RU2628342C1 - Способ комплексной водородной термобарохимической обработки продуктивного пласта - Google Patents

Способ комплексной водородной термобарохимической обработки продуктивного пласта Download PDF

Info

Publication number
RU2628342C1
RU2628342C1 RU2016124659A RU2016124659A RU2628342C1 RU 2628342 C1 RU2628342 C1 RU 2628342C1 RU 2016124659 A RU2016124659 A RU 2016124659A RU 2016124659 A RU2016124659 A RU 2016124659A RU 2628342 C1 RU2628342 C1 RU 2628342C1
Authority
RU
Russia
Prior art keywords
oxidizing
density
mixture
formation
zone
Prior art date
Application number
RU2016124659A
Other languages
English (en)
Inventor
Руслан Асгатович Хабибуллин
Дмитрий Алексеевич Велигоцкий
Original Assignee
Общество с ограниченной ответственностью "Петробуст"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Петробуст" filed Critical Общество с ограниченной ответственностью "Петробуст"
Priority to RU2016124659A priority Critical patent/RU2628342C1/ru
Priority to PCT/RU2017/050046 priority patent/WO2017222426A1/ru
Application granted granted Critical
Publication of RU2628342C1 publication Critical patent/RU2628342C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/592Compositions used in combination with generated heat, e.g. by steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности обработки с целью увеличения проницаемости призабойной зоны пласта, снижения скин-фактора и увеличения производительности скважины, возможность использования для разработки трудноизвлекаемых запасов нефти и газа. Способ комплексной водородной термобарохимической обработки призабойной зоны продуктивного пласта включает раздельно-последовательную доставку на забой через насосно-компрессорные трубы гидрореагирующих, на основе алюмогидриднатриевого композита, и горюче-окислительных, на основе комплексных солей, составов. Производят закачку первой смеси горюче-окислительного и гидрореагирующего составов плотностью 1,35-1,4 г/см3 с объемом заполнения эксплуатационной колонны от забоя до уровня нижних отверстий перфорации. Сверху на первую смесь закачивают агрегативно устойчивую наносуспензию гидрореагирующего состава плотностью 1,23-1,25 г/см3 при содержании 5-50% дисперсной фазы алюмогидриднатриевого композита в дисперсионной среде дизельного топлива и органического растворителя при количественном содержании компонентов жидкой фазы, взятых в пропорциональном соотношении, обеспечивающем равенство плотностей жидкой и твердой фаз наносуспензии, закачку которой производят в заданном пористостью пласта объеме, превышающем внутренний объем эксплуатационной колонны интервала зоны перфорации, с последующей задавкой агрегативно устойчивой наносуспензии гидрореагирующего состава непосредственно в призабойную зону продуктивного пласта. Производят закачку второй смеси горюче-окислительного и гидрореагирующего составов плотностью 1,6-1,8 г/см3 в объеме, достаточном для эффективного реагирования с первой смесью горюче-окислительного и гидрореагирующего составов. 1 з.п. ф-лы, 3 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к нефтедобывающей промышленности и может быть использовано для разработки трудноизвлекаемых запасов нефти и газа, увеличения проницаемости продуктивного пласта, стимулирования выхода пластовых флюидов нефтяных, газовых и газоконденсатных низкопроницаемых пластов, восстановления дебита малопродуктивных скважин.
Уровень техники
Известен способ увеличения длины перфорационных каналов продуктивного пласта (патент Украины 49385 А, МПК E21B 43/00, E21B 43/18, E21B 43/26, опубл. 16.09.2002) путем обработки продуктивного пласта гидрореагирующим составом (ГРС) с водой при весовом соотношении ГРС: H2O=1,0:1,0-1,0:4,5, соответственно, в котором в качестве ГРС используют алюмогидрид щелочного металла (лития, и/или натрия, и/или калия), либо смесь гидридов щелочного металла с алюминием в эквивалентных алюмогидриду соотношениях.
Известный способ обработки сложен в реализации из-за необходимости доставки ГРС при помощи дополнительного оборудования, а реализованная в способе реакция с образованием щелочи низкоэффективна по сравнению с кислотной обработкой пласта.
К недостаткам данного способа относится и то, что экзотермическая реакция ГРС с водой происходит в основном в эксплуатационной колонне, а не в продуктивном пласте, при этом большая часть образующегося водорода не поднимается вверх. Та же часть водорода, которая попадает в пласт, не обладает той химической и диффузионной активностью, которой обладает этот газ в момент его генерирования.
Известен способ термобарохимической обработки продуктивного пласта (патент Украины 86886, МПК Е21В 43/00, Е21В 43/18, Е21В 43/26, опубл. 12.05.2009), включающий доставку ГРС, буферной жидкости и воды в зону перфорации продуктивного пласта разделенными объемами, послойным продавливанием, создаваемым в НКТ поршневым давлением, причем ГРС доставляют в объеме суспензии инертной буферной жидкости, в качестве которой используют хлорпроизводные углерода, например тетрахлорэтан в объемном соотношении ГРС: буфер = 1:(0,6-2,0), соответственно.
Известный способ малоэффективен для пластов с низкой начальной проницаемостью при высокой обводненности и кольматации эмульсией типа "вода-углеводород" или афальто-смоло-парафиновыми отложениями (АСПО). При этом фильтрация в пласт продуктов первичных реакций, проходящих в эксплуатационной колонне, затруднена или вовсе не происходит (отсутствует).
Известен способ термохимической обработки призабойной зоны пласта (патент Украины 98065, МПК Е21В 43/22, Е21В 43/25, опубл. 10.08.2011), в котором обработку производят с использованием комплексного соединения азотной кислоты с органическим соединением в соотношении компонентов, масс. %: комплексное соединение 40,0-69,0; карбамид 10,0-13,0; хлорид аммония 8,0-15,0; добавки - остальное.
Способ низкоэффективен, поскольку газовая фаза продуктов реакции практически не содержит водородного компонента обработки, так как используемый в качестве целевой добавки гексаоксид бора уже на стадии приготовления растворов частично вступает в реакцию с образованием борной кислоты.
Наиболее близким по совокупности признаков и достигаемому результату является способ комплексного водородного и термобарохимического воздействия на призабойную зону продуктивного пласта (патент Украины 102501, МПК Е21В 43/24, Е21В 43/25, опубл. 13.05.2013), включающий закачку через насосно-компрессорные трубы раздельно-последовательно гидрореагирующего состава алюмогидрида натрия (АГН) и/(или) алюмогидриднатриевого композита (АГНК), в котором доставку гидрореагирующего вещества производят в герметичных мини-контейнерах из полимерного материала, весовым содержанием 1-3 грамма, в составе технологических жидкостей, в качестве которых используют горюче-окислительные составы на основе комплексных солей.
Известный способ недостаточно эффективен, поскольку высокий энергетический и химический потенциал системы горюче-окислительных и гидрореагирующих составов (ГОС-ГРС) реализуется не в полной мере. Экзотермическая реакция гидролиза гидрореагирующего вещества происходит в эксплуатационной колонне, а не в поровом пространстве призабойной зоны пласта (ПЗП). Это существенно снижает качество обработки, особенно в случаях с низкопроницаемыми или закольматированными коллекторами.
Производительность нефтяных, газовых и газоконденсатных скважин определяется качественным состоянием призабойной зоны пласта (ПЗП), которое характеризуется главным образом его проницаемостью, то есть способностью фильтровать к забою скважины добываемые углеводороды. Естественная проницаемость продуктивного пласта, как правило, ухудшается еще на стадии первичного вскрытия (во время бурения и обсаживания) при механической кольматации призабойной зоны скважины буровыми и цементировочными растворами. В период эксплуатации скважины происходит кольматация ПЗП продуктами разрушения пласта и асфальтосмолопарафиновыми отложениями (АСПО), что приводит к дальнейшему ухудшению фильтрационных свойств, нарушению гидродинамической связи продуктивного пласта со скважиной и снижению ее дебита (производительности).
В известных способах, традиционно использующих порошкообразные твердые гидрореагирующие вещества дисперсностью от 15 до 500 мкм, энергетический и химический потенциал системы горюче-окислительных и гидрореагирующих составов (ГОС-ГРС) используются неэффективно, так как при низкой проницаемости ПЗП невозможна фильтрация суспензии, особенно ее твердой фазы в поровое пространство, экзотермическая реакция гидролиза гидрореагирующих веществ протекает в эксплуатационной колонне, основная часть выделяемого тепла расходуется не на прогрев порового пространства, а идет на разогрев эксплуатационной колонны и горной породы призабойной зоны. А в условиях низкой проницаемости ПЗП основная часть генерируемых газов и продуктов реакции также не в полной мере поступает в поровое пространство, а уходит вверх по колонне. В таком случае термогазохимической обработке подвергаются в основном участки, обладающие уже до начала обработки высокой проницаемостью.
Сущность изобретения
Задачей настоящего изобретения является повышение продуктивности скважин и эффективности разработки месторождений с трудноизвлекаемыми запасами путем применения заявляемого способа комплексной водородной термобарохимической обработки продуктивного пласта.
Техническим результатом является повышение эффективности комплексной водородной термобарохимической обработки с целью увеличения проницаемости призабойной зоны пласта, снижения скин-фактора и увеличения производительности (дебита) скважины.
Поставленная задача и заявленный технический результат достигаются тем, что способ комплексной водородной термобарохимической обработки призабойной зоны продуктивного пласта включает раздельно-последовательную доставку на забой через насосно-компрессорные трубы гидрореагирующих, на основе алюмогидриднатриевого композита, и горюче-окислительных, на основе комплексных солей, составов, согласно изобретению производят закачку первой смеси горюче-окислительного и гидрореагирующего составов (ГОС-ГРС) плотностью 1,35-1,4 г/см3 с объемом заполнения эксплуатационной колонны от забоя до уровня нижних отверстий перфорации, сверху на первую смесь закачивают агрегативно устойчивую наносуспензию гидрореагирующего состава плотностью 1,23-1,25 г/см3 при содержании 5-50% дисперсной фазы алюмогидриднатриевого композита в дисперсионной среде дизельного топлива и органического растворителя при количественном содержании компонентов жидкой фазы, взятых в пропорциональном соотношении, обеспечивающем равенство плотностей жидкой и твердой фаз наносуспензии, закачку которой производят в заданном пористостью пласта объеме, превышающем внутренний объем эксплуатационной колонны в интервале зоны перфорации, с последующей задавкой агрегативно устойчивой наносуспензии гидрореагирующего состава непосредственно в призабойную зону пласта, производят закачку второй смеси горюче-окислительного и гидрореагирующего составов плотностью 1,6-1,8 г/см3 в объеме, достаточном для эффективного реагирования с первой смесью горюче-окислительного и гидрореагирующего составов.
Технический результат также достигается тем, что компоненты для приготовления агрегативно устойчивой наносуспензии гидрореагирующего состава: алюмогидриднатриевый композит, дизельное топливо и органический растворитель, взятые в заданном соотношении, обеспечивающем равенство плотности дисперсионной среды и рентгеновской плотности твердой дисперсной фазы, подвергают предварительной обработке в роторном диспергаторе-кавитаторе до дисперсности твердой фазы алюмогидриднатриевого композита 0,1-10 мкм.
Краткое описание чертежей
Фиг. 1
поз. 1 - эксплуатационная колонна;
поз. 2 - насосно-компрессорные трубы (НКТ);
поз. 3 - забой;
поз. 4 - объем заполнения до нижних отверстий;
поз. 5 - зона перфорации.
Фиг. 2
поз. 1 - эксплуатационная колонна;
поз. 2 - насосно-компрессорные трубы (НКТ);
поз. 3 - забой;
поз. 4 - объем заполнения до нижних отверстий;
поз. 5 - зона перфорации;
поз. 6 - объем агрегативно-устойчивой наносуспензии.
Фиг. 3
поз. 1 - эксплуатационная колонна;
поз. 2 - насосно-компрессорные трубы (НКТ);
поз. 3 - забой;
поз. 4 - объем заполнения до нижних отверстий;
поз. 5 - зона перфорации;
поз. 7 - объем второй смеси ГОС-ГРС;
поз. 8 - слой наносуспензии.
Осуществление изобретения
Для предварительной стадии обработки ПЗП производят приготовление агрегативно-устойчивой наносуспензии гидрореагирующего состава путем смешивания гидрореагирующего состава на основе порошка мелкодисперсной твердой фазы алюмогидрид натриевого композита (АГНК) размерами частиц 50-500 мкм с жидкой фазой (дисперсионной средой): дизельным топливом (углеводородным растворителем) плотностью 0,80-0,85 г/см3 и органическим растворителем плотностью 1,60-1,92 г/см3, например перхлорэтиленом (C2Cl4, ρ=1,62), с доведение общей плотности суспензии до рентгеновской плотности твердой фазы 1,23-1,25 г/см3. При этом плотность жидкой фазы, определена расчетным методом из условий максимального соответствия плотности суспензии и приблизительно соответствует соотношению компонентов дизельное топливо - органический растворитель (перхлорэтилен (C2Cl4)) как 10:7. При этом мелкодисперсная твердая фаза гидрореагирующего состава на основе алюмогидриднатриевого композита благодаря равенству плотностей твердой и жидкой фаз при дополнительной обработке состава в роторном диспергаторе-кавитаторе на скорости 3000 об/мин в течение 20 мин диспергируется до размеров 0,1-10 мкм и гомогенизируется в составе высокостабильной ультрадисперсной суспензии.
Такая дисперсность твердой дисперсной фазы наносуспензии позволяет ей беспрепятственно проникать в поровое пространство вместе с жидкой дисперсионной средой, а ее агрегативная устойчивость достигается равенством плотностей твердой и жидкой фаз.
Способ заключается в следующем:
Перед началом термохимической обработки призабойной зоны пласта производят комплекс геолого-физических, термогазодинамических исследований: химического состава пластовой породы, фильтрационных характеристик ПЗП, эксплуатационных параметров скважины, которые являются определяющими при выборе качественного и количественного состава реагентов систем горюче-окислительных и гидрореагирующих составов (ГОС-ГРС) для проведения эффективной обработки.
В предлагаемом способе для систем горюче-окислительных и гидрореагирующих составов, эффективно работающих в ПЗП, используют, в качестве гидрореагирующих составов, алюмогидриднатриевый композит, а в качестве горюче-окислительных - составы на основе комплексных солей.
Производят глушение скважины путем заполнения водой эксплуатационной колонны 1 (Фиг. 1). Производят допуск насосно-компрессорных труб (НКТ) 2 на глубину 1-2 м от забоя 3 и закачку первой смеси горюче-окислительного и гидрореагирующего составов (ГОС-ГРС) плотностью 1,35-1,40 г/см3 с последующей доставкой ее на забой 3 из расчета объема 4 заполнения до нижних отверстий зоны 5 перфорации, для реализации реакций взаимодействия реагентов при обработке продуктивного пласта.
При подъеме НКТ 2 (Фиг. 2) на 1-2 м над уровнем нижних отверстий зоны 5 перфорации производят сверху на первую смесь закачку объема 6 агрегативно-устойчивой наносуспензии гидрореагирующего состава плотностью 1,23-1,25 г/м3 при содержании 5-50% дисперсной фазы алюмогидриднатриевого композита в дисперсионной среде дизельного топлива и органического растворителя, например перхлорэтилена (CCl4), количественное содержание которых берут в пропорциональном соотношении, обеспечивающем равенство плотностей жидкой и твердой фаз наносуспензии.
Закачку агрегативно-устойчивой наносуспензии гидрореагирующего состава производят в заданном пористостью пласта объеме, превышающем внутренний объем эксплуатационной колонны 1 в интервале зоны 5 перфорации. При закрытом затрубном пространстве эксплуатационной колонны 1 производят задавку агрегативно устойчивой наносуспензии гидрореагирующего состава непосредственно в призабойную зону продуктивного пласта.
Фильтрация наносуспензии гидрореагирующего состава в поровое пространство пласта сопровождается экзотермическими реакциями алюмогидриднатриевого композита с пластовой водой и жидкостью глушения с выделением тепла и генерированием водорода.
Figure 00000001
В результате протекания первичных реакций выделяемый непосредственно в продуктивном пласте водород фильтруется в поры, трещины и микротрещины коллектора, увеличивая его проницаемость и обеспечивая фильтрацию в пласт горячих углеводородного и органического растворителей. Химический процесс гидролиза данного типа гидрореагирующего состава завершается образованием щелочи (ПАВ), действие которой также является положительным фактором улучшения фильтрационной способности ПЗП. Происходит полное обезвоживание порового пространства, образующийся атомарный и молекулярный водород активирует процессы диффузии, повышение температуры в поровом пространстве, приводит к снижению вязкости АСПО и повышению химической активности углеводородного и органического растворителей.
Таким образом, предварительная обработка наносуспензией существенным образом улучшает проницаемость ПЗП, что благоприятно влияет на повышение эффективности обработки в целом, снижение скин-фактора, увеличение производительности (дебита) скважины.
При открытом затрубье и поднятых насосно-компрессорных трубах 2 (Фиг. 3) на 20-30 м выше верхних отверстий перфорации продуктивного пласта производят закачку второй смеси ГОС-ГРС плотностью 1,6-1,8 г/см3 в объеме 7, достаточном для эффективного реагирования с первой смесью горюче-окислительного и гидрореагирующего составов, которая опускается через слой жидкости глушения (воды) плотностью 1,0 г/м3, частично реагируя с остатками слоя 8 наносуспензии в зоне 5 перфорации. При этом происходит повышение температуры в зоне реакции эксплуатационной колонны 1 до 100-150°С и частичное обезвоживание с повышением концентраций горюче-окислительных составов.
При смешивании второй смеси горюче-окислительного и гидрореагирующего составов с первой смесью горюче-окислительного и гидрореагирующего составов в разогретой зоне эксплуатационной колонны 1 инициируется ряд химических экзотермических реакций с активным генерированием газов Н2, СО, СО2, NO2, NH3, N2O5 и повышением температуры до 250-370°С, достаточной для горячекислотной обработки ПЗП и частичного гидрокрекинга АСПО.
Скорость и полнота реализации термодинамического потенциала энергоемких топливных систем горюче-окислительных и гидрореагирующих составов регулируется составом реагентов и соотношением исходных компонентов.
Генерируемый в ходе (экзотермического) термохимического процесса водород существенно улучшает проницаемость коллектора и способствует фильтрации химически активных компонентов (реакций горюче-окислительных и гидрореагирующих составов) с разложением минеральной части пласта и кольматантами. На высокотемпературной стадии процесса в условиях высоких давлений, в присутствии атомарного и молекулярного водорода и катализаторов реализуется процесс гидрокрекинга АСПО с образованием газовых и дистиллятных фракций.
Таким образом, дополнительная стадия водородной обработки, реализованная с использованием агрегативно-устойчивой наносуспензия гидрореагирующего состава непосредственно в каналах ПЗП с очисткой порового пространства растворяющими фракциями и генерированным низкотемпературным водородом с щелочной составляющей, позволяет, уже на предварительной стадии обработки, существенно повысить фильтрационные характеристики ПЗП и разогрев реакционной зоны эксплуатационной колонны для проведения основных химических реакций систем горюче-окислительных и гидрореагирующих составов с высоким термодинамическим потенциалом химического взаимодействия, а значит повысить эффективность комплексной термобарохимической обработки ПЗП со снижением скин-фактора и увеличением производительности (дебита) скважины.
Предложенный способ водородной интенсификации добычи углеводородов перспективен для внедрения на промыслах с тяжелой нефтью и высокой обводненностью продуктивных горизонтов.
Предлагаемый способ повышения продуктивности скважин и повышения эффективности разработки месторождений с трудноизвлекаемыми запасами основан на многостадийном термогазохимическом процессе, в ходе реализации которого первичные реакции с генерированием водорода на низкотемпературной стадии процесса происходят непосредственно в призабойной зоне продуктивного пласта, с последующей фильтрацией всего объема выделенного водорода в поровое пространство, что позволяет производить предварительный разогрев призабойной зоны пласта, повысить эффективность протекания реакций доставляемых реагентов с высоким термодинамическим потенциалом прохождения перфорационных каналов продуктивного пласта.
В основу изобретения поставлена задача создания способа комплексной водородной термобарохимической обработки продуктивного пласта путем предварительной обработки ПЗП ультрадисперсными системами на базе нано- и микропорошков гидрореагирующих веществ с протеканием экзотермических реакций их гидролиза и генерированием водорода уже на низкотемпературной стадии процесса непосредственно в поровом пространстве призабойной зоны, сопровождающимися разогревом не всей породы пласта, а в основном порового пространства, снижением вязкости АСПО, повышением эффекта от химического воздействия жидкой дисперсионной среды наносуспензии на минеральную часть пласта и АСПО, и, как следствие, существенным повышением проницаемости ПЗП еще до основной стадии комплексного водородного термобарохимического воздействия, за счет чего достигнуто повышение эффективности комплексной термобарохимической обработки со снижением скин-фактора и увеличением производительности (дебита) скважины.

Claims (2)

1. Способ комплексной водородной термобарохимической обработки призабойной зоны продуктивного пласта, включающий раздельно-последовательную доставку на забой через насосно-компрессорные трубы гидрореагирующих, на основе алюмогидриднатриевого композита, и горюче-окислительных, на основе комплексных солей, составов, отличающийся тем, что производят закачку первой смеси горюче-окислительного и гидрореагирующего составов плотностью 1,35-1,4 г/см3 с объемом заполнения эксплуатационной колонны от забоя до уровня нижних отверстий перфорации, сверху на первую смесь закачивают агрегативно устойчивую наносуспензию гидрореагирующего состава плотностью 1,23-1,25 г/см3 при содержании 5-50% дисперсной фазы алюмогидриднатриевого композита в дисперсионной среде дизельного топлива и органического растворителя при количественном содержании компонентов жидкой фазы, взятых в пропорциональном соотношении, обеспечивающем равенство плотностей жидкой и твердой фаз наносуспензии, закачку которой производят в заданном пористостью пласта объеме, превышающем внутренний объем эксплуатационной колонны интервала зоны перфорации, с последующей задавкой агрегативно устойчивой наносуспензии гидрореагирующего состава непосредственно в призабойную зону продуктивного пласта, производят закачку второй смеси горюче-окислительного и гидрореагирующего составов плотностью 1,6-1,8 г/см3 в объеме, достаточном для эффективного реагирования с первой смесью горюче-окислительного и гидрореагирующего составов.
2. Способ по п. 1, отличающийся тем, что компоненты для приготовления агрегативно устойчивой наносуспензии гидрореагирующего состава: алюмогидриднатриевый композит, дизельное топливо и органический растворитель, взятые в заданном соотношении, обеспечивающем равенство плотности дисперсионной среды и рентгеновской плотности твердой дисперсной фазы, подвергают предварительной обработке в роторном диспергаторе-кавитаторе до дисперсности твердой фазы алюмогидриднатриевого композита 0,1-10 мкм.
RU2016124659A 2016-06-21 2016-06-21 Способ комплексной водородной термобарохимической обработки продуктивного пласта RU2628342C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016124659A RU2628342C1 (ru) 2016-06-21 2016-06-21 Способ комплексной водородной термобарохимической обработки продуктивного пласта
PCT/RU2017/050046 WO2017222426A1 (ru) 2016-06-21 2017-06-02 Способ комплексной водородной термобарохимической обработки продуктивного пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016124659A RU2628342C1 (ru) 2016-06-21 2016-06-21 Способ комплексной водородной термобарохимической обработки продуктивного пласта

Publications (1)

Publication Number Publication Date
RU2628342C1 true RU2628342C1 (ru) 2017-08-16

Family

ID=59641818

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016124659A RU2628342C1 (ru) 2016-06-21 2016-06-21 Способ комплексной водородной термобарохимической обработки продуктивного пласта

Country Status (2)

Country Link
RU (1) RU2628342C1 (ru)
WO (1) WO2017222426A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721673C1 (ru) * 2019-01-24 2020-05-21 Общество с ограниченной ответственностью «ПЕТРОБУСТ» (ООО «ПЕТРОБУСТ») Способ комплексной водородной термобарохимической обработки продуктивного пласта
WO2021010935A1 (ru) * 2019-07-18 2021-01-21 Анна Сергеевна ФЕДОРЕНКО Способ комплексной водородной термобарохимической обработки призабойной зоны продуктивного пласта скважины «tbc-ehr»

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2064576C1 (ru) * 1992-12-08 1996-07-27 Малаховское отделение ВНИИНефтепромгеофизики Способ обработки пласта
RU2186206C2 (ru) * 2001-06-01 2002-07-27 Общество с ограниченной ответственностью "Передовые технологии" Способ обработки пласта
US6488086B1 (en) * 2000-08-23 2002-12-03 Evgeniy Venediktovich Daragan Method of thermochemical treatment of a producing formation and combustible-oxidizing compound (COC) for realizing the same
UA86886C2 (ru) * 2007-10-29 2009-05-25 Інститут Проблем Машинобудування Ім. А.М.Підгорного Національної Академії Наук України Способ увеличения длины перфорационных каналов продуктивного пласта
UA102501C2 (ru) * 2013-03-11 2013-07-10 Научно-Технический Концерн "Институт Проблем Машиностроения" Нан Украины Способ комплексного водородного и термобарохимического воздействия на призабойную зону продуктивного пласта
RU2525386C2 (ru) * 2012-11-26 2014-08-10 Общество с ограниченной ответственностью "Центр Нефтяных Технологий" (ООО "ЦНТ") Термогазохимический состав и способ применения для обработки призабойной и удаленной зоны продуктивного пласта

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2064576C1 (ru) * 1992-12-08 1996-07-27 Малаховское отделение ВНИИНефтепромгеофизики Способ обработки пласта
US6488086B1 (en) * 2000-08-23 2002-12-03 Evgeniy Venediktovich Daragan Method of thermochemical treatment of a producing formation and combustible-oxidizing compound (COC) for realizing the same
RU2186206C2 (ru) * 2001-06-01 2002-07-27 Общество с ограниченной ответственностью "Передовые технологии" Способ обработки пласта
UA86886C2 (ru) * 2007-10-29 2009-05-25 Інститут Проблем Машинобудування Ім. А.М.Підгорного Національної Академії Наук України Способ увеличения длины перфорационных каналов продуктивного пласта
RU2525386C2 (ru) * 2012-11-26 2014-08-10 Общество с ограниченной ответственностью "Центр Нефтяных Технологий" (ООО "ЦНТ") Термогазохимический состав и способ применения для обработки призабойной и удаленной зоны продуктивного пласта
UA102501C2 (ru) * 2013-03-11 2013-07-10 Научно-Технический Концерн "Институт Проблем Машиностроения" Нан Украины Способ комплексного водородного и термобарохимического воздействия на призабойную зону продуктивного пласта

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721673C1 (ru) * 2019-01-24 2020-05-21 Общество с ограниченной ответственностью «ПЕТРОБУСТ» (ООО «ПЕТРОБУСТ») Способ комплексной водородной термобарохимической обработки продуктивного пласта
WO2021010935A1 (ru) * 2019-07-18 2021-01-21 Анна Сергеевна ФЕДОРЕНКО Способ комплексной водородной термобарохимической обработки призабойной зоны продуктивного пласта скважины «tbc-ehr»

Also Published As

Publication number Publication date
WO2017222426A1 (ru) 2017-12-28

Similar Documents

Publication Publication Date Title
RU2525386C2 (ru) Термогазохимический состав и способ применения для обработки призабойной и удаленной зоны продуктивного пласта
Altunina et al. Improved oil recovery of high-viscosity oil pools with physicochemical methods and thermal-steam treatments
Gandossi et al. An overview of hydraulic fracturing and other formation stimulation technologies for shale gas production
Penny et al. Microemulsion additives enable optimized formation damage repair and prevention
RU2576267C1 (ru) Способ комбинированного воздействия на пласты, содержащие углеводороды и/или твердые органические вещества, и устройство для осуществления способа
Fathollahi et al. Carbonated water injection: Effects of silica nanoparticles and operating pressure
EP3110903B1 (en) Aqueous solution and methods for manufacture and use
EA024412B1 (ru) Устройство для термической обработки нефтяной залежи
RU2628342C1 (ru) Способ комплексной водородной термобарохимической обработки продуктивного пласта
US10947827B2 (en) Method for exerting a combined effect on the near-wellbore region of a producing formation
WO2015072875A1 (en) Methods of treating a subterranean formations with fluids comprising proppant
Atsenuwa et al. Effect of Viscosity of Heavy Oil Class-A on Oil Recovery in SP Flooding Using Lauryl Sulphate and Gum Arabic
WO2015180992A1 (de) Verfahren zur thermischen behandlung einer unterirdischen erdöllagerstätte
RU2645058C1 (ru) Способ разработки залежи высоковязкой нефти пароциклическим воздействием
WO2020226672A1 (en) Methods for recovering petroleum that include using exothermic reactions in aqueous zones of reservoirs
RU2721673C1 (ru) Способ комплексной водородной термобарохимической обработки продуктивного пласта
Dieva et al. Hydrodynamic analysis of the efficiency of thermochemical methods at deposits with complicated development conditions
WO2021010935A1 (ru) Способ комплексной водородной термобарохимической обработки призабойной зоны продуктивного пласта скважины «tbc-ehr»
RU2672272C2 (ru) Способ разработки месторождений сверхвязкой нефти
RU2184836C2 (ru) Способ селективного ограничения водопритоков в эксплуатационных скважинах
Krumrine et al. Alkali Metal Silicides: A New Material for Heavy-Oil Production Processes
Kravchenko et al. Increasing the effectiveness of the complex hydrogen thermobaric chemical effect technology for stimulation of the production of hydrocarbons by using polymer paracyanogen
RU2780172C1 (ru) Способ разработки залежей высоковязкой нефти и природного битума
RU2522690C2 (ru) Способ добычи вязкой нефти
RU2030568C1 (ru) Способ термохимической обработки призабойной зоны пласта