RU2632412C1 - Индуктивно-емкостный преобразователь - Google Patents

Индуктивно-емкостный преобразователь Download PDF

Info

Publication number
RU2632412C1
RU2632412C1 RU2016143651A RU2016143651A RU2632412C1 RU 2632412 C1 RU2632412 C1 RU 2632412C1 RU 2016143651 A RU2016143651 A RU 2016143651A RU 2016143651 A RU2016143651 A RU 2016143651A RU 2632412 C1 RU2632412 C1 RU 2632412C1
Authority
RU
Russia
Prior art keywords
section
inductive
beginning
conductive
conductive plate
Prior art date
Application number
RU2016143651A
Other languages
English (en)
Inventor
Сергей Геннадьевич Конесев
Регина Тагировна Хазиева
Татьяна Андреевна Бочкарева
Original Assignee
Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика" filed Critical Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика"
Priority to RU2016143651A priority Critical patent/RU2632412C1/ru
Application granted granted Critical
Publication of RU2632412C1 publication Critical patent/RU2632412C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/06Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using impedances
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits

Landscapes

  • Inverter Devices (AREA)

Abstract

Изобретение относится к преобразовательной технике и может быть использовано в системах электроснабжения. Технический результат заключается в повышении коэффициента усиления напряжения. Индуктивно-емкостный преобразователь содержит проводящие обкладки, свернутые в спираль и разделенные диэлектриком, выполненным из первой и второй секций, причем начало первой проводящей обкладки первой секции подключено к началу первой проводящей обкладки второй секции, конец первой проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции, начало второй проводящей обкладки первой секции подключено к началу второй проводящей обкладки второй секции, конец второй проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции. 2 з.п. ф-лы, 9 ил.

Description

Изобретение относится к преобразовательной технике и может быть использовано в системах электроснабжения, для питания устройств электротермии, оптических квантовых генераторов, а также в устройствах заряда емкостных накопителей, аккумуляторных батарей, в установках магнитно-импульсной обработки металлов, в генераторах накачки импульсных лазеров и других устройствах в качестве преобразователя источника ЭДС в источник тока.
Известен индуктивно-емкостный преобразователь, содержащий источник питания, нагрузку, единый конструкторско-технологический компонент, состоящий из первой и второй проводящих обкладок, свернутых в спираль, разделенных диэлектриком [1].
К недостаткам данного устройства можно отнести работу устройства только на одной резонансной частоте и невозможность трансформации электрической энергии.
Наиболее близким техническим решением к предлагаемому является индуктивно-емкостный преобразователь, содержащий источник питания, нагрузку, единый конструкторско-технологический компонент, состоящий из первой проводящей обкладки с выводами, расположенными по всей длине обкладки, и второй проводящей обкладки, выполненной из нескольких секций, с выводами, свернутых в спираль, разделенных диэлектриком [2]. В данном техническом решении реализована возможность трансформации электрической энергии, обеспечивается высокий коэффициент стабилизации тока нагрузки.
Недостатками данного устройства являются относительно узкие функциональные возможности, заключающиеся в том, что данное устройство может стабилизировать в широком диапазоне изменения частоты ток нагрузки только малой амплитуды, а ток большой амплитуды может стабилизировать только в узком диапазоне изменения частоты, а также то, что устройство имеет высокий коэффициент усиления напряжения в узком частотном диапазоне.
Технической задачей изобретения является расширение функциональных возможностей индуктивно-емкостного преобразователя.
Поставленная задача достигается тем, что в известном индуктивно-емкостном преобразователе, содержащем источник питания, нагрузку, единый конструкторско-технологический компонент, состоящий из проводящих обкладок, свернутых в спираль и разделенных диэлектриком, с выводами, расположенными в началах и в концах обкладок, проводящие обкладки единого конструкторско-технологического компонента выполнены из первой и второй секций, каждая из которых состоит из первой и второй проводящих обкладок, начало первой проводящей обкладки первой секции подключено к началу первой проводящей обкладки второй секции, конец первой проводящей обкладки первой секции подключен к концу первой проводящей обкладки второй секции, начало второй проводящей обкладки первой секции подключено к началу второй проводящей обкладки второй секции, конец второй проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции, источник питания подключен к началу первой проводящей обкладки первой секции и к концу второй проводящей обкладки первой секции, нагрузка подключена к концу первой проводящей обкладки второй секции и к началу второй проводящей обкладки первой секции. Причем, предлагаемое техническое решение позволяет реализовать различные схемотехнические исполнения индуктивно-емкостного преобразователя, отличающиеся способом соединения секций и подключения источника питания и нагрузки к секциям единого конструкторско-технологического компонента, а каждая из полученных схем индуктивно-емкостного преобразователя имеет свою собственную резонансную частоту.
На фиг. 1-3 показаны предлагаемые схемотехнические решения индуктивно-емкостного преобразователя. На всех фигурах проводящие обкладки изображены в развернутом виде.
На фиг. 1 представлен предлагаемый индуктивно-емкостный преобразователь, состоящий из источника питания 1, нагрузки 2, единого конструкторско-технологического компонента 3, состоящего из проводящих обкладок, свернутых в спираль и разделенных диэлектриком (на рисунке не указан), с выводами, расположенными в началах и в концах обкладок, проводящие обкладки единого конструкторско-технологического компонента 3 выполнены из первой 4 и второй 5 секций, каждая из которых состоит из первой 6, 7 и второй 8, 9 проводящих обкладок, начало первой проводящей обкладки 6 первой секции 4 подключено к началу первой проводящей обкладки 7 второй секции 5, конец первой проводящей обкладки 6 первой секции 4 подключен к концу первой проводящей обкладки 7 второй секции 5, начало второй проводящей обкладки 8 первой секции 4 подключено к началу второй проводящей обкладки 9 второй секции 5, конец второй проводящей обкладки 8 первой секции 4 подключен к концу второй проводящей обкладки 9 второй секции 5, источник питания 1 подключен к началу первой проводящей обкладки 6 первой секции 4 и к концу второй проводящей обкладки 8 первой секции 4, нагрузка 2 подключена к концу первой проводящей обкладки 7 второй секции 5 и к началу второй проводящей обкладки 8 первой секции 4.
На фиг. 2 представлен предлагаемый индуктивно-емкостный преобразователь, состоящий из источника питания 1, нагрузки 2, единого конструкторско-технологического компонента 3, состоящего из проводящих обкладок, свернутых в спираль и разделенных диэлектриком (на рисунке не указан), с выводами, расположенными в началах и в концах обкладок, проводящие обкладки единого конструкторско-технологического компонента 3 выполнены из первой 4 и второй 5 секций, каждая из которых состоит из первой 6, 7 и второй 8, 9 проводящих обкладок, начало первой проводящей обкладки 6 первой секции 4 подключено к началу первой проводящей обкладки 7 второй секции 5, конец первой проводящей обкладки 6 первой секции 4 подключен к концу первой проводящей обкладки 7 второй секции 5, конец второй проводящей обкладки 8 первой секции 4 подключен к началу второй проводящей обкладки 9 второй секции 5, источник питания 1 подключен к началу первой проводящей обкладки 6 первой секции 4 и к концу второй проводящей обкладки 8 первой секции 4, нагрузка 2 подключена к концу первой проводящей обкладки 7 второй секции 5 и к началу второй проводящей обкладки 8 первой секции 4. Данное схематическое исполнение индуктивно-емкостного преобразователя обладает резонансными свойствами на частоте 1,5 от резонансной частоты индуктивно-емкостного преобразователя, представленного на фиг. 1.
На фиг. 3 представлен предлагаемый индуктивно-емкостный преобразователь, состоящий из источника питания 1, нагрузки 2, единого конструкторско-технологического компонента 3, состоящего из проводящих обкладок, свернутых в спираль и разделенных диэлектриком (на рисунке не указан), с выводами, расположенными в началах и в концах обкладок, проводящие обкладки единого конструкторско-технологического компонента 3 выполнены из первой 4 и второй 5 секций, каждая из которых состоит из первой 6, 7 и второй 8, 9 проводящих обкладок, конец второй проводящей обкладки 8 первой секции 4 подключен к началу второй проводящей обкладки 9 второй секции 5, конец первой проводящей обкладки 6 первой секции 4 подключен к началу первой проводящей обкладки 7 второй секции 5, источник питания 1 подключен к началу первой проводящей обкладки 6 первой секции 4 и к концу второй проводящей обкладки 8 первой секции 4, нагрузка 2 подключена к концу первой проводящей обкладки 7 второй секции 5 и к началу второй проводящей обкладки 8 первой секции 4. Данное схематическое исполнение индуктивно-емкостного преобразователя обладает резонансными свойствами на частоте 1,25 от резонансной частоты индуктивно-емкостного преобразователя, представленного на фиг. 1.
На фиг. 4-9 показаны частотные характеристики предлагаемого индуктивно-емкостного преобразователя при различных способах соединения секций двухсекционного единого конструкторско-технологического компонента. При этом на рисунках индексы соответствуют номеру фигуры единого конструкторско-технологического компонента.
На фиг. 4 показана зависимость коэффициента усиления по напряжению от изменения частоты в относительных единицах для двухсекционного единого конструкторско-технологического компонента при различных способах соединения секций. Из графика видно, что индуктивно-емкостный преобразователь, представленный на фиг. 2, обладает наибольшим коэффициентом усиления по напряжению (kU2=75>kU1=20>kU3=13,5).
На фиг. 5 показана зависимость входного сопротивления предлагаемого индуктивно-емкостного преобразователя от изменения частоты в относительных единицах. Из графика видно, что входное сопротивление для рассматриваемых способов соединения секций единого конструкторско-технологического компонента с увеличением номера высших гармоник для режимов работы, близких к короткому замыканию (с ростом частоты), уменьшается. Для предлагаемых схем индуктивно-емкостного преобразователя выполняется необходимое условие работы индуктивно-емкостного преобразователя - уменьшение входного и переходного сопротивлений с ростом частоты: для индуктивно-емкостного преобразователя, представленного на фиг. 1, в диапазоне изменения частоты от 0,05⋅fрез. до 1,0⋅fрез.; для индуктивно-емкостного преобразователя, представленного на фиг. 2, в диапазоне изменения частоты от 0,05⋅fрез. до 0,7⋅fрез.; для индуктивно-емкостного преобразователя, представленного на фиг. 3, в диапазоне изменения частоты от 0,05⋅fрез. до 1,5⋅fрез., что свидетельствует о большей пригодности схемы индуктивно-емкостного преобразователя, представленной на фиг. 1.
На фиг. 6 показана зависимость переходного сопротивления индуктивно-емкостного преобразователя от изменения частоты в относительных единицах. Из графика видно, что переходное сопротивление для всех предлагаемых способов соединения секций единого конструкторско-технологического компонента с ростом частоты, т.е. с увеличением номера высших гармоник для режимов работы, близких к короткому замыканию, уменьшается. При этом для индуктивно-емкостного преобразователя, представленного на фиг. 1, в диапазоне изменения частоты от 0,05⋅fрез. до 1,0⋅fрез.; для индуктивно-емкостного преобразователя, представленного на фиг. 2, в диапазоне изменения частоты от 0,05⋅fрез. до 1,0⋅fрез.; для индуктивно-емкостного преобразователя, представленного на фиг. 3, в диапазоне изменения частоты от 0,05⋅fрез. до 1,5⋅fрез., что свидетельствует о большей пригодности схем индуктивно-емкостных преобразователей, представленных на фиг. 2 и 3. Однако для индуктивно-емкостных преобразователей, представленных на фиг. 1 и 2, снижение переходного сопротивления с ростом частоты происходит быстрее и более значительно (до 275 См) в отличие от индуктивно-емкостного преобразователя, представленного на фиг. 3, у которого переходная проводимость уменьшается до 575 См (в 2,1 раза большего значения), а затем увеличивается. При этом для индуктивно-емкостного преобразователя, представленного на фиг. 1, снижение переходного сопротивления с ростом частоты происходит еще быстрее. Это крайне нежелательно из-за больших токов, которые могут возникнуть вследствие появления высших гармонических составляющих в кривой питающего напряжения.
На фиг. 7 показана зависимость переходной проводимости индуктивно-емкостного преобразователя от изменения частоты в относительных единицах. Из графика видно, что переходная проводимость для предлагаемых способов соединения секций единого конструкторско-технологического компонента с ростом частоты увеличивается. Полученные зависимости показывают, что для предлагаемых схем индуктивно-емкостного преобразователя выполняется необходимое условие работы индуктивно-емкостного преобразователя - увеличение переходной проводимости с ростом частоты - в диапазоне изменения частоты от 0,05⋅fрез. до 1,0⋅fрез..
На фиг. 8 показана зависимость коэффициента стабилизации по току от изменения частоты в относительных единицах для индуктивно-емкостного преобразователя при различных способах соединения секций двухсекционного единого конструкторско-технологического компонента. Из графика видно, что коэффициент стабилизации тока нагрузки сохраняется: для индуктивно-емкостного преобразователя, представленного на фиг. 1, в диапазоне изменения частоты от 0,7⋅fрез. до 1,4⋅fрез. равным 0,05; для индуктивно-емкостного преобразователя, представленного на фиг. 2, от 0,6⋅fрез. до 0,9⋅fрез. равным 0,05; для индуктивно-емкостного преобразователя, представленного на фиг. 3, от 0,7⋅fрез. до 0,9⋅fрез. равным 0,1.
На фиг. 9 показана зависимость тока нагрузки от изменения частоты в относительных единицах при различных способах соединения обкладок секций единого конструкторско-технологического компонента. Из графика видно, что предлагаемые схемы индуктивно-емкостного преобразователя осуществляют стабилизацию тока нагрузки в диапазоне ±7% при изменении частоты: для индуктивно-емкостного преобразователя, представленного на фиг. 1, от 0,98⋅fрез. до 1,02⋅fрез.; для индуктивно-емкостного преобразователя, представленного на фиг. 2, в диапазоне изменения частоты от 0,985⋅fрез. до 1,003⋅fрез.; для индуктивно-емкостного преобразователя, представленного на фиг. 3, в диапазоне изменения частоты от 0,7⋅fрез. до 1,3⋅fрез..
Предлагаемый индуктивно-емкостный преобразователь, представленный на фиг. 1, работает следующим образом. В начальный момент времени источник питания 1, представляющий собой источник переменного напряжения, подключается к началу первой проводящей обкладки 6 первой секции 4 и к концу второй проводящей обкладки 8 первой секции 4. При совпадении частоты свободных колебаний единого конструкторско-технологического компонента с частотой источника питания в цепи возникает резонанс. Нагрузка 2 подключена к концу первой проводящей обкладки 7 второй секции 5 и к началу второй проводящей обкладки 8 первой секции 4. Действующее значение выходного тока не зависит от отклонений частоты и действующего значения напряжения источника питания, от флуктуации параметров элементов единого конструкторско-технологического компонента, которые приводят к отклонению собственной частоты элементов единого конструкторско-технологического компонента от частоты напряжения источника питания. При этом напряжение на входе и выходе единого конструкторско-технологического компонента пропорционально величине сопротивления нагрузки, а ток нагрузки (выходной ток индуктивно-емкостного преобразователя) остается неизменным при изменении сопротивления нагрузки в широких пределах.
Формулы тока нагрузки предлагаемого индуктивно-емкостного преобразователя при выполнении условия резонансной настройки могут быть представлены в виде:
Figure 00000001
Figure 00000002
Приведенные выражения для относительного тока нагрузки отражают частотные свойства индуктивно-емкостного преобразователя при различных способах соединения секций и подключения источника питания и нагрузки.
Рассмотрим работу предлагаемых схем индуктивно-емкостных преобразователей на активную нагрузку при изменении коэффициента стабилизации тока в диапазоне ±7%. Индуктивно-емкостный преобразователь, представленный на фиг. 2, осуществляет стабилизацию тока нагрузки большей амплитуды. Изменение сопротивления нагрузки в широких пределах не приводит к заметному изменению резонансной частоты. Изменение способа соединения секций позволяет расширить частотный диапазон работы индуктивно-емкостного преобразователя: резонансная частота может быть в диапазоне от 1,0⋅fрез. до 1,5⋅fрез.
При необходимости усиления напряжения и тока и стабилизации тока в узком диапазоне изменения частоты наиболее оптимальным является индуктивно-емкостный преобразователь, представленный на фиг. 1, который обладает более высоким коэффициентом усиления по напряжению по сравнению с индуктивно-емкостным преобразователем, представленным на фиг. 3, (kU1=20>kU3=13,5), стабилизирует ток большей амплитуды (iL1=0,352>iL3=0,235), но в узком диапазоне изменения частоты (от 0,98⋅fрез. до 1,02⋅fрез.). При этом индуктивно-емкостный преобразователь, представленный на фигуре 1, обладает более широким частотным диапазоном (от 0,98⋅fрез. до 1,02⋅fрез.) по сравнению с индуктивно-емкостным преобразователем, представленным на фиг. 2, (от 0,985⋅fрез. до 1,003⋅fрез.), но стабилизирует ток меньшей амплитуды (iL1=0,352<iL2=1,23), имеет меньший коэффициент усиления по напряжению (kU1=20<kU2=75).
Стабильность выходного тока для индуктивно-емкостного преобразователя при отклонении частоты питающей сети зависит не только от способа подключения источника питания, но и способа соединения секций единого конструкторско-технологического компонента, образующих его структуру. Наименьшими отклонениями тока при изменении частоты обладает индуктивно-емкостный преобразователь, представленный на фиг. 3. Индуктивно-емкостный преобразователь, представленный на фиг. 3, обладает более подходящими свойствами для индуктивно-емкостного преобразователя (обладает наилучшими стабилизирующими свойствами среди предлагаемых схем индуктивно-емкостного преобразователя), так как осуществляет стабилизацию тока нагрузки в широком диапазоне изменения частоты (от 0,7⋅fрез. до 1,3⋅fрез.). Данный индуктивно-емкостный преобразователь обладает высокими фильтрующими свойствами и может работать от несинусоидального источника напряжения.
Таким образом, предлагаемый индуктивно-емкостный преобразователь позволяет расширить функциональные возможности устройства на базе единого конструкторско-технологического компонента, состоящего из двух секций и реализующего схемотехнические решения с одинаковыми способами подключения источника питания и нагрузки, отличающиеся только способом соединения секций единого конструкторско-технологического компонента. Предлагаемый индуктивно-емкостный преобразователь обладает возможностью подключения второй секции различными способами, что позволяет, не изменяя способа подключения источника питания и нагрузки, помимо схемотехнических решений, аналогичных прототипу (фиг. 2 и 3), реализовать схемотехническое решение (фиг. 1), занимающее промежуточное положение, по сравнению с прототипом, по ширине диапазона стабилизации тока нагрузки при изменении частоты и значению коэффициентов усиления по напряжению и току.
Источники информации, принятые во внимание:
1. Индуктивно-емкостный преобразователь. Патент РФ на изобретение №2407136 от 20.12.2010. МПК H02M 5/06.
2. Индуктивно-емкостной преобразователь. Патент РФ на изобретение №2450413 от 10.05.2012. МПК H03K 3/53, H02M 5/06.

Claims (3)

1. Индуктивно-емкостный преобразователь, содержащий источник питания, нагрузку, единый конструкторско-технологический компонент, состоящий из проводящих обкладок, свернутых в спираль и разделенных диэлектриком, с выводами, расположенными в началах и в концах обкладок, отличающийся тем, что проводящие обкладки единого конструкторско-технологического компонента выполнены из первой и второй секций, каждая из которых состоит из первой и второй проводящих обкладок, начало первой проводящей обкладки первой секции подключено к началу первой проводящей обкладки второй секции, конец первой проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции, начало второй проводящей обкладки первой секции подключено к началу второй проводящей обкладки второй секции, конец второй проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции, источник питания подключен к началу первой проводящей обкладки первой секции и к концу второй проводящей обкладки первой секции, нагрузка подключена к концу первой проводящей обкладки второй секции и к началу второй проводящей обкладки первой секции.
2. Устройство по п. 1, отличающееся тем, что конец второй проводящей обкладки первой секции подключен к началу второй проводящей обкладки второй секции.
3. Устройство по п. 2, отличающееся тем, что конец первой проводящей обкладки первой секции подключен к началу первой проводящей обкладки второй секции.
RU2016143651A 2016-11-07 2016-11-07 Индуктивно-емкостный преобразователь RU2632412C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016143651A RU2632412C1 (ru) 2016-11-07 2016-11-07 Индуктивно-емкостный преобразователь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016143651A RU2632412C1 (ru) 2016-11-07 2016-11-07 Индуктивно-емкостный преобразователь

Publications (1)

Publication Number Publication Date
RU2632412C1 true RU2632412C1 (ru) 2017-10-04

Family

ID=60040635

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016143651A RU2632412C1 (ru) 2016-11-07 2016-11-07 Индуктивно-емкостный преобразователь

Country Status (1)

Country Link
RU (1) RU2632412C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1355970A1 (ru) * 1985-05-20 1987-11-30 Предприятие П/Я В-8769 Индуктивно-емкостный преобразователь
RU32648U1 (ru) * 2003-06-02 2003-09-20 Крупцов Олег Павлович Индуктивно-емкостной преобразователь емкостных потенциалов
RU2450413C1 (ru) * 2010-12-03 2012-05-10 Сергей Геннадьевич Конесев Индуктивно-емкостный преобразователь
US20130027980A1 (en) * 2007-07-06 2013-01-31 Advanced Analogic Technologies, Inc. DC/DC Converter Using Synchronous Freewheeling MOSFET

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1355970A1 (ru) * 1985-05-20 1987-11-30 Предприятие П/Я В-8769 Индуктивно-емкостный преобразователь
RU32648U1 (ru) * 2003-06-02 2003-09-20 Крупцов Олег Павлович Индуктивно-емкостной преобразователь емкостных потенциалов
US20130027980A1 (en) * 2007-07-06 2013-01-31 Advanced Analogic Technologies, Inc. DC/DC Converter Using Synchronous Freewheeling MOSFET
RU2450413C1 (ru) * 2010-12-03 2012-05-10 Сергей Геннадьевич Конесев Индуктивно-емкостный преобразователь

Similar Documents

Publication Publication Date Title
Xu et al. Design of LCL‐filter considering the control impact for grid‐connected inverter with one current feedback only
US20170294833A1 (en) Multiphase Coupled and Integrated Inductors with Printed Circuit Board (PCB) Windings for Power Factor Correction (PFC) Converters
Calvente et al. Using magnetic coupling to eliminate right half-plane zeros in boost converters
Nag et al. A passive filter building block for input or output current ripple cancellation in a power converter
Nguyen et al. Trans‐switched boost inverters
US9843266B2 (en) Method for damping resonant component of common-mode current of multi-phase power converter
Ahrabi et al. Improved Y‐source DC–AC converter with continuous input current
Maswood et al. Comparative study of multilevel inverters under unbalanced voltage in a single DC link
Konesev et al. Inductive-capacitive converters for high-voltage secondary power supplies
US10263537B2 (en) DC/AC power conversion apparatus having switchable current paths
KR101379246B1 (ko) 계통 연계형 필터 및 그 설계 방법
Huang et al. Virtual RLC active damping for grid-connected inverters with LCL filters
Malinowski et al. Sensorless operation of active damping methods for three-phase PWM converters
JP2015050776A (ja) 変圧装置
RU2632412C1 (ru) Индуктивно-емкостный преобразователь
Nikoo et al. Theoretical analysis of RF pulse termination in nonlinear transmission lines
Wei et al. Asymmetrical transformer‐based embedded Z‐source inverters
Bertoldi et al. Quasi-two-level converter operation strategy for overvoltage mitigation in long cable applications
Hu et al. Discrete‐time modelling and stability analysis of wireless power transfer system
US10432110B2 (en) Power converter having resonant frequencies around two and four times the switching frequency
Gervasio et al. Dynamic analysis of active damping methods for LCL-filter-based grid converters
RU2072623C1 (ru) Умножитель частоты
CN113114059A (zh) Ups的输出电压补偿方法
KR102175583B1 (ko) 수동소자로 이루어진 전력 네트워크를 포함한 공진형 컨버터
Tsang et al. Coupled inductor filter with frequency notching characteristics for grid interface

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181108