RU2630318C1 - Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа - Google Patents
Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа Download PDFInfo
- Publication number
- RU2630318C1 RU2630318C1 RU2016145334A RU2016145334A RU2630318C1 RU 2630318 C1 RU2630318 C1 RU 2630318C1 RU 2016145334 A RU2016145334 A RU 2016145334A RU 2016145334 A RU2016145334 A RU 2016145334A RU 2630318 C1 RU2630318 C1 RU 2630318C1
- Authority
- RU
- Russia
- Prior art keywords
- pressure
- injection
- wells
- oil
- production
- Prior art date
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 22
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 19
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 15
- 125000004122 cyclic group Chemical group 0.000 title claims abstract description 11
- 238000005086 pumping Methods 0.000 title abstract description 3
- 238000011161 development Methods 0.000 title description 16
- 238000002347 injection Methods 0.000 claims abstract description 87
- 239000007924 injection Substances 0.000 claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 claims abstract description 41
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 16
- 230000035699 permeability Effects 0.000 claims abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 9
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 9
- 230000003247 decreasing effect Effects 0.000 claims abstract description 5
- 239000011435 rock Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 19
- 230000007423 decrease Effects 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 3
- 238000011084 recovery Methods 0.000 abstract description 15
- 230000033228 biological regulation Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 239000011152 fibreglass Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/18—Repressuring or vacuum methods
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу повышения нефтеотдачи плотных нефтяных коллекторов циклической закачкой углекислого газа. Способ включает циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в качестве рабочего агента углекислого газа и отбор продукции из добывающих скважин. Изначально выбирают участок коллектора с разбросом проницаемости от 0,001 мД до 2 мД, с расположенной в центре нагнетательной скважиной и с текущим пластовым давлением, равным (0,5-0,8)·Р(нач). Закачку СО2 ведут через коррозионно-устойчивые трубы с постепенным повышением расхода в нагнетательной скважине от нуля до значения, при котором давление закачки равно (0,7-0,9)·Р(гор). При этом одновременно повышают забойное давление в добывающих скважинах от давления насыщения нефти углеводородным газом до текущего пластового давления, при котором прекращается приток жидкости к скважинам. После этого расход газа уменьшают до значения, при котором давление закачки равно Р(нач). В добывающих скважинах в течение данного времени забойное давление снижают до Р(нас). Циклы закачки газа повторяют до момента восстановления текущего пластового давления до (0,9-1,1)·Р(нач). После завершения циклов останавливают закачку СО2, добычу ведут через добывающие скважины при забойном давлении выше Р(нас) нефти СО2 или углеводородным газом. Предлагаемый способ позволяет повысить коэффициент нефтеизвлечения плотных нефтяных коллекторов за счет комплексного применения циклической закачки углекислого газа и регулирования режима работы добывающих скважин. 1 ил., 1 пр.
Description
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке плотных нефтяных коллекторов с применением циклической закачки углекислого газа.
Известен способ разработки нефтяной залежи, включающий отбор нефти через добывающие скважины, закачку рабочего агента через нагнетательные скважины, определение приемистости нагнетательных скважин и ее учет при назначении режимов работы нагнетательных скважин. Согласно изобретению, замеры приемистости и давления закачки проводят на нагнетательных скважинах после установления постоянного режима работы скважин, т.е. после недлительного простоя до 10 ч определение приемистости проводят не ранее чем через 3 ч, после длительного простоя порядка 10-15 суток определение приемистости проводят не ранее чем через 2 суток, при повышении приемистости нагнетательных скважин с приемистостью более 40 м3/сут, работающих в постоянном режиме, выполняют их перевод на кратковременный до 1-4 мес. циклический режим до возвращения к прежней приемистости, а малоприемистые нагнетательные скважины, работающие в постоянном режиме с приемистостью порядка 15-20 м3/сут, переводят на кратковременный циклический режим работы до повышения их приемистости, после чего скважины вновь переводят на постоянный режим закачки (патент РФ №2361072, кл. Е21В 43/20, опубл. 10.07.2009).
Наиболее близким по технической сущности к предлагаемому способу является способ разработки нефтяной залежи с низкопроницаемым коллектором, включающий определение давления и расхода закачки, при котором скважина начинает принимать закачку рабочего агента при установленных давлении и расходе через нагнетательные скважины и отбор нефти через добывающие скважины. В известном способе на первом этапе при минимальном расходе закачки рабочего агента 5-50 м3/сут и минимальном начальном давлении 2-4 МПа закачивают в скважину рабочий агент, проводят технологическую выдержку при закрытой скважине и достигнутом в скважине давлении, циклы закачки при минимальном расходе и давлении повторяют до установления стабильных значений падения давления при выдержке, на втором этапе закачивают в скважину рабочий агент при повышенном давлении закачки, при сохранении минимального расхода рабочего агента, проводят технологическую выдержку при закрытой скважине и достигнутом в скважине давлении, циклы закачки при повышенном давлении и минимальном расходе повторяют до установления стабильных значений падения давления при выдержке, на третьем и последующих возможных циклах закачки и технологической выдержки повышение давления закачки при сохранении минимального расхода повторяют до достижения рабочего давления закачки рабочего агента, после чего постепенно повышают расход закачки рабочего агента при сохранении рабочего давления закачки до достижения максимально достижимого расхода порядка 50-100 м3/сут, достигнутый режим закачки рабочего агента используют при разработке нефтяной залежи (патент РФ №2304704, кл. Е21В 43/20, опубл. 20.08.2007 - прототип).
Общим недостатком известных способов является низкая эффективность при разработке плотных, слабопроницаемых и преимущественно гидрофобных коллекторов, т.к. не учитывается взаимодействие добывающих и нагнетательных скважин. В указанных способах не предусмотрены мероприятия по оптимизации работы добывающих скважин, которые могли бы проводиться одновременно с регулировкой режимов закачки рабочего агента. В результате нефтеотдача остается низкой.
В предложенном изобретении решается задача повышения нефтеотдачи плотных нефтяных коллекторов.
Задача решается тем, что в способе разработки плотных нефтяных коллекторов циклической закачкой углекислого газа, включающем циклическое увеличение и уменьшение давления закачки рабочего агента в нагнетательных скважинах, отбор продукции из добывающих скважин, согласно изобретению, выбирают участок коллектора с разбросом проницаемости от 0,001 мД до 2 мД, представляющий из себя очаг с нагнетательной скважиной в центре, в качестве рабочего агента применяют углекислый газ – СО2, при текущем пластовом давлении (0,5-0,8)·Рнач, где Рнач – начальное пластовое давление, начинают вести закачку СО2 в нагнетательную скважину через трубы, устойчивые к воздействию СО2, с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет (0,7-0,9)·Ргор, где Ргор – вертикальное горное давление вышележащих пород, при этом в течение данного времени в соседней одной или нескольких добывающих скважинах забойное давление повышают со значения давления насыщения нефти углеводородным газом – Рнас до текущего пластового давления – значения, при котором приток жидкости к скважинам прекращается, затем расход СО2 уменьшают до значения, при котором давление закачки соответствует Рнач, при этом в течение данного времени в указанных добывающих скважинах забойное давление снижают до Рнас, циклы увеличения - уменьшения расхода СО2 и, соответственно, снижения - повышения дебита жидкости добывающих скважин повторяют до тех пор, пока текущее пластовое давление не восстановится до (0,9-1,1)·Рнач, после завершения циклов закачку СО2 прекращают, а добычу осуществляют через добывающие скважины при забойном давлении, не менее давления насыщения нефти как углекислым, так и углеводородным газами.
Сущность изобретения.
Под плотными здесь понимаются неоднородные слабопроницаемые коллектора с проницаемостью, варьирующуюся в пределах от нескольких тысячных долей до нескольких единиц мД (10-3 мкм2), характеризующиеся сильной неоднородностью. Примером таких коллекторов могут служить доманиковые отложения на территории Республики Татарстан.
Под давлением закачки понимают давление на забое нагнетательной скважины.
На нефтеотдачу плотных нефтяных коллекторов существенное влияние оказывает эффективность создаваемой системы поддержания пластового давления. Как известно, основная проблема для таких коллекторов заключается в том, что после начала отбора продукции скважины, пластовое давление стремительно падает. Закачка воды затруднена ввиду низкой проницаемости коллектора. Правильно спроектированное применение газовых методов в этом случае более оправдано. Таким образом, существующие технические решения не в полной мере позволяют эффективно разрабатывать указанные коллектора. В предложенном изобретении решается задача повышения нефтеотдачи плотных нефтяных коллекторов. Задача решается следующим образом.
На фиг. 1 представлен график изменения давления закачки в нагнетательной скважине и забойных давлений в добывающих скважинах – циклов реализации предлагаемого способа.
Способ реализуют следующим образом.
Подбирают участок плотного нефтяного коллектора, в котором по данным исследований скважин, разброс проницаемости как по площади, так и по разрезу составляет от 0,001 мД до 2 мД. Участок представляет из себя очаг с нагнетательной скважиной в центре и одной или несколькими реагирующими добывающими скважинами. Скважины могут быть как вертикальные, наклонно-направленные, так и с горизонтальным окончанием.
Через некоторое время после начала разработки, пластовое давление снижается до (0,5-0,8)·Рнач, где Рнач – начальное пластовое давление. В нагнетательную скважину спускают трубы, устойчивые в плане коррозии к воздействию СО2 (например, стеклопластиковые трубы), причем межтрубное пространство у кровли продуктивного пласта герметизируют пакером. Пакер предотвращает попадание СО2 в межтрубное пространство и, соответственно, позволяет избежать коррозию обсадной колонны.
Циклический режим закачки заключается в следующем. Через трубы начинают вести закачку СО2 с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет (0,7-0,9)·Ргор, где Ргор – вертикальное горное давление вышележащих пород. При этом в течение данного времени в соседней одной или нескольких добывающих скважинах забойное давление повышают со значения давления насыщения нефти углеводородным газом (Рнас) до текущего пластового давления (фиг.1). Таким образом, приток жидкости к добывающим скважинам прекращается, а расход закачиваемого газа в нагнетательную скважину – максимален.
Затем расход СО2 уменьшают до значения, при котором давление закачки соответствует Рнач. При этом в течение данного времени в указанных добывающих скважинах забойное давление снижают со значения текущего пластового давления до Рнас. Таким образом, расход закачиваемого газа минимален, тогда как приток жидкости к добывающим скважинам – максимален.
Циклы увеличения – уменьшения расхода СО2 и, соответственно, снижения – повышения дебита жидкости добывающих скважин повторяют до тех пор, пока текущее пластовое давление не восстановится до (0,9-1,1)·Рнач, после чего закачку СО2 прекращают, а добычу осуществляют через добывающие скважины при забойном давлении, не менее давления насыщения нефти как углекислым, так и углеводородным газами (фиг.1).
Согласно исследованиям, при проницаемости нефтенасыщенного коллектора менее 0,001 мД, закачка СО2 затруднена ввиду того, что размеры поровых каналов становятся сопоставимы с размерами молекул СО2. При этом верхний предел 2 мД определен исходя из того, что согласно постановлению Правительства РФ № 700-Р, при данных значениях проницаемости и менее, коллектора относятся к категории трудноизвлекаемых запасов и для них действуют пониженные ставки налога на добычу полезных ископаемых (НДПИ), что позволяет проводить мероприятия по закачке СО2 эффективно, с точки зрения экономики.
Начало закачки СО2 после снижения пластового давления до (0,5-0,8)·Рнач обусловлено тем, что при значении большем, чем 0,8·Рнач, согласно расчетам, разработка на естественном режиме экономически эффективнее закачки СО2. При значении меньшем чем 0,5·Рнач, согласно исследованиям, начинает проявляться геомеханический фактор – смыкание естественных трещин карбонатного коллектора, тогда как данные трещины необходимы для повышения охвата закачкой СО2. После смыкания трещин восстановить пластовое давление до первоначального, посредством закачки СО2, практически невозможно, что приводит к низкой нефтеотдаче.
Закачка СО2 в циклическом режиме с постепенным увеличением и уменьшением давления нагнетания, при этом одновременное синхронизированное регулирование режимов работы добывающих скважин посредствам, соответственно, повышения и снижения забойных давлений, позволяет повысить как коэффициент охвата пласта, так и коэффициент вытеснения нефти газом. При этом прорыв газа к забоям добывающих скважин минимален. Пластовое давление постепенно увеличивается с каждым циклом ввиду проникновения закачиваемого газа глубже в пласт.
Согласно исследованиям, при увеличении давления закачки до значения менее чем 0,7·Ргор, снижается коэффициент охвата и экономическая эффективность закачки СО2, а при более чем 0,9·Ргор возникает опасность газоразрыва пласта и, соответственно, прорыва газа к забоям добывающих скважин. Повышение забойного давления в добывающих скважинах со значения Рнас до значения текущего пластового давления позволяет осуществлять максимальную добычу, т.к. при меньшей амплитуде суммарный отбор нефти оказывается ниже, что уменьшает нефтеотдачу.
Аналогично, при уменьшении расхода СО2 до значения выше чем Рнач, амплитуда оказывается меньше, что снижает суммарный объем закачки газа. Снижение забойного давления в добывающих скважинах со значения текущего пластового давления до Рнас обеспечивает максимальную добычу нефти.
Циклы закачки СО2 в нагнетательную скважину и отбора жидкости из добывающих скважин повторяют до тех пор, пока текущее пластовое давление не восстановится до (0,9-1,1)·Рнач, т.к., согласно расчетам, при пластовом давлении менее 0,9·Рнач, дебиты скважин значительно снижаются, что приводит к уменьшению нефтеотдачи, а при пластовом давлении более 1,1·Рнач повышаются риски прорыва закачанного и не успевшего раствориться в нефти газа.
После прекращения циклов закачки СО2 добычу осуществляют через добывающие скважины при забойном давлении, не менее давления насыщения нефти как углекислым, так и углеводородным газами, т.к. согласно расчетам, при меньшем давлении возникает риск выделения растворенных в нефти газов и снижение эффективности предлагаемого способа.
Разработку ведут до полной экономически рентабельной выработки участка коллектора.
Результатом внедрения данного способа является повышение нефтеотдачи плотных нефтяных коллекторов.
Пример конкретного выполнения способа.
Участок плотного карбонатного нефтяного коллектора представлен одной вертикальной нагнетательной и четырьмя вертикальными добывающими скважинами. По данным исследований скважин проницаемость коллектора как по площади, так и по разрезу составляет от 0,001 мД до 2 мД, нефтенасыщенная толщина составляет в среднем 20 м, пористость – 6%. Глубина залегания кровли коллектора – 1520 м, начальное пластовое давление составляет Рнач=16 МПа, давление насыщения нефти углеводородным газом Рнас=4 МПа, давление насыщения нефти углекислым газом – 3 МПа. Вертикальное горное давление вышележащих пород Ргор=36 МПа. Расстояние между скважинами – 300 м.
Через два года после начала разработки пластовое давление снижается до Рпл1=0,5·Рнач=0,5·16=8 МПа. В нагнетательную скважину спускают стеклопластиковые трубы, межтрубное пространство у кровли продуктивного пласта герметизируют пакером.
Через стеклопластиковые трубы начинают вести закачку СО2 в течении 10 суток с постепенным повышением расхода от нуля до значения 200 м3/сут, при котором давление закачки составляет 0,9·Ргор=0,9·36=32,4 МПа. При этом в течение данных 10 суток в добывающих скважинах забойное давление повышают со значения Рнас=4 МПа до текущего пластового давления Рпл1=8 МПа (фиг.1).
Затем в течение 10 суток расход СО2 уменьшают до значения 30 м3/сут, при котором давление закачки соответствует Рнач=16 МПа. При этом в течение данных 10 суток в добывающих скважинах забойное давление снижают со значения текущего пластового давления Рпл1=8 МПа до Рнас=4 МПа.
Циклы увеличения - уменьшения расхода СО2 и, соответственно, снижения - повышения дебита жидкости добывающих скважин повторяют суммарно четыре раза – по 20 суток в каждом цикле. Текущее пластовое давление за это время восстанавливается следующим образом (фиг.1):
Рпл2=10 МПа – после второго цикла,
Рпл3=13 МПа – после третьего цикла,
Рпл4=0,9·Рнач=0,9·16=14,4 МПа – после четвертого цикла.
Далее закачку СО2 прекращают, а добычу осуществляют через добывающие скважины при забойном давлении 4 МПа (фиг.1).
Через два года разработки пластовое давление участка вновь снижается до значения Рпл1=0,8·Рнач=0,8·16=12,8 МПа. Процесс циклической закачки углекислого газа и регулирование режимов работы добывающих скважин повторяют. Причем в первом полуцикле закачку СО2 ведут с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет 0,7·Ргор=0,7·36=25,2 МПа. После пяти циклов текущее пластовое давление восстанавливается до 1,1·Рнач=1,1·16=17,6 МПа.
Разработку ведут до полной экономически рентабельной выработки участка коллектора.
В результате всего времени разработки было проведено пять периодов закачки углекислого газа с 4-6 циклами в каждом периоде. Время разработки ограничили достижением момента, когда доля газа в добываемой продукции добывающих скважин не снижалась менее чем 99%. При этом за время разработки всего было добыто 209,2 тыс.т нефти, коэффициент нефтеизвлечения (КИН) составил 0,445 д.ед. По прототипу при прочих равных условиях добыто 154,6 тыс.т нефти, КИН составил 0,329 д.ед. Прирост КИН по предлагаемому способу – 0,116 д.ед.
Предлагаемый способ позволяет повысить коэффициент нефтеизвлечения плотных нефтяных коллекторов за счет применения в циклическом режиме совместно закачки углекислого газа и регулирования режимов работы добывающих скважин.
Применение предложенного способа позволит решить задачу повышения нефтеотдачи плотных нефтяных коллекторов.
Claims (1)
- Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа, включающий циклическое увеличение и уменьшение давления закачки рабочего агента в нагнетательных скважинах, отбор продукции из добывающих скважин, отличающийся тем, что выбирают участок коллектора с разбросом проницаемости от 0,001 мД до 2 мД, представляющий из себя очаг с нагнетательной скважиной в центре, в качестве рабочего агента применяют углекислый газ – СО2, при текущем пластовом давлении (0,5-0,8)·Рнач, где Рнач – начальное пластовое давление, начинают вести закачку СО2 в нагнетательную скважину через трубы, устойчивые к воздействию СО2, с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет (0,7-0,9)·Ргор, где Ргор – вертикальное горное давление вышележащих пород, при этом в течение данного времени в соседней одной или нескольких добывающих скважинах забойное давление повышают со значения давления насыщения нефти углеводородным газом – Рнас до текущего пластового давления – значения, при котором приток жидкости к скважинам прекращается, затем расход СО2 уменьшают до значения, при котором давление закачки соответствует Рнач, при этом в течение данного времени в указанных добывающих скважинах забойное давление снижают до Рнас, циклы увеличения - уменьшения расхода СО2 и, соответственно, снижения - повышения дебита жидкости добывающих скважин повторяют до тех пор, пока текущее пластовое давление не восстановится до (0,9-1,1)·Рнач, после завершения циклов закачку СО2 прекращают, а добычу осуществляют через добывающие скважины при забойном давлении, не менее давления насыщения нефти как углекислым, так и углеводородным газами.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016145334A RU2630318C1 (ru) | 2016-11-21 | 2016-11-21 | Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016145334A RU2630318C1 (ru) | 2016-11-21 | 2016-11-21 | Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2630318C1 true RU2630318C1 (ru) | 2017-09-07 |
Family
ID=59797483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016145334A RU2630318C1 (ru) | 2016-11-21 | 2016-11-21 | Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2630318C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683453C1 (ru) * | 2018-05-18 | 2019-03-28 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов |
RU2776515C1 (ru) * | 2021-12-14 | 2022-07-21 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяного пласта (варианты) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU876065A3 (ru) * | 1977-07-04 | 1981-10-23 | Орсагош Кеолай Еш Газипари Трест | Способ разработки нефт ной залежи |
RU2085714C1 (ru) * | 1995-02-28 | 1997-07-27 | Городской центр научно-технического творчества молодежи | Способ разработки нефтяной залежи |
RU2231631C1 (ru) * | 2002-12-15 | 2004-06-27 | Дыбленко Валерий Петрович | Способ разработки нефтяной залежи |
RU2304704C1 (ru) * | 2006-11-01 | 2007-08-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки нефтяной залежи с низкопроницаемым коллектором |
WO2014175758A1 (ru) * | 2013-04-22 | 2014-10-30 | Zakirov Sumbat Nabievich | Способ разработки месторождений природных углеводородов в низкопроницаемых пластах |
-
2016
- 2016-11-21 RU RU2016145334A patent/RU2630318C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU876065A3 (ru) * | 1977-07-04 | 1981-10-23 | Орсагош Кеолай Еш Газипари Трест | Способ разработки нефт ной залежи |
RU2085714C1 (ru) * | 1995-02-28 | 1997-07-27 | Городской центр научно-технического творчества молодежи | Способ разработки нефтяной залежи |
RU2231631C1 (ru) * | 2002-12-15 | 2004-06-27 | Дыбленко Валерий Петрович | Способ разработки нефтяной залежи |
RU2304704C1 (ru) * | 2006-11-01 | 2007-08-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ разработки нефтяной залежи с низкопроницаемым коллектором |
WO2014175758A1 (ru) * | 2013-04-22 | 2014-10-30 | Zakirov Sumbat Nabievich | Способ разработки месторождений природных углеводородов в низкопроницаемых пластах |
Non-Patent Citations (1)
Title |
---|
ПОПОВ Е.Ю. и др., Экспериментально-вычислительный комплекс определения эффективности циклической закачки углекислого газа для низкопроницамых коллекторов, SPE-181918-RU,2016, www.onepetro.org. BING KONG и др., Simulation and Optimization of CO 2 Huff-and-Puff Processes in Tight Oil Reservoirs, SPE-179668-MS, 2016, www.onepetro.org. СУРГУЧЕВ М.Л., Вторичные и третичные методы увеличения нефтеотдачи, Москва-Недра, 1985, с. 143-154,185-206. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683453C1 (ru) * | 2018-05-18 | 2019-03-28 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов |
RU2776515C1 (ru) * | 2021-12-14 | 2022-07-21 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяного пласта (варианты) |
RU2823957C1 (ru) * | 2024-03-13 | 2024-07-30 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи нефти |
RU2827222C1 (ru) * | 2024-05-23 | 2024-09-23 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной залежи |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110318721B (zh) | 一种断块油藏泡沫驱辅助氮气吞吐提高采收率的方法 | |
CN105626006B (zh) | 低渗透油藏co2驱技术极限井距确定方法 | |
CA2819664C (en) | Pressure assisted oil recovery | |
RU2387812C1 (ru) | Способ разработки нефтяной залежи с водонефтяными зонами | |
RU2342522C1 (ru) | Циклический способ разработки залежей углеводородов скважинами с горизонтальным стволом | |
US10087737B2 (en) | Enhanced secondary recovery of oil and gas in tight hydrocarbon reservoirs | |
CN108915649B (zh) | 一种油层压堵驱工艺模式优选方法 | |
US8985231B2 (en) | Selective displacement of water in pressure communication with a hydrocarbon reservoir | |
CN111827997A (zh) | 一种提高低压致密油藏采收率的开采方法 | |
RU2627336C1 (ru) | Способ разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа | |
RU2630318C1 (ru) | Способ разработки плотных нефтяных коллекторов циклической закачкой углекислого газа | |
RU2550642C1 (ru) | Способ разработки нефтяной залежи горизонтальными скважинами | |
EP2904066B1 (en) | A method for recovering oil | |
RU2511329C1 (ru) | Способ воздействия на угольный пласт | |
RU2490437C1 (ru) | Способ разработки залежи углеводородного сырья | |
RU2558546C1 (ru) | Способ разработки многопластового нефтяного месторождения | |
CN108798623B (zh) | 一种天然气掺稀气举工艺参数优选方法 | |
Muslimov | Ways to improve the efficiency of horizontal wells for the development of oil and gas field | |
RU2731243C2 (ru) | Способ разработки слабопроницаемой нефтяной залежи с применением раздельной закачки воды и газа | |
RU2386797C1 (ru) | Способ разработки нефтяной залежи | |
CN110284860A (zh) | 块状厚层砂岩油藏注采交互式人造倾角co2驱油方法 | |
RU2616016C1 (ru) | Способ разработки плотных карбонатных коллекторов | |
RU2506419C1 (ru) | Способ разработки нефтяного месторождения | |
RU2527432C1 (ru) | Способ разработки нефтяной залежи закачкой воды и газа | |
Podavalov et al. | The efficiency of drilling wells in the Korobkovsky area of Bavlinsky field |