RU2630259C2 - Комплекс ядерных растворных реакторов - Google Patents
Комплекс ядерных растворных реакторов Download PDFInfo
- Publication number
- RU2630259C2 RU2630259C2 RU2015112370A RU2015112370A RU2630259C2 RU 2630259 C2 RU2630259 C2 RU 2630259C2 RU 2015112370 A RU2015112370 A RU 2015112370A RU 2015112370 A RU2015112370 A RU 2015112370A RU 2630259 C2 RU2630259 C2 RU 2630259C2
- Authority
- RU
- Russia
- Prior art keywords
- fuel solution
- nuclide
- product
- reactor
- complex
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/04—Thermal reactors ; Epithermal reactors
- G21C1/24—Homogeneous reactors, i.e. in which the fuel and moderator present an effectively homogeneous medium to the neutrons
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21G—CONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
- G21G1/00—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
- G21G1/02—Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к комплексу ядерных растворных реакторов. В данном комплексе предусмотрено одновременное применение трех технологических петель: для ускорения сорбции и десорбции топливного раствора в трех сорбционных колонках. Порядок ускоренной выгрузки нуклидного продукта может обеспечиваться дополнительными или резервными технологическими петлями, предусматриваемыми в составе комплекса. Также возможно применение циркониевого сплава в качестве материала холодильника в активной зоне реактора. Техническим результатом является ускорение выгрузки нуклидного продукта с сокращением его потерь из-за распада, сокращение простоев реакторов, возможность непрерывной работы технологического оборудования и персонала при повышенной частоте процедур выгрузки. 2 н. и 4 з.п. ф-лы, 1 ил.
Description
Изобретение относится к ядерной технике и может быть использовано в гомогенных реакторах растворного типа для получения медицинских радиоизотопов, например молибдена-99, стронция-89 и т.п. Растворные ядерные реакторы, которые отличаются повышенной ядерной безопасностью, ввиду присущего им выраженного отрицательного коэффициента реактивности, из-за жидкостной формы ядерного топлива в максимальной степени адаптированы к производству нуклидных продуктов путем применения простейших физико-химических технологий выделения. Объектами данных технологий могут служить облученный топливный раствор и накапливающаяся над его уровнем газовая смесь из инертных газов - продуктов деления, а формами реализации технологий - циркуляционные технологические петли. Работа петель производится при остановленном реакторе после его введения в глубокую подкритичность. Каждый из этих режимов работы регламентируется соответственно нормативными разделами: для исследовательских ядерных установок и для ядерного топливного цикла. Производительность подобных реакторных установок по нуклидным продуктам, в первую очередь, зависит от тепловой мощности реактора.
Известен высоконадежный реактор «Аргус» [Афанасьев Н.М., Беневоленский A.M., Венцель О.В. и др. Реактор «Аргус» для лабораторий ядерно-физических методов анализа и контроля. - Атомная энергия. - т. 61, вып. 1. - 1986. - с. 7-9], содержащий герметичный корпус, в котором размещается активная зона с ядерным топливом в виде водного раствора уранилсульфата, и пассивный холодильник змеевикового типа, погруженный в топливный раствор. Теплопередача от раствора к холодильнику осуществляется за счет естественной циркуляции раствора. Для удаления радиолитического водорода и кислорода служит система каталитической рекомбинации в виде контура естественной циркуляции парогазовой смеси. Корпус и холодильник выполнены из хромоникелевой стали.
Высокая безопасность растворного реактора обеспечена двумя решениями: в корпусе реактора поддерживается разрежение, что ограничивает температуру раствора (не более 80°C); концентрация водорода в паровой подушке не достигает взрывоопасных значений.
Концентрация водорода зависит от мощности реактора и работы системы каталитической рекомбинации. Эти условия ограничивают мощность реактора «Аргус» величиной 50 кВт вместе с его потребительскими качествами как наработчика нуклидных продуктов.
Известен также реактор по патенту RU 2125743, в котором мощность повышается путем интенсификации теплообмена между раствором и внутренним холодильником.
Для увеличения мощности, снимаемой с топливного объема реактора «Аргус» за счет увеличения поверхности теплосъема, в качестве материала холодильника, например прямотрубного, погруженного в топливный раствор, может быть использован циркониевый сплав, благодаря чему не ухудшатся нейтронно-физические свойства активной зоны, вопреки увеличению массы холодильника с поверхностью теплосъема.
Процесс выделения нуклидного продукта из сред-носителей: облученного топливного раствора и газовой смеси организуется в форме циркуляции последних в отдельных технологических петлях системы выделения нуклидных продуктов с формированием циркуляционных контуров указанных сред. Ключевой структурой технологической петли является терминальное устройство с входящим в него накопителем нуклидного продукта, например фильтром, с входной и выходной арматурой для поочередного соединения накопителя с емкостью среды-носителя нуклидного продукта и с внешним контуром для удаления выделенного изотопного продукта из накопителя.
При выделении молибдена-99 из облученного топливного раствора подобной емкостью служит корпус активной зоны с загруженным топливом. Ядерная безопасность циркуляционного контура с топливным раствором достигается путем ограничения расхода последнего, обеспечивающего безопасную скорость ввода положительной реактивности.
В составе петли с газовой смесью избранной технологией предусматривается промежуточный бак, в который сбрасывается из системы каталитической рекомбинации газовая смесь, очищенная от продуктов радиолиза воды и водяных паров.
Дополнительное увеличение производительности по нуклидному продукту может обеспечиваться интенсификацией технологий в целях уменьшения его потерь из-за радиоактивного распада наработанного продукта, особенно молибдена-99. Это достигается ускорением послереакторной переработки, а также повышенной частотой переходов к технологиям выделения - от наработки в реакторе, например, суммарная наработка молибдена-99 за два периода по 3 суток на 50% выше, чем за 6 суток непрерывной работы реактора.
Существенное увеличение производства достигается применением комплекса, содержащим оборудование до трех растворных реакторов. Объединением реакторов приобретается не только в данное число раз увеличенная суммарная мощность, но и умножаются ресурсы, относящиеся к технологиям выделения нуклидных продуктов и их последующей доработки, чем обеспечивается реализация приведенных выше возможностей.
Указанные возможности повышения производства пригодны для достижения цели более высокого уровня, которой является максимизация надежности регулярных поставок медицинских нуклидных продуктов в установленных объемах. В случае паузы в выработке нуклидных продуктов в технологической цепочке одного из трех растворных реакторов потери молибдена-99 компенсируются полуторным повышением производительности двух других реакторов без повышения их мощности.
Поочередной активизацией двух режимов работы обеспечивается практическая независимость процессов: наработки смеси нуклидов как продуктов деления топлива и затем, извлечения нуклидных продуктов из топливного раствора и газовой смеси. Данной независимостью, кроме повышения безопасности по разряду ядерной топливной технологии, как и собственно каждого из ядерных реакторов, создаются предпосылки для роста производительности за счет частоты выгрузок продукта с интенсификацией технологий его выделения и его упаковки. Подобными мерами уменьшаются потери нуклидного продукта, в максимальной степени молибдена-99, связанные с его распадом как при работе реактора, так и при внереакторной переработке.
Наличие трех реакторов в составе реакторного комплекса для производства радионуклидов медицинского назначения утраивает количество основного оборудования, применение которого для формирования трехреакторного объединения позволит обеспечить более, чем тройную производительность за счет указанного улучшения параметров, непосредственно влияющих на данную характеристику. Повышенная производительность достигается, например, одновременным применением трех технологических петель: для ускорения сорбции и десорбции топливного раствора в трех сорбционных колонках. Данный порядок выгрузки нуклидного продукта из каждого из трех корпусов активной зоны, соединенных трубопроводами с тремя технологическими петлями, не только ускоряет выгрузку нуклидного продукта с сокращением его потерь из-за распада, но и сокращает простои реакторов, обеспечивая почти непрерывную работу технологического оборудования и персонала при повышенной частоте процедур выгрузки.
Аналогичный порядок ускоренной выгрузки нуклидного продукта может обеспечиваться дополнительными или резервными технологическими петлями, с данной целью предусматриваемыми в составе комплекса. Хотя существенный эффект от повышения частоты циклов: работа реактора - выгрузка продукта с ускорением последней характерен только для молибдена-99, повышенная выработка остальных нуклидов из применяемых в медицине возможна из-за ограниченной потребности в сравнении с наработкой.
Сущность заявляемой конструкции реактора поясняется чертежом, на котором схематично изображена блок-схема реакторной установки. Установка включает в себя корпус активной зоны 1, частично заполненный топливным раствором, например, уранилсульфата, в который погружен трубчатый холодильник 2 с циркуляцией охлаждающей воды от внешнего источника 3, графитовый отражатель, систему каталитической рекомбинации радиолитических газов 4, систему откачки и локализации этих газов 5.
Отличительной особенностью изобретения является то, что реактор содержит систему загрузки свежего топливного раствора 6 и технологическую петлю с циркуляцией облученного топливного раствора, которая включает терминальное устройство 7 с входящим в него накопителем нуклидного продукта 8, например фильтром, с входной и выходной арматурой для поочередного соединения накопителя с корпусом активной зоны и с внешним контуром для удаления выделенного изотопного продукта из накопителя.
Ядернобезопасный бак 9 для слива и хранения топливного раствора соединен с корпусом активной зоны параллельно топливной технологической петле. Трубопроводами "а" терминальное устройство 7 соединяется с петлей смыва нуклидного продукта, а с другим реактором - трубопроводами "в".
Аналогичный состав имеет газовый контур, который содержит терминальное устройство 10 с накопителем 11 и арматурой, а также промежуточный бак 12, для циркуляции газовой смеси, сбрасываемой из системы каталитической рекомбинации. С петлей смыва нуклидного продукта накопитель 11 соединяется трубопроводами "б".
Claims (6)
1. Ядерный гомогенный реактор преимущественно для производства медицинских радиоизотопов, содержащий корпус активной зоны с загрузочным объемом топливного раствора, гильзами с исполнительными органами системы СУЗ и трубчатым холодильником, графитовый отражатель, систему каталитической рекомбинации радиолитических газов, систему откачки и локализации этих газов и систему выделения нуклидного продукта, отличающийся тем, что он содержит системы загрузки свежего и локализации облученного топливного раствора и технологическую петлю с циркуляцией топливного раствора, которая включает терминальное устройство с входящим в него накопителем нуклидного продукта и входной и выходной арматурой для поочередного соединения накопителя с корпусом активной зоны и с внешним контуром для удаления выделенного изотопного продукта из накопителя.
2. Реактор по п. 1, отличающийся тем, что в качестве терминального устройства с входящим в него накопителем нуклидного продукта используется фильтр с сорбентом, например гранулами из окиси титана.
3. Реактор по п. 1, отличающийся тем, что в качестве материала холодильника, например прямотрубного, в водном растворе уранилсульфата используется циркониевый сплав.
4. Реактор по п. 1, отличающийся тем, что в технологической петле с циркуляцией газовой смеси накопитель с входной арматурой соединены с промежуточным баком для газовой смеси, сбрасываемой в данный бак из системы каталитической рекомбинации.
5. Комплекс из нескольких, например трех, реакторов по п. 3, отличающийся тем, что он содержит утроенный комплект основных элементов, включающий три корпуса активной зоны, наполненные загрузочными объемами топливного раствора, с графитовыми отражателями, три технологические петли с циркуляцией топливного раствора и трубопроводы с арматурой для поочередного соединения каждого корпуса активной зоны с не менее чем тремя технологическими петлями для циркуляции топливного раствора.
6. Комплекс из трех реакторов по п. 4, отличающийся тем, что он содержит три технологические петли с циркуляцией газовой смеси по п. 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015112370A RU2630259C2 (ru) | 2015-04-07 | 2015-04-07 | Комплекс ядерных растворных реакторов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015112370A RU2630259C2 (ru) | 2015-04-07 | 2015-04-07 | Комплекс ядерных растворных реакторов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015112370A RU2015112370A (ru) | 2016-10-27 |
RU2630259C2 true RU2630259C2 (ru) | 2017-09-06 |
Family
ID=57216164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015112370A RU2630259C2 (ru) | 2015-04-07 | 2015-04-07 | Комплекс ядерных растворных реакторов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2630259C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2723473C1 (ru) * | 2019-12-04 | 2020-06-11 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Устройство загрузки жидкого ядерного топлива в ядерный гомогенный реактор |
RU2748214C1 (ru) * | 2020-04-17 | 2021-05-21 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ преобразования водородосодержащей среды и устройство для реализации способа |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2937127A (en) * | 1956-09-04 | 1960-05-17 | North American Aviation Inc | Laboratory reactor |
US2938844A (en) * | 1953-05-15 | 1960-05-31 | Clifton B Graham | Neutronic reactor counter method and system |
RU2106708C1 (ru) * | 1994-07-27 | 1998-03-10 | Физико-энергетический институт | Способ производства осколочного радионуклида молибдена-99 |
RU2413020C1 (ru) * | 2009-12-03 | 2011-02-27 | Николай Антонович Ермолов | Способ и устройство для производства молибдена-99 |
-
2015
- 2015-04-07 RU RU2015112370A patent/RU2630259C2/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2938844A (en) * | 1953-05-15 | 1960-05-31 | Clifton B Graham | Neutronic reactor counter method and system |
US2937127A (en) * | 1956-09-04 | 1960-05-17 | North American Aviation Inc | Laboratory reactor |
RU2106708C1 (ru) * | 1994-07-27 | 1998-03-10 | Физико-энергетический институт | Способ производства осколочного радионуклида молибдена-99 |
RU2413020C1 (ru) * | 2009-12-03 | 2011-02-27 | Николай Антонович Ермолов | Способ и устройство для производства молибдена-99 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2723473C1 (ru) * | 2019-12-04 | 2020-06-11 | Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" | Устройство загрузки жидкого ядерного топлива в ядерный гомогенный реактор |
RU2748214C1 (ru) * | 2020-04-17 | 2021-05-21 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Способ преобразования водородосодержащей среды и устройство для реализации способа |
Also Published As
Publication number | Publication date |
---|---|
RU2015112370A (ru) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2801408C (en) | Methods and apparatus for selective gaseous extraction of molybdenum-99 and other fission product radioisotopes | |
KR101716842B1 (ko) | 동위원소 생성 타겟 | |
US9117558B1 (en) | System and method to control spent nuclear fuel temperatures | |
JP6504683B2 (ja) | 放射能消滅用原子炉システム | |
US6337055B1 (en) | Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use | |
RU2630259C2 (ru) | Комплекс ядерных растворных реакторов | |
Shadrin et al. | Hydrometallurgical reprocessing of BREST-OD-300 mixed uranium-plutonium nuclear fuel | |
Boldyrev et al. | The Russian ARGUS solution reactor HEU-LEU conversion: LEU fuel preparation, loading and first criticality | |
CA1046242A (en) | Tritiated water treatment process | |
JP2023123623A (ja) | 二重基準の燃料キャニスタシステム | |
CN106898406B (zh) | 一种放射性碘-125的制备方法和连续循环回路装置 | |
RU2624823C2 (ru) | Ядерный растворный реактор | |
WO2011063355A2 (en) | Iodine-125 production system and method | |
WO2018064572A1 (en) | Silver chloride waste form and apparatus | |
CN103949159A (zh) | 一种放射性同位素14c的分离方法 | |
RU2430440C1 (ru) | Способ получения радионуклида висмут-212 | |
RU2633712C2 (ru) | Ядерный растворный реактор | |
Yakunin et al. | Purification of Gaseous Emissions by 14 C Removal During Reprocessing of Spent Uranium-Plutonium Nuclear Fuel | |
US9991012B2 (en) | Extraction process | |
US9330800B2 (en) | Dry phase reactor for generating medical isotopes | |
RU2276816C2 (ru) | Способ получения радиоизотопа стронций-89 | |
CN115171942A (zh) | 一种重水反应堆的含氚重水生产氦-3的系统和方法 | |
RU2646864C1 (ru) | Реакторная установка для производства изотопной продукции | |
RU2270488C2 (ru) | Способ радиационной обработки изделий и материалов жестким гамма-излучением | |
RU2579753C1 (ru) | Способ переработки облученного ядерного топлива |