RU2630363C1 - Теплотрубная гелиотермоэлектростанция - Google Patents

Теплотрубная гелиотермоэлектростанция Download PDF

Info

Publication number
RU2630363C1
RU2630363C1 RU2016120958A RU2016120958A RU2630363C1 RU 2630363 C1 RU2630363 C1 RU 2630363C1 RU 2016120958 A RU2016120958 A RU 2016120958A RU 2016120958 A RU2016120958 A RU 2016120958A RU 2630363 C1 RU2630363 C1 RU 2630363C1
Authority
RU
Russia
Prior art keywords
vertical
porous material
pipe
wire segments
thermal conductivity
Prior art date
Application number
RU2016120958A
Other languages
English (en)
Inventor
Владимир Сергеевич Ежов
Сергей Геннадьевич Емельянов
Сергей Владимирович Березин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2016120958A priority Critical patent/RU2630363C1/ru
Application granted granted Critical
Publication of RU2630363C1 publication Critical patent/RU2630363C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к теплоэлектроэнергетике и может быть использовано для прямой трансформации тепловой энергии в электрическую. Теплотрубная гелиотермоэлектростанция включает поддон с отверстием в днище, закрытый сверху крышкой, покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом заглушенной снизу вертикальной трубы, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная также пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых заполнено пористым материалом, внутри каждого гофра вертикальной трубы размещены вертикальные пазы длиной L, в которые вставлены вертикальные термоэлектрические преобразователи, в массиве которых помещена контурная арматура, состоящая из термоэмиссионных элементов. Изобретение должно обеспечить повышение эффективности и надежности станции. 10 ил.

Description

Предлагаемое изобретение относится к теплоэлектроэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и тепловой энергии природных источников, а именно для прямой трансформации тепловой энергии в электрическую.
Известна термоэмиссионная система электроснабжения здания, содержащая: наружные ограждения, кровельное покрытие, покрытые снаружи декоративными ограждениями, состоящими из секций, каждая из которых представляет собой термоэлектрический преобразователь, состоящий из прямоугольного полого корпуса, выполненного из материала–диэлектрика с высокой теплопроводностью, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, устроенные таким образом, что левые и правые части проволочных отрезков со спаянными концами согнуты под углом 90° и располагаются в слоях материала– диэлектрика крышки и днища, параллельно их поверхности не касаясь ее, а средние части парных проволочных отрезков расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором [Патент РФ №2499107, МПК E04C 2/26, E04D 13/00, 2013].
Основными недостатками известного термоэлектрического преобразователя термоэмиссионной системы электроснабжения здания являются невозможность использования солнечной энергии и зигзагообразная компоновка термоэмиссионных элементов с изгибом их спаев под углом 90° и обусловленное этим малое количество термоэмиссионных элементов на единице его площади, что снижает удельную производительность по выработке термоэлектричества и эффективность устройства.
Более близким к предлагаемому изобретению является гелиотермоэмиссионная система электроснабжения здания, включающая кровельное покрытие (крышу) и декоративные ограждения, состоящие из прямоугольных секций, каждая из которых представляет собой фототермоэлектрический преобразователь, состоящий из фотоэлемента, присоединенного своей тыльной стороной к наружной стороне корпуса термоэлектрического преобразователя, тыльная сторона которого снабжена вертикальными ребрами, выполненного из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из элементов термоэлектрического преобразователя, представляющих собой парные проволочные отрезки, выполненные из разных металлов, спаянные на концах между собой, образуя зигзагообразные ряды, устроенные таким образом, что левые части проволочных отрезков с левыми спаянными концами согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а правые части проволочных отрезков с правыми спаянными концами расположены в массиве ребер, крайние проволочные отрезки крайних зигзагообразных рядов термоэлектрических преобразователей и выходные клеммы фотоэлементов соединены через соответствующие однополюсные коллекторы электрических зарядов с накопительным блоком [Патент РФ №2507353, МПК E04C 2/26, 2014].
Основными недостатками известной гелиотермоэмиссионной системы электроснабжения здания являются недостаточное охлаждение фотоэлементов, ведущее к снижению их производительности и высокое электрическое сопротивление термоэлектрических преобразователей, обусловленные зигзагообразным устройством рядов термоэлектрических преобразователей, сгибом левых частей проволочных отрезков термоэлектрических преобразователей под углом 90°, что приводит к увеличению длины вышеупомянутых проволочных отрезков и уменьшению удельного количества термоэлектрических преобразователей в единице площади источника электроснабжения, а также прямое соединение термоэлектрических преобразователей с коллекторами электрических зарядов, что также увеличивает электрическое сопротивление и, в конечном итоге, уменьшает эффективность и надежность устройства.
Техническим результатом предлагаемого изобретения являются повышение эффективности и надежности теплотрубной гелиотермоэлектростанции.
Технический результат достигается теплотрубной гелиотермоэлектростанцией, включающей поддон с отверстием в днище, закрытый сверху крышкой, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами, внутренняя сторона которой покрыта решеткой, выполненной из полос пористого материала, при этом отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, верхний и нижний торцы подъемной трубы отступают от нижнего торца вертикальной трубы и внутренней поверхности крышки поддона на расстояние ∆, образуя щели, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком и потребителем.
На фиг. 1–10 представлена теплотрубная гелиотермоэлектростанция (ТТГТЭС): фиг. 1–5 – общий вид и разрез ТТГТЭС; фиг. 6 – узел стыковки торца трубы 9 с торцом 8 трубы 7; фиг. 7 – термоэлектрический преобразователь (ТЭП); фиг. 8–10 – основные узлы ТТГТЭС и ТЭП.
Предлагаемая теплотрубная гелиотермоэлектростанция (ТТГТЭС) содержит поддон 1 с отверстием 2 в днище, закрытый сверху крышкой 3, выполненной из материала с высокой тепловодностью и покрытой фотоэлементами 4, внутренняя сторона которой покрыта решеткой 5, выполненной из полос пористого материала 6, при этом отверстие 2 соединено с вертикальной трубой 7 с заглушенным нижним торцом 8, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба 9, заполненная пористым материалом 6, верхний и нижний торцы которой отступают от нижнего торца 8 вертикальной трубы 7 и внутренней поверхности крышки 3 на расстояние ∆, образуя щель 10, пространство которой также заполнено пористым материалом 6, соприкасающимся с нижним торцов 8 внизу и решеткой 5 вверху, причем стенка вертикальной трубы 7 на высоту Н1 выполнена с вертикальными гофрами 11, внутри каждого гофра 11 размещены вертикальные пазы 12 длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь (ТЭП) 13, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов ТЭЭ 14, представляющих собой парные проволочные отрезки 15 и 16, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи 17 согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя (ТЭП) 13 параллельно ей, не касаясь ее, а сами проволочные отрезки 15 и 16 расположены параллельно друг другу, образуя П–образные ряды 18, нижние крайние проволочные отрезки 15 и 16 каждой пары П–образных рядов 18 ТЭП 13, соединены между собой перемычками 19, сверху каждая пара П–образных рядов 18, соединены между собой через электрические конденсаторы 20, первый и последний из которых и фотоэлементы 4 соединены с выходными коллекторами 21 и 22, накопительным блоком и потребителем (на фиг. 1–10 не показаны).
В основу работы предлагаемой ТТГТЭС положено свойство фотоэлементов 4 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [А. с. СССР №1603152, МПК F24J 2/32, 1990], а также способность транспортировки жидкости фитилем (пористым материалом 6) за счет капиллярных сил из зоны пониженного давления в зону повышенного давления и высокая эффективность передачи теплоты в тепловых трубах, покрытых изнутри фитилем (пористым материалом 6) и частично заполненных рабочей жидкостью-переносчиком теплоты, которые делятся на три участка: зона испарения (подвода теплоты фотоэлементов 4 на внутренней поверхности крышки 3), адиабатная зона (переноса теплоты – полость трубы 7) и зона конденсации (отвода теплоты – боковая поверхность трубы 7) [В.В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с. 146; Тепловые трубы и теплообменники: от науки к практике. Сборник научн. тр. – М.: 1990, с. 106]. Кроме того, изготовление контурной арматуры ТЭП 13 в виде П–образных рядов 18, состоящих из парных проволочных отрезков 15 и 16, выполненных из разных металлов М1 и М2, спаянных на концах между собой, то при нагреве внутренних спаев 17 проволочных отрезков 15 и 16 ТЭЭ 14 ТЭП 13 конденсирующимся паром рабочей жидкости и охлаждении противоположных им спаев 17 снаружи, обращенных к холодному грунту, на них устанавливаются разные температуры, в результате чего в П–образных рядах 18 появляется термоэлектричество [С.Г. Калашников. Электричество. – М.: «Наука», 1970, с. 502–506]. Компоновка ТТГТЭС (сверху – фотоэлемент 4, снизу – крышка 3) позволяет одновременно производить съем тепла с фотоэлементов 4, увеличивая эффективность их работы, и испарять рабочую жидкость, пар которой нагревает при своей конденсации спаи 16 ТЭЭ 14, генерируя термоэлектричество. При этом, П–образное расположение ТЭЭ 14 в рядах 18 ТЭП 13 позволяет значительно увеличить их удельное количество, приходящееся на единицу поверхности трубы 7, а параллельное расположение спаев 17, относительно наружной поверхности ТЭП 12 увеличивает площадь контакта спаев 17 с охлаждаемой (нагреваемой) поверхностями, что интенсифицирует процесс теплообмена между противоположными спаями 17. Кроме того, соединение ТЭП 13 вертикальных рядов 18 между собой последовательно через электрические конденсаторы 20 и с выходными коллекторами 21, 22 снижает электрическое сопротивление при генерировании термоэлектричества.
ТТГТЭС предназначена для южных регионов с длительным количеством солнечных дней в году и работает следующим образом. Предварительно осуществляют подготовку скважины соответствующего диаметра и глубины, в месте, хорошо освещаемым солнцем, после чего ТТГТЭС вставляют в скважину и соединяют с накопительным блоком и потребителем (на фиг.1–10 не показаны). Если ТТГТЭС устанавливают в водоеме, то в этом случае его крепят к поплавкам (на фиг. 1–10 не показаны).
В дневной период фотоэлементы 4 сверху нагреваются солнечными лучами, генерируя электричество, а выделяемое тепло удаляется снизу через крышку 3, на внутренней поверхности которой испаряется рабочая жидкость. Последняя транспортируется снизу от нижнего торца 8 трубы 7 подъемной трубой 9, заполненной пористым материалом 6, распределяется по внутренней поверхности крышки 3 решеткой 5, также выполненной из пористого материала 6, нагревается до температуры кипения и испаряется при температуре tП, затрачивая тепло, выделившееся в результате генерации электричества. Полученный насыщенный пар c температурой tП движется вниз по кольцевой полости трубы 7, контактируя при этом с внутренней поверхностью ТЭП 13, нагревая внутренние спаи 17 проволочных отрезков 15 и 16 ТЭЭ 14 ТЭП 13 до температуры t1. Одновременно, поверхность ТЭП 13, обращенная к грунту (воде), охлаждается в результате контакта гофра 11с поверхностью грунта. При этом, тепло, выделяющееся в результате работы фотоэлементов 4 от солнечных лучей, в конечном итоге, тратится на нагрев внутренних спаев 16 ТЭЭ 13, а холод, поступающий от грунта (воды) охлаждает нижние спаи 9 этих же ТЭЭ 14 до температуры t2, в результате чего на противоположных спаях 17 возникает разность температур (t1–t2) и в П–образных рядах 18 появляется термоэлектричество, которое суммируется в конденсаторах 20. Полученная под воздействием солнечных лучей электрическая энергия из фотоэлементов 4 и термоэлектричество из ТЭП 13 через коллекторы 21 и 22, поступает в накопительный блок и далее к потребителю (на фиг. 1–10 не показаны).
Место установки ТТГТЭС должно быть хорошо освещаемым солнцем, а глубину скважины находят, исходя из глубины минимальной температуры грунта. Количество фотоэлементов 4, размеры поддона 1 и крышки 3, диаметр и длина трубы 7, глубина ее погружения в грунт Н и длину вертикальных пазов L1 определяют в зависимости от наружных условий места установки ТТГТЭС (температуры, солнечного освещения, вида наружного грунта) и требуемой мощности. Величина разности электрического потенциала на коллекторах 21 и 22, сила электрического тока зависит от характеристик фотоэлементов 4, продолжительности и интенсивности солнечного облучения, характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 15 и 16, числа ТЭЭ 14 в П–образных рядах 18 и их числа в ТЭП 13, разности температур на противоположных спаях 17 ТЭЭ 14, числа ТЭП 13 в трубе 7. Полученный электрический ток можно использовать для обслуживания различных технических устройств, а также обогрева и освещения жилых и производственных помещений.
Таким образом, предлагаемая ТТГТЭС обеспечивает утилизацию солнечной энергии и холода грунта или воды с получением электрической энергии, которую можно использовать для обслуживания различных технических устройств, обогрева и освещения жилых и производственных помещений без затраты топлива, загрязнения окружающей среды, создания шумового эффекта и выделения теплового излучения, что, в конечном счете, повышает эффективность и надежность работы электростанции.

Claims (1)

  1. Теплотрубная гелиотермоэлектростанция, включающая крышку, на которой помещены фотоэлементы, термоэлектрические преобразователи, выполненные из диэлектрического материала с высокой теплопроводностью, в массиве каждого из которых устроена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, выходные коллекторы, соединенные с накопительным блоком и потребителем, отличающаяся тем, что крышка выполнена из материала с высокой тепловодностью и закрывает поддон с отверстием в днище, внутренняя сторона крышки покрыта решеткой, выполненной из полос пористого материала, отверстие поддона соединено с верхним торцом вертикальной трубы, нижний торец которой заглушен, выполненной из материала с высокой тепловодностью, погруженной в грунт на глубину Н, в центре которой помещена подъемная труба, заполненная вышеупомянутым пористым материалом, между верхним и нижним торцами подъемной трубы и нижним торцом вертикальной трубы и внутренней поверхностью крышки поддона устроены щели шириной ∆, пространство которых также заполнено пористым материалом, соприкасающимся с нижним торцом вертикальной трубы внизу и решеткой верхней крышки вверху, причем стенка вертикальной трубы выполнена с вертикальными гофрами, внутри каждого гофра размещены вертикальные пазы длиной L, в каждый из которых вставлен вертикальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой параллельные парные проволочные отрезки, выполненные из разных металлов М1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, образуя П–образные ряды, нижние крайние проволочные отрезки каждой пары П–образных рядов термоэлектрических преобразователей, соединены между собой перемычками, сверху каждая пара П–образных рядов, соединены между собой через электрические конденсаторы, первый и последний из которых соединены с выходными коллекторами.
RU2016120958A 2016-05-28 2016-05-28 Теплотрубная гелиотермоэлектростанция RU2630363C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016120958A RU2630363C1 (ru) 2016-05-28 2016-05-28 Теплотрубная гелиотермоэлектростанция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016120958A RU2630363C1 (ru) 2016-05-28 2016-05-28 Теплотрубная гелиотермоэлектростанция

Publications (1)

Publication Number Publication Date
RU2630363C1 true RU2630363C1 (ru) 2017-09-07

Family

ID=59797839

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016120958A RU2630363C1 (ru) 2016-05-28 2016-05-28 Теплотрубная гелиотермоэлектростанция

Country Status (1)

Country Link
RU (1) RU2630363C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788266C1 (ru) * 2022-06-03 2023-01-17 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Электрогенератор для удаленных объектов сельского хозяйства

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011151587A (ru) * 2011-12-16 2013-06-27 Владимир Владимирович Беликов Электрогенерирующий солнечный модуль
RU2569403C1 (ru) * 2014-08-05 2015-11-27 Андрей Леонидович Шпади Комплекс автономного электротеплоснабжения здания
WO2016079503A1 (en) * 2014-11-19 2016-05-26 Gulf Organisation For Research And Development Solar power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011151587A (ru) * 2011-12-16 2013-06-27 Владимир Владимирович Беликов Электрогенерирующий солнечный модуль
RU2569403C1 (ru) * 2014-08-05 2015-11-27 Андрей Леонидович Шпади Комплекс автономного электротеплоснабжения здания
WO2016079503A1 (en) * 2014-11-19 2016-05-26 Gulf Organisation For Research And Development Solar power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788266C1 (ru) * 2022-06-03 2023-01-17 Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерный центр ВИМ" (ФГБНУ ФНАЦ ВИМ) Электрогенератор для удаленных объектов сельского хозяйства

Similar Documents

Publication Publication Date Title
Shafieian et al. A review of latest developments, progress, and applications of heat pipe solar collectors
Michael et al. Economic analysis and environmental impact of flat plate roof mounted solar energy systems
US6434942B1 (en) Building, or other self-supporting structure, incorporating multi-stage system for energy generation
US20100300504A1 (en) Thermoelectric solar plate
EP0006907A1 (en) Solar panel unit
Patel Effect of Inclination on the Performance of Solar Water Heater
Koffi et al. Thermal performance of a solar water heater with internal exchanger using thermosiphon system in Côte d'Ivoire
WO2013072363A1 (en) Energy conversion device
Singh et al. Applications of heat pipes in energy conservation and renewable energy based systems
RU2630363C1 (ru) Теплотрубная гелиотермоэлектростанция
RU2622441C1 (ru) Автономный солнечный опреснитель-электрогенератор
Adegoke et al. Performance Evaluation of Solar–Operated Thermosyphon Hot Water System in‎ Akure
Rajamohan et al. Analysis of solar water heater with parabolic dish concentrator and conical absorber
EA038162B1 (ru) Панели для крыши, которые служат в качестве тепловых коллекторов
US20180080436A1 (en) Solar power collection systems and methods thereof
RU2622495C1 (ru) Походная гелиотермоэлектростанция
RU2715356C1 (ru) Универсальная гелиотермоэлектростанция
Uniyal et al. Thermal Performance Study of a Copper U-Tube-based Evacuated Tube Solar Water Heater
US8193440B1 (en) Hybrid electric generator
RU182542U1 (ru) Термоэлектрический генераторный модуль
RU2758738C1 (ru) Автономный солнечный фототеплотрубный водонагреватель
RU2780579C1 (ru) Гелиотермоэлектростанция
CN206369348U (zh) 一种塔式太阳能发电系统
WO2017002127A1 (en) Solar collector with absorber integrated heat storage
Shuklaa et al. Energy, exergy and economic assessments of novel sustainable solar powered evacuated tube collector integrated active desalination system

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180529