
RU
Russia
Prior art keywords
plate
thickness
acoustic
modes
film
Prior art date
Application number
RU2016120232A
Other languages
English (en)
Inventor
Владимир Иванович АНИСИМКИН
Енрико ВЕРОНА
Наталья Владимировна Воронова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук
Priority to RU2016120232A priority Critical patent/RU2632575C1/ru
Application granted granted Critical
Publication of RU2632575C1 publication Critical patent/RU2632575C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices

Abstract

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой встречно-штыревых преобразователей для возбуждения и приема акустических пластинчатых мод колебаний, локальную ванну для жидкого аналита. Пьезоэлектрический материал нанесен на обе поверхности пластины, выполнен в виде пленок окиси цинка, имеющих разную толщину, пленка большей толщины h1 сообщена с системой встречно-штыревых преобразователей, а пленка меньшей толщины h2 образует дно локальной ванны. Толщина Н пластины много больше толщин h1, h2. Плоскость пластины совпадает с кристаллографической плоскостью (001), а направление распространения акустических пластинчатых мод - с направлением <100> монокристаллического кремния. Акустические пластинчатые моды колебаний представляют собой слабодисперсионные квазипродольные моды с фазовой скоростью, близкой к фазовой скорости объемной продольной волны в кристаллографическом направлении <100> монокристаллического кремния, и удовлетворяют приведенным условиям. Технический результат - повышение эффективности электромеханического преобразования, уменьшение вертикальной компоненты упругого смещения в локальной ванне. 2 з.п. ф-лы, 7 ил.

Description

Изобретение относится к приборостроению, а именно к малогабаритным акустическим сенсорам для регистрации параметров жидкостей в реальном времени, и может быть использовано в медицине, биологии, химии и ряде смежных областей.
Акустические сенсоры представляют собой структуру, носителем информации в которой являются акустические волны. Сенсор включает звукопровод-пластину, на одной поверхности которой образована измерительная система, параметры которой изменяются в соответствии с параметрами жидкой среды. Сама же жидкая среда контактирует с обратной стороной пластины, для чего обычно выполняют локальную ванну. Измерительная система обычно содержит электроакустические преобразователи - излучающий и приемный, а измерительная система представляет собой достаточно чувствительную фазометрическую схему. Сенсор может быть выполнен в интегральном исполнении с применением технологий микроэлектроники.
Показано, что среди устройств этого класса лидирующее положение занимают сенсоры, основанные на возбуждении либо пластинчатых мод Лэмба нулевого порядка, имеющие скорость меньше, чем в большинстве жидкостей (1500 м/с), либо моды с доминирующим сдвигово-горизонтальным смещением (SH-APM). Это объясняется малыми радиационными потерями этих мод в жидкость, их большим количеством и разнообразием, а также возможностью целенаправленного изменения характеристик распространения выбором толщины пластины, номера моды и длины акустической волны (В. Draft. Acoustic wave technology sensors. IEEE Trans.Microw.Teory.Techn., v. 49, no. 4, pp. 795-802, 2001; V.I. Anisimkin, Anisotropy of the acoustic plate modes in ST-quartz and 128°Y-LiNbO3, IEEE Trans. Ultrason., Ferroelectr., Freq. Control, UFFC-61 (1) (2014) 120-132).
Известно акустическое устройство для определения характеристик жидкости с использованием пластинчатых мод колебаний (RU 2408881 С1, "НИИ "Элпа", 10.01.2011), содержащее пластину-звукопровод, несколько пар электроакустических преобразователей встречно-штыревого типа (ВШП), расположенных в общем случае разнонаправленно, и схему регистрации. Звукопровод выполнен с возможностью возбуждения в нем по меньшей мере пяти мод колебаний, а в качестве параметров колебаний регистрируют фазовые отклики акустических мод при наличии тестируемой и эталонной жидкостей, а также в их отсутствие, после чего параметры жидкости определяют численными методами.
В патенте (US 7000453 (В2), CUNNINGHAM et. al., 21.02.2006) описана конструкция миниатюрного сенсора на изгибной моде колебаний в пластине, выполненной в структуре «кремний-на-изоляторе» (КНИ или SOI), методами селективного травления. Локальная ванна для жидкого аналита выполнена из пирекса, а Si-пластина покрыта пьезоэлектрической пленкой, выбранной из числа известных материалов (м.б. PZT или ZnO), поверх которой образованы входной и выходной ВШП.
Из патента (US 8004021 (В2), BIOSCALE INC, 23.08.2011) известна аналогичная конструкция. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую многослойную пластину, содержащую, например, слой диэлектрика SiN, сплошной металлический электрод Мо, слой пьезоэлектрика AlN, систему периодических электродов из Мо для возбуждения и приема изгибных акустических пластинчатых волн, слой изолятора и биологически или химически активную пленку, на которую наносится тестируемая жидкость. Слои нанесены путем последовательного высокотемпературного распыления в вакууме на нагретую подложку монокристаллического кремния, которая в свою очередь покрыта пленками SiO2 и SiN и химически протравлена в области нахождения многослойной пластины. Температуры нагрева подложки различны для каждого из различных слоев. Сенсор решает поставленную авторами задачу (снижение чувствительности к колебаниям скорости жидкостного потока и к высушиванию сенсора при нанесении жидкости в область протравной в кремнии кюветы), но, как и все акустические сенсоры на основе многослойных мембран, остается чувствительным к внутренним механическим напряжениям между слоями (старению) и к внешнему давлению из-за их прогиба.
В качестве ближайшего аналога изобретения выбрано устройство для анализа жидкостных сред, описанное в патенте (US 5189914 (A), WHITE R. et al., 02.03.1993 - прототип). Описана конструкция сенсора на волнах Лэмба, содержащего тонкую пластину, имеющую лицевую и тыльную стороны. Тыльная сторона контактирует с исследуемой жидкой средой, на лицевой стороне размещен слой пьезоэлектрического материала, а поверх него - возбуждающие и приемные электроакустические преобразователи волн Лэмба, подключенные к схеме регистрации. Пластина-подложка может быть выполнена из кристаллического кремния или нитрида кремния, а пьезоэлектрической материал - из двуокиси цинка. Для защиты от действия нежелательных веществ в жидкости тыльная сторона пластины покрыта слоем тефлона, а в другой аналогичной конструкции - гелем (US 5212988 (A), WHITE R. et al., 25.05.1993).
Настоящее изобретение направлено на решение технической проблемы - повышения чувствительности сенсора за счет повышения эффективности возбуждения акустических пластинчатых волн и снижения потерь на их распространение волн в присутствии жидкостного аналита.
Патентуемый чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой встречно-штыревых преобразователей для возбуждения и приема акустических пластинчатых мод колебаний, локальную ванну для жидкого аналита.
Отличие состоит в том, что пьезоэлектрический материал нанесен на обе поверхности пластины, выполнен в виде пленок окиси цинка, имеющих разную толщину, пленка большей толщины h1 сообщена с системой встречно-штыревых преобразователей, а пленка меньшей толщины h2 образует дно локальной ванны, причем толщина Н пластины много больше h1, h2.
Плоскость пластины совпадает с кристаллографической плоскостью (001), а направление распространения акустических пластинчатых мод - с направлением <100> монокристаллического кремния.
Акустические пластинчатые моды колебаний представляют собой слабодисперсионные квазипродольные моды с фазовой скоростью, близкой к фазовой скорости объемной продольной волны в кристаллографическом направлении <100> монокристаллического кремния, и удовлетворяют условиям:
dv/d(H/λ)≤100; U1>>U3; U2=0.
где v - скорость слабо дисперсионной квазипродольной пластинчатой моды, м/с; Н - толщина пластины, мкм; λ - период штырей электроакустических преобразователей, мкм; U1 - продольная, a U2, U3 - сдвиговые компоненты смещения в пластине для квазипродольной пластинчатой моды, мкм.
Чувствительный элемент может характеризоваться тем, что толщина пластины составляет Н=1,9 λ, а толщины пленок окиси цинка - h1=0,05 λ и h2=0,04 λ, а также тем, что толщина пластины составляет Н=0,95 λ, а толщины пленок окиси цинка - h1=0,05 λ и h2=0,16 λ.
Технический результат - повышение эффективности электромеханического преобразования при возбуждении и приеме акустических мод, уменьшение вертикальной компоненты упругого смещения в локальной ванне, т.е. снижение радиационных потерь моды в жидком аналите.
Изобретение основано на теоретических исследованиях (V.I. Anisimkin, N.V. Voronova, Acoustic properties of the film/plate layered structure", IEEE Trans. on Ultrason, Ferroelect., Freq. Contr., UFFC-58 (3) (2011), 578-584) и экспериментальных фактах, приведенных в данном описании, которые демонстрируют возможность резкого повышения эффективности возбуждения акустических пластинчатых волн при значительном снижении потерь на их распространение в присутствии жидкости за счет использования слабодисперсионных волн квазипродольной поляризации с заданными параметрами.
Сущность изобретения поясняется на чертежах, где:
фиг. 1 - конструкция сенсора со схемой регистрации сигнала;
фиг. 2 - ориентация электроакустического преобразователя на пластине;
фиг. 3-4 - частотные зависимости отклика, полученные для прототипа;
фиг. 5-6 - частотные зависимости отклика, полученные для патентуемого чувствительного элемента;
фиг. 7 - профили смещений квазипродольной акустической моды по глубине структуры, нормированные на значение U1(0) ее продольного смещения на рабочей поверхности.
На фиг. 1, 2 представлен патентуемый сенсор со схемой регистрации и ориентация электроакустического преобразователя на пластине.
Чувствительный элемент для акустического жидкостного сенсора содержит плоскую непьезоэлектрическую пластину 10 из монокристаллического кремния (Si). На первой поверхности 12 пластины 10 образована локальная ванна 14 для исследуемой жидкости 15. На второй поверхности 20 - система 22 возбуждения и приема в пластине 10 изгибных пластинчатых мод акустических колебаний, выполненная в виде первой пьезоэлектрической пленки 24 толщиной h1 с размещенными на ней входным 25 и выходным 26 встречно-штыревыми электроакустическими преобразователями с периодом λ и парами разнополярных электродов-штырей 251.
На первую поверхность 12 пластины 10 нанесена вторая пьезоэлектрическая пленка 28 с толщиной h2, не равной h1. Пьезоэлектрические пленки 24, 28 выполнены из окиси цинка (ZnO) с ориентацией гексагональной оси С6 перпендикулярно поверхностям 12, 20 пластины 10, при этом h1>h2.
Плоскость пластины 10 из монокристаллического кремния совпадает с кристаллографической плоскостью (001) (см. фиг. 2 - вид со стороны системы 22 возбуждения и приема пластинчатых мод). Оси электроакустических преобразователей для возбуждения акустических волн в кремниевой пластине 10 ориентированы в кристаллографическом направлении <100>, т.е. штыри перпендикулярны указанному направлению. Мода акустических колебаний выбрана из условия возбуждения в пластине 10 слабодисперсионной квазипродольной моды с фазовой скоростью, близкой к фазовой скорости продольной волны в кристаллографическом направлении <100> кремния, которая составляет 8440 м/с.
Для возбуждения указанных мод к преобразователю 25 подключен генератор 31 высокой частоты, работающий в непрерывном режиме. Преобразователь 26 подключен к приемнику 32, работающему на частоте генератора 31. Измерения удобно проводить с помощью анализатора четырехполюсников HP 8753Е (Agilent Technologies, Santa Clara, CA) или другого аналогичного устройства, показанного на схеме как регистратор 33.
Параметры слабодисперсионной квазипродольной пластинчатой моды удовлетворяют условиям: dv/d(H/λ)≤100; U1>>U3; U2=0, где v - скорость слабодисперсионной квазипродольной пластинчатой моды, м/с, Н - толщина пластины, мкм; λ - период штырей электроакустических преобразователей, равный длине акустической волны, мкм; U1 - продольная компонента смещения; U2, U3 - сдвиговые компоненты смещения в пластине 10 для пластинчатой моды, мкм.
Локальная ванна может быть выполнена проточной. Чувствительный элемент может быть выполнен в виде решетки локальных ванн аналогично тому, как это описано в вышеуказанном патенте US 7000453.
Достижение технического результата подтверждается приведенными на фиг. 3-6 экспериментальными данными, относящимися как к прототипу, так и к патентуемому устройству: толщина пластины кремния Н=380 мкм, толщины пленок ZnO h1=10 мкм, h2=8 мкм, период встречно-штыревых преобразователей, равный длине акустической волны λ=200 мкм.
Топология устройств соответствует фиг. 1, 2.
На фиг. 3 приведены амплитудно-частотные характеристики акустических пластинчатых мод разных порядков (1, 2, 3, 4, 5 и 6), возбужденных в структуре: пластина 10 кремния с приведенной толщиной Н/λ=1,9, с одной пьезоэлектрической пленкой 24 из окиси цинка с приведенной толщиной h1/A,=0,05. Поверхность 12 пластины 10 полностью свободна от жидкого аналита и не нагружена, поскольку находится в контакте с воздухом.
На фиг. 4 приведены амплитудно-частотные характеристики тех же акустических пластинчатых мод, возбужденных в топологии структуры фиг. 3, при этом поверхность 12 пластины 10 нагружена жидким аналитом - на поверхность 12 нанесена вода.
На фиг. 5 приведены амплитудно-частотные характеристики акустических пластинчатых мод, возбужденных в патентуемой структуре: пластина 10 кремния с приведенной толщиной Н/λ=1,9 и двумя пьезоэлектрическими пленками 24 (h1/λ=0,05) и 28 (h2/λ=0,04) из окиси цинка. Аналогично фиг. 3, поверхность пленки 28 полностью свободна от жидкого аналита и не нагружена, поскольку находится в контакте с воздухом.
На фиг. 6 приведены амплитудно-частотные характеристики акустических пластинчатых мод, возбужденных в патентуемой структуре с той же топологией, что и для фиг. 5, но с нагрузкой жидким аналитом - на пленку 28 нанесена вода (аналогично фиг. 4).
Как ожидалось, частоты всех мод при нанесении пленки 28 на поверхность 12 уменьшились, т.к. скорости акустических волн в материале пленки окиси цинка меньше, чем в монокристаллическом кремнии. Частотный отклик моды 5 на фиг. 3-6 относится к акустической волне, используемой в патентуемом чувствительном элементе (слабодисперсионной квазипродольной моде). Измеренные и рассчитанные значения скорости моды составляют 8600±200 м/с и 8429.5 м/с в структуре Si/ZnO и 8030±200 м/с и 8026 m/s в структуре ZnO/Si/ZnO, соответственно.
Из фиг. 3-6 видно, что получены неочевидные для специалиста результаты, которые сводятся к следующему.
1. Под действием жидкостной нагрузки поглощение моды 5 α=S21 2 ( без нагрузки) - S21 2 (с нагрузкой) в структуре Si/ZnO (фиг. 3, 4) составляет 26 дБ, а в структуре ZnO/Si/ZnO (фиг. 5, 6) - всего 5 dB. Этот результат согласуется с уменьшением вертикальной компоненты U3 смещения моды 5 на рабочей поверхности элемента при нанесении пленки 28 (0,0074 против 0,18).
2. Вносимые потери элемента, измеренные между входным 25 и выходным 26 преобразователями, в патентуемой структуре ZnO/Si/ZnO составляют 20 dB (фиг. 5), а в структуре Si/ZnO - 25 dB (фиг. 3), то есть на 5 дБ больше. Этот результат согласуется с увеличением коэффициента электромеханической связи в структуре с двумя пленками ZnO (0,24% против 0,008%).
3. Моды 2-4, обладающие большими вертикальными компонентами смещения U3, испытывают большее поглощение под воздействием жидкости, чем мода 5. При этом мода 1, в соответствии с расчетами, слабо реагирует на нагрузку поверхности из-за своей локализации в центральной части пластины 10 при суммарной толщине пластины: (h1+h2+Н)/λ=1,95.
На фиг. 7 показаны профили смещений акустической моды по глубине структуры, что подтверждает квазипродольный характер используемой моды 5 в структуре ZnO(h2/λ=0,04)/Si(H/λ=1,9)/ZnO(h1/λ=0,05): U1>>U3; U2=0 по всей глубине структуры, включая рабочую поверхность пленки ZnO толщиной h2/λ=0,04).
Таким образом, представленные экспериментальные данные свидетельствуют о достижении технического результата, а именно об одновременном повышении эффективности электромеханического преобразования при возбуждении и приеме акустических мод и уменьшении вертикальной компоненты упругого смещения, что, соответственно, снижает радиационные потери моды в жидкий аналит. Патентуемая конструкция технологична при изготовлении, поскольку используются слои из одинаковых материалов, наносимых при одной температуре подложки.

Claims (9)

1. Чувствительный элемент для акустического жидкостного сенсора, содержащий плоскую непьезоэлектрическую пластину, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой встречно-штыревых преобразователей для возбуждения и приема акустических пластинчатых мод колебаний, локальную ванну для жидкого аналита,
отличающийся тем, что
пьезоэлектрический материал нанесен на обе поверхности пластины из монокристаллического кремния, выполнен в виде пленок окиси цинка, имеющих разную толщину, пленка большей толщины h1 сообщена с системой встречно-штыревых преобразователей, а пленка меньшей толщины h2 образует дно локальной ванны, причем толщина H пластины много больше h1, h2;
плоскость пластины совпадает с кристаллографической плоскостью (001), а направление распространения акустических пластинчатых мод - с направлением <100> монокристаллического кремния, при этом
акустические пластинчатые моды колебаний представляют собой слабодисперсионные квазипродольные моды с фазовой скоростью, близкой к фазовой скорости объемной продольной волны в кристаллографическом направлении <100> монокристаллического кремния, и удовлетворяют условиям:
dv/d(H/λ)≤100; U1>>U3, U2=0,
где v - скорость слабодисперсионной квазипродольной пластинчатой моды, м/с;
Figure 00000001
- толщина пластины, мкм; λ - период штырей электроакустических преобразователей, равный длине акустической волны, мкм; U1 - продольная, а U2, U3 - сдвиговые компоненты смещения в пластине для пластинчатой квазипродольной моды, мкм.
2. Чувствительный элемент по п. 1, отличающийся тем, что толщина пластины составляет H=1,9λ, а толщины пленок окиси цинка - h1=0,05λ и h2=0,04λ.
3. Чувствительный элемент по п. 1, отличающийся тем, что толщина пластины составляет
Figure 00000002
=0,95λ, а толщины пленок окиси цинка - h1=0,05λ и h2=0,16λ.
RU2016120232A 2016-05-25 2016-05-25 Чувствительный элемент для акустического жидкостного сенсора RU2632575C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120232A RU2632575C1 (ru) 2016-05-25 2016-05-25 Чувствительный элемент для акустического жидкостного сенсора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120232A RU2632575C1 (ru) 2016-05-25 2016-05-25 Чувствительный элемент для акустического жидкостного сенсора

Publications (1)

Publication Number Publication Date
RU2632575C1 true RU2632575C1 (ru) 2017-10-06

Family

ID=60040639

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120232A RU2632575C1 (ru) 2016-05-25 2016-05-25 Чувствительный элемент для акустического жидкостного сенсора

Country Status (1)

Country Link
RU (1) RU2632575C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117146A (en) * 1988-04-29 1992-05-26 The United States Of America As Represented By The United States Department Of Energy Acoustic wave device using plate modes with surface-parallel displacement
JPH0643016A (ja) * 1992-03-13 1994-02-18 Hewlett Packard Co <Hp> せん断横波装置
WO2002009160A2 (en) * 2000-07-24 2002-01-31 Motorola, Inc. Piezoelectric structures for acoustic wave devices and manufacturing processes
US7266990B2 (en) * 2000-03-20 2007-09-11 The Charles Stark Draper Laboratory, Inc. Flexural plate wave sensor and array
US7389673B2 (en) * 2004-09-10 2008-06-24 Murata Manufacturing Co., Ltd. Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same
RU2393467C2 (ru) * 2007-09-18 2010-06-27 Индастриал Текнолоджи Ресерч Институт Акустическое устройство для определения вязкости и температуры жидкости в одной области пробы жидкости и способ измерения с использованием такого устройства
JP6043016B2 (ja) * 2014-06-17 2016-12-14 オリンパス株式会社 内視鏡システム、そのホワイトバランス調整方法、及び内視鏡用画像処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117146A (en) * 1988-04-29 1992-05-26 The United States Of America As Represented By The United States Department Of Energy Acoustic wave device using plate modes with surface-parallel displacement
JPH0643016A (ja) * 1992-03-13 1994-02-18 Hewlett Packard Co <Hp> せん断横波装置
US7266990B2 (en) * 2000-03-20 2007-09-11 The Charles Stark Draper Laboratory, Inc. Flexural plate wave sensor and array
WO2002009160A2 (en) * 2000-07-24 2002-01-31 Motorola, Inc. Piezoelectric structures for acoustic wave devices and manufacturing processes
US7389673B2 (en) * 2004-09-10 2008-06-24 Murata Manufacturing Co., Ltd. Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same
RU2393467C2 (ru) * 2007-09-18 2010-06-27 Индастриал Текнолоджи Ресерч Институт Акустическое устройство для определения вязкости и температуры жидкости в одной области пробы жидкости и способ измерения с использованием такого устройства
JP6043016B2 (ja) * 2014-06-17 2016-12-14 オリンパス株式会社 内視鏡システム、そのホワイトバランス調整方法、及び内視鏡用画像処理装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Anisimkin V.I. "General properties of the Anisimkin Jr. plate modes" // IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Sep; 57(9): 2028-34 *
Anisimkin V.I. ACOUSTIC WAVE DEVICE FOR THERMAL SENSING IN LIQUID DROPLETS // Conference: Sensors and Microsystems - 5th Italian Conference — Extended to Mediterranean Countries, 12.2000. *
Anisimkin V.I., Voronova N.V. Acoustic properties of the film/plate layered structure" // IEEE Trans. on Ultrason, Ferroelect., Freq. Contr., UFFC-58 (3), 2011 г., стр. 578-584 *
Anisimkin V.I., Voronova N.V. Acoustic properties of the film/plate layered structure" // IEEE Trans. on Ultrason, Ferroelect., Freq. Contr., UFFC-58 (3), 2011 г., стр. 578-584. Anisimkin V.I. "General properties of the Anisimkin Jr. plate modes" // IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Sep; 57(9): 2028-34. Anisimkin V.I. ACOUSTIC WAVE DEVICE FOR THERMAL SENSING IN LIQUID DROPLETS // Conference: Sensors and Microsystems - 5th Italian Conference — Extended to Mediterranean Countries, 12.2000. *

Similar Documents

Publication Publication Date Title
Benetti et al. Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices
Nakamura et al. Broadband ultrasonic transducers using a LiNbO/sub 3/plate with a ferroelectric inversion layer
KR20010033808A (ko) 마이크로 음향 센서 어레이를 동작시키기 위한 방법 및 장치
Hoople et al. Optimized response of AlN stack for chipscale GHz ultrasonics
Kim et al. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator
Feng et al. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator
CN109506808B (zh) 一种具有单调和线性输出特性的saw温度传感器及其设计方法
Zhou et al. Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO/sub 3/single crystal
Liu et al. Design and fabrication of a MEMS Lamb wave device based on ZnO thin film
RU2632575C1 (ru) Чувствительный элемент для акустического жидкостного сенсора
Yanez et al. Fluid compressional properties sensing at microscale using a longitudinal bulk acoustic wave transducer operated in a pulse-echo scheme
CN110967380A (zh) 一种用于液体检测的薄膜体声波传感器
Hino et al. Antisymmetric-mode Lamb wave methanol sensor with edge reflectors for fuel cell applications
Yanez et al. AlN-based HBAR ultrasonic sensor for fluid detection in microchannels with multi-frequency operation capability over the GHz range
Cheng et al. Crosstalk optimization of 5 MHz linear array transducer based on PZT/epoxy piezoelectric composite
Lau et al. 60-MHz PMN-PT single crystal transducers for microfluidic analysis systems
Reusch et al. Flexural plate wave sensors with buried IDT for sensing in liquids
Yanez et al. Multi-frequency thin film hbar microsensor for acoustic impedance sensing over the ghz range
Mahdavi et al. Piezoelectric resonant MEMS balances with high liquid phase Q
Weckman et al. Design and characterization of micromachined piezoelectric acoustic flexural plate wave devices
Tran et al. Encapsulated Aluminum Nitride SAW devices for liquid sensing applications
Guan et al. Enhancement of 10 MHz single element ultrasonic transducers based on alternating current polarized PIN-PMN-PT single crystals
Azarnaminy et al. Analysis of Aluminum Nitride Resonators and Filters Over Temperature and Under High Power
Ono et al. Design and fabrication of an integrated dual-mode ultrasonic probe
Omote et al. Properties of transverse ultrasonic transducers of ferroelectric polymers working in thickness shear modes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200526

NF4A Reinstatement of patent

Effective date: 20210413