RU2629914C1 - Способ дистанционного досмотра багажа в контролируемой области пространства - Google Patents

Способ дистанционного досмотра багажа в контролируемой области пространства Download PDF

Info

Publication number
RU2629914C1
RU2629914C1 RU2016133685A RU2016133685A RU2629914C1 RU 2629914 C1 RU2629914 C1 RU 2629914C1 RU 2016133685 A RU2016133685 A RU 2016133685A RU 2016133685 A RU2016133685 A RU 2016133685A RU 2629914 C1 RU2629914 C1 RU 2629914C1
Authority
RU
Russia
Prior art keywords
dielectric
space
elongation
optical path
signal
Prior art date
Application number
RU2016133685A
Other languages
English (en)
Inventor
Семен Николаевич Семенов
Сергей Ильич Новицкий
Станислав Игоревич Воробьев
Виктор Владимирович МЕЩЕРЯКОВ
Марина Алексеевна Мохова
Original Assignee
Общество с ограниченной ответственностью "АПСТЕК Лабс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "АПСТЕК Лабс" filed Critical Общество с ограниченной ответственностью "АПСТЕК Лабс"
Priority to RU2016133685A priority Critical patent/RU2629914C1/ru
Application granted granted Critical
Publication of RU2629914C1 publication Critical patent/RU2629914C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Использование: для дистанционного досмотра багажа. Сущность изобретения заключается в том, что выполняют облучение контролируемой области пространства когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, при этом облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути, затем для каждого выделенного участка вычисляют среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат, причем диэлектрическую проницаемость вычисляют по заданной математической формуле, задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства. Технический результат: обеспечение возможности выявления опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.

Description

Изобретение относится к области дистанционного досмотра багажа, в частности к способам обнаружения диэлектрических взрывчатых веществ, провозимых в багаже пассажира, где под багажом подразумевается сумка, рюкзак, чемодан или кейс.
Одна из нерешенных до конца проблем, связанных с обеспечением безопасности на транспорте и в прочих местах массового скопления людей, - это проблема обнаружения опасных диэлектрических объектов, в частности взрывчатых веществ и самодельных взрывчатых устройств, которые находятся в багаже.
Для решения этой задачи применяются, в основном, способы, основанные на использовании металлодетекторов, детекторов паров, рентгеновского оборудования, служебных собак и др.
Указанные способы не обеспечивают в достаточной степени возможность дистанционного и скрытного досмотра багажа и заблаговременного выявления взрывчатых веществ. Другим серьезным недостатком существующих способов является высокий уровень ложных тревог и низкая скорость обнаружения, что делает малоэффективным их применение в реальных условиях досмотра багажа больших потоков людей. Кроме того, существующие способы досмотра работают не в автоматическом режиме, для их работы необходим оператор, который принимает решение об уровне опасности досматриваемого багажа, а значит на окончательное решение влияет человеческий фактор.
Таким образом, задача обнаружения взрывных устройств требует соблюдения особых условий ее решения:
- дистанционность досмотра;
- возможность осуществления скрытного досмотра;
- автоматический режим досмотра;
- осуществление досмотра в режиме реального времени;
- безопасность человека, проходящего досмотр, а также окружающих людей;
- возможность привязки сигнала опасности к конкретному человеку при проведении досмотра в режиме реального времени;
- мобильность системы и относительно невысокая стоимость.
Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку отраженного сигнала и отображение полученной в результате обработки информации, US 5557283, 17.09.1996.
При реализации способа облучение СВЧ-излучением контролируемой области пространства происходит в полосе частот без корреляции ее ширины с радиальным пространственным разрешением изображения контролируемой области и интервалом времени регистрации, в течение которого возможна когерентная обработка зарегистрированного отраженного сигнала. Это обусловливает следующие недостатки:
- невозможность использования способа в случае движущегося досматриваемого объекта (цели), так как при движении объекта во время регистрации отраженного сигнала изменяется положение объекта относительно приемо-передающих антенн и нарушается условие применимости когерентной обработки зарегистрированного сигнала, а некогерентная обработка не позволяет получить изображение хорошего качества при неизвестной траектории досматриваемого объекта; таким образом, не обеспечивается скрытность досмотра объекта;
- низкое качество изображения, не позволяющее осуществлять его анализ с целью получения количественной информации о диэлектрической проницаемости объектов (компонентов цели) и их эквивалентной массе.
Известен способ обнаружения опасных объектов и веществ, который содержит генерацию микроволнового сигнала, который отражается объектом для воспроизведения одного или нескольких отраженных сигналов; один или несколько отраженных сигналов принимаются в антенной решетке; один или несколько отраженных сигналов преобразуются в цифровые отраженные сигналы; микроволновый сигнал преобразуется в цифровой сигнал; цифровые отраженные сигналы и цифровой сигнал обрабатываются для определения трехмерного положения мишени; цифровые отраженные сигналы и цифровой сигнал обрабатываются для идентификации мишени; цифровые отраженные сигналы и цифровой сигнал обрабатываются для определения состояния мишени; и определения того, является ли мишень опасным объектом, RU 2415402, опубл. 27.03.2011.
Недостатком этого технического решения является невысокая точность и достоверность обнаружения опасного диэлектрического объекта, т.к. отражательная способность диэлектрических объектов зависит от ориентации относительно излучающей антенны, при этом при некоторых ориентациях отражается только малая часть энергии, и обнаружение объекта становится невозможным.
Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных СВЧ-излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала с получением максимальных значений интенсивности восстановленной конфигурации рассеивателей в области досмотра в зависимости от дальности элементарных излучателей до цели и отображение полученной в результате обработки информации путем построения СВЧ-изображения в виде нескольких трехмерных поверхностей, RU 2294549 C1, 27.02.2007.
Недостатки данного способа в следующем:
- малая величина сигнала отражения от границы воздух-диэлектрик - около 7% по интенсивности для диэлектриков с диэлектрической проницаемостью ~3, характерной для взрывчатых веществ; это приводит к тому, что сигнал отражения от границы диэлектрик-тело человека (~90% по интенсивности) может существенно искажать трехмерную поверхность, изображающую физическую границу воздух-диэлектрик, а это, в свою очередь, приводит к ошибкам при определении наличия взрывчатого вещества;
- малый диапазон углов падения и приема СВЧ-излучения, при которых излучение, отраженное от границы воздух-диэлектрик, может быть зарегистрировано; это связано с тем, что, как правило, поверхность диэлектрика достаточно гладкая в сравнении с длиной волны в СВЧ-диапазоне, и рассеяние на границе приобретает характер зеркального отражения, таким образом, этот способ может быть эффективно реализован лишь в узком диапазоне возможных ракурсов досмотра.
Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных СВЧ-излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала с получением максимальных значений интенсивности восстановленной конфигурации рассеивателей в области досмотра в зависимости от дальности элементарных излучателей до цели и отображение полученной в результате обработки информации путем построения СВЧ-изображения соответствующей трехмерной поверхности; дополнительно получают видеоизображение цели с помощью двух или более видеокамер, синхронизированных с СВЧ-излучателями, преобразуют полученное видеоизображение в цифровой вид и строят трехмерное видеоизображение цели, переводят трехмерное видеоизображение и СВЧ-изображение в общую систему координат, определяют расстояние l в общей системе координат между СВЧ- и видеоизображениями, при l<lо, где lо - заданное пороговое значение l, констатируют отсутствие у цели скрытого диэлектрического объекта в количестве, превышающем предельно допустимое значение, а при l≥lо дополнительно определяют наличие впадин в трехмерном СВЧ-изображении в областях, где l≥lо, и при глубине h впадины больше
Figure 00000001
где hо - пороговое значение h, ε - значение диэлектрической проницаемости искомого диэлектрического объекта, констатируют наличие у цели скрытого диэлектрического объекта, RU 2411504 C1 10.02.2011.
Недостатки этого решения состоят в следующем.
Процесс сравнения сложных видеоизображений и СВЧ-изображений в ряде случаев может быть источником ошибок, поскольку наличие прозрачной в СВЧ-области излучения и непрозрачной в видеодиапазоне оболочки (например, некоторых видов одежды или упаковки), под которой расположен объект, находящийся в контролируемой области пространства, приводит к некомпенсируемым ошибкам при определении разности между СВЧ- и видеоизображениями. Поскольку способ основан на регистрации рассеянного излучения, уровень регистрируемых сигналов существенно ослабляется в зависимости от расстояний: от СВЧ-излучателя до контролируемого объекта и от этого объекта до регистратора, а также сечения рассеивания объекта. Таким образом отношение сигнал/шум весьма невелико, что обусловливает существенные погрешности при формировании трехмерных СВЧ-изображений и, соответственно, увеличивает возможность ошибок в результатах реализации способа.
Кроме того, способ реализуем только при достаточном уровне освещенности контролируемой области, необходимом для регистрации видеосигналов и построения трехмерных видеоизображений. Вместе с тем, в ряде случаев освещение контролируемой области не осуществляется исходя из специальных условий; также следует указать, что освещение может быть прервано в связи с перебоями в энергоснабжении, задымлением контролируемой области и т.п.
Известен способ дистанционного обнаружения скрытых объектов в контролируемой области пространства, включающий облучение этой области когерентным СВЧ-излучением на N частотах, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, с помощью одного или более параллельных каналов регистрации и когерентную обработку зарегистрированного сигнала, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, затем определяют зависимость функции F:
Figure 00000002
где N - количество частот СВЧ-излучения,
k - номер частоты СВЧ-излучения из N частот,
fk - k-я частота СВЧ-излучения из N частот,
i - мнимая единица,
c - скорость света в вакууме,
Аобъектk - амплитуда зарегистрированного сигнала на k-й частоте излучения в присутствии объекта в контролируемой области пространства,
Фобъектk - фаза зарегистрированного сигнала на k-й частоте излучения в присутствии объекта в контролируемой области пространства,
Аспk - амплитуда зарегистрированного сигнала на k-й частоте излучения в отсутствие объекта в контролируемой области пространства,
Фспk - фаза зарегистрированного сигнала на k-й частоте излучения в отсутствие объекта в контролируемой области пространства,
от х-координаты по оси, соединяющей регистратор и источник СВЧ-излучения, при этом определяют значение xmax, при котором функция F имеет максимальное значение Fmax, устанавливают F0 - пороговое значение, и при Fmax<F0 констатируют присутствие проводящего объекта в контролируемой области пространства, при Fmax>F0 и xmax>xпороговое, где xпороговое - установленное минимальное значение размеров объекта, констатируют присутствие диэлектрического объекта в контролируемой области пространства, а при Fmax>F0 и xmaxпороговое констатируют отсутствие объектов в контролируемой области пространства, RU 2014129117 A1, опубл. 10.02.2016.
Данное техническое решение принято в качестве прототипа настоящего изобретения.
Благодаря тому что регистрацию сигнала, несущего информацию об объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, достигается технический результат, состоящий в исключении необходимости построения СВЧ-изображения, трехмерного видеоизображения и последующего сравнения СВЧ- и видеоизображений, поскольку в заявленном способе происходит определение длин оптического пути СВЧ-излучения, проходящего через контролируемую область, в присутствии и в отсутствие в ней объекта. Таким образом исключаются ошибки, связанные с построением и сравнением СВЧ- и видеоизображений. При этом упрощается и удешевляется реализация способа, так как исключается необходимость наличия дорогостоящего специального видеооборудования. Поскольку способ-прототип не базируется на регистрации рассеянного излучения, уровень регистрируемых сигналов, практически, не ослабляется, в результате чего увеличивается отношение сигнал/шум, что позволяет уменьшить ошибки в результатах при осуществлении способа.
Недостатками прототипа являются:
- невозможность определить диэлектрическую проницаемость объекта и выявить опасные диэлектрические объекты,
- невозможность определить положение объекта в пространстве и его размеры.
Задачей настоящего изобретения является обеспечение возможности выявления опасных диэлектрических объектов за счет определения их диэлектрической проницаемости и сравнения ее с диэлектрической проницаемостью, характерной для опасных диэлектрических объектов, а также обеспечение возможности определения положения выявленного объекта в пространстве и его размеров.
Согласно изобретению в способе дистанционного досмотра багажа в контролируемой области пространства, включающем облучение этой области когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, согласно изобретению облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства методом обратного проецирования, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации трехмерного изображения, затем для каждого выделенного непрерывного участка вычисляют среднюю плотность удлинения оптического пути ρ, положение и размеры диэлектрического объекта, диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат, при этом:
среднюю плотность удлинения оптического пути ρ вычисляют по формуле:
Figure 00000003
где:
ρ - средняя плотность удлинения,
N - количество вокселей (аналог двумерных пикселов для трехмерного пространства) в выделенном непрерывном участке,
ρi - плотность удлинения в i-м вокселе,
размеры объекта в системе координат (x, y, z) вычисляют по формуле:
Li=6σi, где:
Figure 00000004
где:
Figure 00000005
i - x, y или z координата,
N - количество вокселей в выделенном непрерывном участке,
rij - координата j-гo вокселя по i-й координате,
μi - i-я координата центра выделенного непрерывного участка,
диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат вычисляют по формуле:
Figure 00000006
где:
ε - диэлектрическая проницаемость,
ρ - средняя плотность удлинения оптического пути для диэлектрического объекта,
Lx - размер по оси х,
Lz - размер по оси z,
при этом задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.
Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии изобретения условию патентоспособности «Новизна».
Благодаря тому что облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, обеспечивается возможность вычисления распределения плотности удлинения оптического пути, соответствующего определенной паре излучатель-регистратор на наборе частот в конкретной области пространства, что позволяет определить положение объекта в пространстве, его размеры и диэлектрическую проницаемость, которую сравнивают с диэлектрической проницаемостью, характерной для опасных диэлектрических объектов, и тем самым выявляют опасный объект.
Заявителем не выявлены источники информации, в которых содержались бы сведения о влиянии отличительных признаков изобретения на достигаемый технический результат.
Указанные обстоятельства позволяют сделать вывод о соответствии заявленного технического решения условию патентоспособности «Изобретательский уровень».
Реализация способа поясняется конкретным примером.
Для осуществления дистанционного досмотра багажа, находящегося в контролируемой области, эту область облучают когерентным СВЧ-излучением последовательно набором из 32 фиксированных эквидистантных частот в диапазоне 8-18 ГГц. Облучение производят с помощью множества элементарных излучателей, собранных в конкретном примере в два массива по 16×16 элементарных передающих антенн. Прошедший через контролируемую область пространства сигнал регистрируют в данном примере с помощью 6-и широкополосных антенн Вивальди, расположенных в различных точках пространства так, чтобы обеспечивать достаточно широкую область геометрических пересечений. Антенны Вивальди связаны с регистратором.
В данном примере размеры области в ширину, высоту и глубину соответственно составляли 80×30×30 см (размеры по осям X, Y и Z). В качестве объекта поиска использовали брусок из поливинилхлорида размером 15×15×8 см с заранее измеренной диэлектрической проницаемостью ε=4,0±0,2. Исследуемый объект помещали в чемодан размером 80×60×40 см. Заранее были установлены верхний и нижний пороги диэлектрической проницаемости: εниж=2.5 и εверх=5, характерные для опасных диэлектрических объектов.
Определяли множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляли распределение плотности удлинения оптического пути в конкретной области пространства методом обратного проецирования (см. Троицкий И.Н. Статистическая теория томографии. Москва: Радиосвязь, 1989 г., стр. 25, формула 1.48), выделяли непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации 3-мерного изображения (см. выкопировку с сайта в Интеренете: Wolfram Language System. Documentation Center, http://reference.wolfram.com/language/guide/3DImages.html, http://reference.wolfram.com/language/guide/Segmentation Analysis.html, http://reference.wolfram.com/language/ref/ArrayComponents.html), аналитически для каждого выделенного участка вычисляли среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат.
Среднюю плотность удлинения оптического пути ρ вычисляли по формуле:
Figure 00000007
где:
ρ - средняя плотность удлинения,
N - количество вокселей (аналог двумерных пикселов для трехмерного пространства) в выделенном непрерывном участке,
ρi - плотность удлинения в i-м вокселе.
В данном примере ρ=13,7194 см.
Размеры объекта в системе координат (x, y, z) вычисляли по формуле:
Li=6σi, где:
Figure 00000008
где:
Figure 00000009
где:
i - x, y или z координата,
N - количество вокселей в выделенном непрерывном участке,
rij - координата j-гo вокселя по i-й координате,
μi - i-я координата центра выделенного непрерывного участка.
В примере положение объекта - (-20.7778; 0.253086; -19.3025) см и размеры объекта в системе координат (x, y, z) составили Lx=16.9645 см, Ly=10.6471 см, Lz=10.8513 см.
Диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат вычисляли по формуле:
Figure 00000010
где:
ε - диэлектрическая проницаемость,
ρ - средняя плотность удлинения оптического пути для диэлектрического объекта,
Lx - размер по оси х,
Lz - размер по оси z.
В данном примере диэлектрическая проницаемость ε=4.14736.
Сравнивали полученное значение диэлектрической проницаемости ε=4.14736 со значениями εниж=2,5 и εверх=5, которые характерны для опасных диэлектрических объектов.
Таким образом, выполняется условие εниж<ε<εверх, при котором констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.
Данный способ обеспечивает возможность выявления опасных диэлектрических объектов в багаже, а также обеспечивает возможность определения положения выявленного объекта в пространстве и его размеров.

Claims (24)

  1. Способ дистанционного досмотра багажа в контролируемой области пространства, включающий облучение этой области когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, отличающийся тем, что облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства методом обратного проецирования, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути методом сегментации трехмерного изображения, затем для каждого выделенного непрерывного участка вычисляют среднюю плотность удлинения оптического пути ρ, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (х, y, z), диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат, при этом:
  2. среднюю плотность удлинения оптического пути ρ вычисляют по формуле:
  3. Figure 00000011
    ,
  4. где:
  5. ρ - средняя плотность удлинения,
  6. N - количество вокселей в выделенном непрерывном участке,
  7. ρi - плотность удлинения в i-м вокселе,
  8. размеры объекта в системе координат (х, y, z) вычисляют по формуле:
  9. Li=6σi, где:
  10. Figure 00000012
    ,
  11. где:
  12. Figure 00000013
    ,
  13. где i - х, y или z координата,
  14. N - количество вокселей в выделенном непрерывном участке,
  15. rij - координата j-гo вокселя по i-й координате,
  16. μi - i-я координата центра выделенного непрерывного участка,
  17. диэлектрическую проницаемость диэлектрического объекта в сечении одной из плоскостей системы координат вычисляют по формуле:
  18. Figure 00000014
    ,
  19. где:
  20. ε - диэлектрическая проницаемость,
  21. ρ - средняя плотность удлинения оптического пути для диэлектрического объекта,
  22. Lx - размер по оси х,
  23. Lz - размер по оси z,
  24. при этом задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.
RU2016133685A 2016-08-16 2016-08-16 Способ дистанционного досмотра багажа в контролируемой области пространства RU2629914C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016133685A RU2629914C1 (ru) 2016-08-16 2016-08-16 Способ дистанционного досмотра багажа в контролируемой области пространства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016133685A RU2629914C1 (ru) 2016-08-16 2016-08-16 Способ дистанционного досмотра багажа в контролируемой области пространства

Publications (1)

Publication Number Publication Date
RU2629914C1 true RU2629914C1 (ru) 2017-09-04

Family

ID=59797893

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016133685A RU2629914C1 (ru) 2016-08-16 2016-08-16 Способ дистанционного досмотра багажа в контролируемой области пространства

Country Status (1)

Country Link
RU (1) RU2629914C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU184868U1 (ru) * 2018-08-31 2018-11-13 Григорий Николаевич Щербаков Устройство обнаружения носимых осколочных взрывных устройств

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227800A (en) * 1988-04-19 1993-07-13 Millitech Corporation Contraband detection system
US5760397A (en) * 1996-05-22 1998-06-02 Huguenin; G. Richard Millimeter wave imaging system
RU2294549C1 (ru) * 2005-08-09 2007-02-27 Общество С Ограниченной Ответственностью "Научно-Технический Центр Прикладной Физики" Способ дистанционного досмотра цели в контролируемой области пространства
RU2411504C1 (ru) * 2009-11-26 2011-02-10 Общество с ограниченной ответственностью "Научно-технический центр прикладной физики" (ООО "НТЦ ПФ") Способ дистанционного досмотра цели в контролируемой области пространства
RU2563581C1 (ru) * 2014-07-15 2015-09-20 Общество с ограниченной ответственностью "АПСТЕК Лабс" Способ дистанционного определения диэлектрической проницаемости диэлектрического объекта
RU2014129117A (ru) * 2014-07-15 2016-02-10 Общество с ограниченной ответственностью "АПСТЕК Лабс" Способ дистанционного досмотра цели в контролируемой области пространства

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227800A (en) * 1988-04-19 1993-07-13 Millitech Corporation Contraband detection system
US5760397A (en) * 1996-05-22 1998-06-02 Huguenin; G. Richard Millimeter wave imaging system
RU2294549C1 (ru) * 2005-08-09 2007-02-27 Общество С Ограниченной Ответственностью "Научно-Технический Центр Прикладной Физики" Способ дистанционного досмотра цели в контролируемой области пространства
RU2411504C1 (ru) * 2009-11-26 2011-02-10 Общество с ограниченной ответственностью "Научно-технический центр прикладной физики" (ООО "НТЦ ПФ") Способ дистанционного досмотра цели в контролируемой области пространства
RU2563581C1 (ru) * 2014-07-15 2015-09-20 Общество с ограниченной ответственностью "АПСТЕК Лабс" Способ дистанционного определения диэлектрической проницаемости диэлектрического объекта
RU2014129117A (ru) * 2014-07-15 2016-02-10 Общество с ограниченной ответственностью "АПСТЕК Лабс" Способ дистанционного досмотра цели в контролируемой области пространства

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU184868U1 (ru) * 2018-08-31 2018-11-13 Григорий Николаевич Щербаков Устройство обнаружения носимых осколочных взрывных устройств

Similar Documents

Publication Publication Date Title
US8670021B2 (en) Method for stand off inspection of target in monitored space
AU2010325269B2 (en) Method for remotely inspecting a target in a monitored area
US10310072B2 (en) Method of walk-through security inspection and system thereof
JP4751332B2 (ja) 隠蔽された物体の検知
US8946641B2 (en) Method for identifying materials using dielectric properties through active millimeter wave illumination
US9697710B2 (en) Multi-threat detection system
US11280898B2 (en) Radar-based baggage and parcel inspection systems
EP2054741A2 (en) Scatter attenuation tomography
WO1997012229A1 (en) Detecting contraband by employing interactive multiprobe tomography
RU2294549C1 (ru) Способ дистанционного досмотра цели в контролируемой области пространства
CN109444967A (zh) 人体特性测量方法、人体安检方法和fmcw雷达-毫米波安检装置
WO2020023603A1 (en) Radar-based baggage and parcel inspection systems
EP3387627B1 (en) Multi-threat detection system
RU2629914C1 (ru) Способ дистанционного досмотра багажа в контролируемой области пространства
Shipilov et al. Ultra-wideband radio tomographic imaging with resolution near the diffraction limit
US9823377B1 (en) Multi-threat detection of moving targets
KR102045079B1 (ko) 테라헤르츠파를 이용한 검사 장치
RU2309432C1 (ru) Установка для обнаружения неразрешенных предметов и веществ в контролируемых объектах
RU2522853C1 (ru) Способ и устройство обнаружения и идентификации предметов, спрятанных под одеждой на теле человека
RU2639603C1 (ru) Способ дистанционного досмотра цели в контролируемой области пространства
Rezgui et al. Development of an ultra wide band microwave radar based footwear scanning system
Varianytsia-Roshchupkina et al. Comparison of two differential GPR systems for imaging objects under a reflection configuration
Rezgui et al. An ultra wide band microwave footwear scanner for threat detection
Podd et al. Impulse radar imaging system for concealed object detection
CN117192636A (zh) 一种基于太赫兹技术的手持式安检装置及安检方法