RU2628301C2 - Способ и устройство азимутально-угломестной индикации в оптико-локационных системах - Google Patents
Способ и устройство азимутально-угломестной индикации в оптико-локационных системах Download PDFInfo
- Publication number
- RU2628301C2 RU2628301C2 RU2015154507A RU2015154507A RU2628301C2 RU 2628301 C2 RU2628301 C2 RU 2628301C2 RU 2015154507 A RU2015154507 A RU 2015154507A RU 2015154507 A RU2015154507 A RU 2015154507A RU 2628301 C2 RU2628301 C2 RU 2628301C2
- Authority
- RU
- Russia
- Prior art keywords
- probe
- optical
- probing
- axis
- combined
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Radiation-Therapy Devices (AREA)
- Laser Surgery Devices (AREA)
Abstract
Способ азимутальной-угломестной индикации в оптико-локационных системах содержит формирование из зондирующего и контрольного лазерных излучений комбинированного оптического пучка, изменениие направлений зондирующего и контрольного лазерных пучков, разделение и суммирование зондирующего и отраженного от объекта и контрольного лазерных пучков. При этом зондирующий пучок диафрагмируется радиально-щелевой диафрагмой зондирующего зеркала. Производят формирование теневой метки в зондирующем пучке и световой метки, прошедшей через радиально-щелевую диафрагму. Световую метку проецируют на поверхность лимба. Технический результат заключается в обеспечении прямой визуальной индикации направленности зондирующего излучения по азимуту и углу места. 2 н. 1 з.п. ф-лы, 1 ил.
Description
Изобретение относится к области лазерной локации и может быть применено в оптических приборах для прямой индикации и визуализации направления локации и их топографической привязки на местности, а также для повышения точности при автоюстировке.
Известны оптические способы и устройства сканирования по азимуту и углу места: от лазерной локации [Лазерная локация. Под ред. Н.П. Устинова, М.: Машиностроение, 1984] до лазерных координатно-измерительных систем с шестью степенями свободы, например Leica absolute tracker АТ960, и тому подобное [www.gfk-leica.ru. Hexagon Metrology].
Известны технические решения оптической локации (сканирования) пространства [Инфракрасные лазерные локационные системы. В.В. Протопопов, Н.П. Устинов, Москва, Воениздат, 1987].
Наиболее близким по технической сущности и достигаемому результату является решение, реализованное в многофункциональной оптико-локационной системе [Патент RU 2292566]. В ней технический результат достигается посредством перископического расположения зеркал, позволяющих изменять направления луча обзора и наблюдать предметы, расположенные вне поля зрения фотоприемного устройства. При этом для автоюстировки вводится дополнительное лазерное излучение. При наличии ошибок в отклонении оптической оси контрольного пучка на фотоприемном устройстве возникает смещение центра дифракционного пятна контрольного пучка относительно выбранного начала координат. Величина смещения определяется датчиком отклонения оптической оси контрольного пучка лазерного излучения.
Несмотря на совершенство в вышеуказанных устройствах оптико-электронных, информационных и беспроводных технологий, они не решают задачи прямой азимутально-угломестной индикации и визуализации направления локации фактическим зондирующим пучком. Более того в прототипе точность юстировки - углового согласования оптических осей зондирующего пучка (передающего канала) и объектного пучка, отраженного от пространственных объектов (приемного канала) требует дополнительного введения контрольного пучка лазерного излучения с последующей коррекцией оптических осей и минимизации углового рассогласования.
Отсутствие прямой визуальной индикации направленности фактических приемопередающих излучений по азимуту и углу места и свето-теневых меток (указателей) в пучках зондирующего и отраженного объектного излучений усложняет оперативность топографической привязки устройства на местности, контроль ориентации и юстировку фактических зондирующего и отраженного объектного пучков.
Изобретение предназначено для расширения функциональных возможностей оптико-локационных систем и при ее осуществлении могут быть получены следующие технические результаты - прямая визуальная индикация направленности зондирующего излучения по азимуту и углу места и упрощение конструкции при сохранении точности автоюстировки.
Технический результат в многофункциональной оптико-локационной системе - прототипе [Патент RU 2292566] достигается за счет конструктивного совмещения оптической, механической и оптико-электронных частей разных функциональных узлов системы встроенных друг в друга посредством перископического эффекта взаимнорасположенных зеркал, позволяющих изменять направления луча обзора и наблюдать предметы, расположенные вне поля зрения фотоприемного устройства. А также за счет того, что устройство содержит формирователь комбинированного оптического пучка, систему коаксиальных валов с телескопическим расширителем комбинированного оптического пучка, встроенным во внутренний вал системы коаксиальных валов, оси вращения которых коллинеарны главной оптической оси комбинированного оптического пучка, систему вращающихся сканирующих зеркал, состоящую из зондирующего, центрального и приемного зеркал, кинематически связанных с коаксиальными валами и обеспечивающих: азимутальное круговое и секторальное по углу места сканирования пространства; разделение-суммирование зондирующих, отраженных (от объекта) и контрольного пучков; и их проекцию на комбинированное фотоприемное устройство с зеркально-линзовой оптикой, и электронную систему контроля, управления, обработки и отображения информации.
Признаками, отличающими изобретение от прототипа являются: радиально-щелевое диафрагмирование зондирующего пучка с одновременным формированием теневой метки в сечении зондирующего пучка и световой метки проецируемой на поверхность лимба в виде изображения радиальной щели, при этом световая метка движется синхронно в двух измерениях по окружности кольцевого лимба при азимутальной развертке, и по его высоте описывая круги при угломестной развертке или изменяя угол наклона сканирующих зеркал. С этой целью в устройство введены лимб, выполненный в виде цилиндра или конуса с нанесенными продольными круговыми и поперечными рисками и щелевая диафрагма, выполненная в зондирующем зеркале. Кроме того, дополнительное введение люминесцентного слоя на рабочую поверхность лимба обеспечивает преобразование ИК-излучения зондирующего пучка в видимую световую метку (при использовании зондирующих лазеров с соответствующим ИК-излучением).
Полученные при осуществлении изобретения технические результаты, а именно прямая визуальная индикация направленности зондирующего излучения по азимуту и углу места и упрощение конструкции при сохранении точности автоюстировки, достигаются посредством радиально-щелевого диафрагмирования зондирующего пучка с одновременным формированием теневой метки в зондирующем пучке и световой метки, проецируемой на поверхность лимба в виде изображения радиальной щели.
На фигуре изображены способ и структурная схема устройства азимутально-угломестной индикации в оптико-локационных системах, где 1 - формирователь комбинированного оптического пучка ∑λ с визирной осью - опорной визирной меткой, состоящий из зондирующего λ1 и контрольного λ2 лазерных излучений, 2 - система коаксиальных валов, оси вращения которых коллинеарны главной оптической О-О оси, 3 - телескопический расширитель комбинированного оптического пучка ∑λ, 4, 5, 6 - соответственно зондирующее, центральное и приемное сканирующие зеркала, механически и кинематически связанные с коаксиальными валами, 7 - комбинированное фотоприемное устройство (ФПУ), 8 - электронная система контроля, управления, обработки и отображения информации, техническая сущность которой отражена в прототипе [Патент RU 2292566], 9 - лимб с нанесенными на рабочую поверхность продольными и поперечными рисками, выполненный в виде цилиндра или конуса, ось вращения которого коллинеарна главной оптической О-О оси, 10 - радиально-щелевая диафрагма, выполнена в зондирующем зеркале 4 (Вид А), 11 - слой люминофора, нанесенный на рабочую поверхность лимба, 12 и 13 - метки, соответственно, теневые в зондирующем λ1 и отраженном λ3 от объекта пространства пучках излучения (сечения Б-Б и В-В, соответственно) и световая метка - изображение щели радиально-щелевой диафрагмы 10 на рабочей стороне лимба 9 или на слое 11 люминофора, нанесенного на его рабочую сторону.
Принцип действия оптической локации, регистрации и визуализации сигналов посредством ФПУ 7 с зеркально-линзовой оптикой, повышения точности совмещения осей приемопередающего каналов, а также кинематических и электрических связей с элементами контроля, управления, обработки и отображения информации электронной системы 8 отражены в прототипе [Патент RU 2292566].
Формирователь 1 комбинированного оптического пучка ∑λ, состоящий из коллимированных зондирующего λ1 и контрольного λ2 лазерных излучений, прошедших через призму Дове (не показана) с визирной осью (опорной визирной меткой) оптически связан с комбинированным ФПУ 7 через перископическую систему зеркал 4, 5, 6 и электрически с интерфейсным выходом 1 электронного блока 8, по которому осуществляется контроль и управление комбинированным оптическим пучком.
Система 2 коаксиальных валов, оси вращения которых коллинеарны главной оптической O-O оси, состоит из внутреннего и внешнего валов, разделенных промежуточным валом. Последний предназначен для управляемости и стабилизации моментов трения между внутренним и внешним валами при их вращении. Внутренний вал связан механически с горизонтальной круговой платформой, на которой размещена система зеркал: 4 зондирующее, 5 центральное и 6 приемное, обеспечивающих перископический эффект - изменение направления луча обзора вне поля зрения ФПУ 7. Вращение внутреннего вала обеспечивает вращение горизонтальной круговой платформы, связанной с зеркалами 4, 5, 6, и, соответственно, сканирование оптико-локационной системой пространства по азимуту α. Внешний вал связан кинематически посредством шкивов с зеркалами 4 и 6, центры которых лежат на ортогональный O*-O* оси. Вращение внешнего вала обеспечивает синхронное вращение зеркал 4 и 6 относительно оси O*-O*, и, соответственно, сканирование оптико-локационной системой пространства по углу γ места. Контроль и управление системой 2 коаксиальных валов осуществляется электрически датчиками углового положения и приводами (не показаны) через интерфейсный выход 2 электронного блока 8.
Телескопический расширитель 3 комбинированного оптического пучка ∑λ размещен коллинеарно (соосно) оси вращения системы 2 коаксиальных валов, внутри внутреннего вала и образует главную оптическую O-O ось.
Зеркала, соответственно, зондирующее 4, центральное 5 и приемное 6 связаны механически с внутренним валом системы 2 коаксиальных валов посредством круговой платформы и оптически между собой. Центры 4 и 6 зеркал образуют ортогональную оптическую ось O*-O* и центрированы относительно друг друга и главной оптической О-О оси, зеркала 4 и 6 связаны кинематически с внешним валом посредством шкивов.
В зондирующем зеркале 4 выполнена радиально-щелевая диафрагма 10. На фигуре поз. 10 показана компланарно плоскости, образуемой пересечением главной О-О и ортогональной O*-O* оптических осей центрального зеркала 5 и дополнительно поз. 4 и 10 показаны разверткой - Вид А. Часть зондирующего излучения λ1, пройдя через радиально-щелевую диафрагму 10, проецируется на рабочую сторону лимба 9 с измерительной шкалой в виде изображения щели - световой метки 13. Одновременно со световой меткой в зондирующем λ1 пучке и, соответственно, в отраженном от объекта λ3 пучке формируется теневая метка 12 (на фиг. 1 показана на выносных сечениях Б-Б и В-В, соответственно).
Лимб 9 (круговое кольцо с измерительной шкалой) выполнен в виде цилиндра или конуса, ось вращения которого коллинеарна главной оптической О-О оси. При этом на его рабочей стороне (с точки наблюдения - визуализации показаний) нанесена шкала с продольными и поперечными рисками, или иной конфигурацией рисок.
Наличие люминесцентного слоя 12 на одной или обеих сторонах лимба 9 позволяет преобразовывать ИК-излучение λ1 зондирующего пучка, спроецированного через радиально-щелевую диафрагму на шкалу лимба в излучение видимого λ спектра. В качестве слоя 12 может быть использована, фотолюминесцентная композиция, преобразующая зондирующее λ1 излучение в излучения видимого спектра. Рабочей стороной лимба 9 может быть как внутренняя, так и внешняя сторона, в зависимости от угла зрения. Для внешней рабочей стороны лимб необходимо выполнить прозрачным в видимом диапазоне спектра.
Комбинированное ФПУ 7 на фиг.1 показано условно и состоит из комбинации фоточувствительных элементов приема теплового излучения объектов, лазерного излучения λ1 зондирующего пучка и отраженного λ3 от объектов, и лазерного излучения λ2 контрольного пучка, а также дополнительно содержит зеркально-линзовую оптику с приводом и с датчиком углового положения компенсатора поворота изображения [Патент RU 2292566]. ФПУ 7 связано электрически с интерфейсным выходом 3 электронной системы 8 контроля, управления, обработки и отображения информации, а оптически - с лазерными излучениями λ1, λ2 и λ3. Лазерное излучение λ2 контрольного пучка служит для контроля совмещения и коррекции оси зондирующего λ1 пучка при его рассогласовании относительно оси отраженного от объектов приемного λ3 пучка.
Способ и устройство работают следующим образом. Созданный формирователем 1 из зондирующего λ1 и контрольного λ2 комбинированный оптический пучок ∑λ с визирной меткой распространяется коллимарно оси вращения системы 2 коаксиальных валов, образующих главную оптическую ось О-О в направлении комбинированного ФПУ 7 с зеркально-линзовой оптикой. При этом внутри внутреннего вала системы 2 коаксиальных валов комбинированный оптический пучок ∑λ расширяется телескопическим лазерным расширителем 3 до заданных по сечению (диаметру зондирующего и контрольного пучков) размеров.
Вращение внутреннего вала системы 2 коаксиальных валов и связанных с ним лазерного расширителя 3 и горизонтальной платформы с закрепленными на ней зеркалами 4, 5 и 6 обеспечивает сканирование оптико-локационной системой пространства по α азимуту. Вращение внешнего вала системы 2 коаксиальных валов и связанных с ним кинематически синхронного вращения зеркал 4 и 6 обеспечивает сканирование локационной системой пространства по углу γ места.
В процессе сканирования контролируемой зоны тепловое излучение объектов через входное 6 и центральное 5 зеркала поступает на оптический вход комбинированного ФПУ 7. Кроме теплового излучения сканируемых фрагментов контролируемой зоны, на оптический вход ФПУ 7 поступает излучение λ2 контрольного пучка, который формируется по тем же оптическим осям, что и зондирующий пучок. Сформированный зондирующий пучок лазерного излучения λ1 последовательно проходит телескопический расширитель 3 и направляется на отражательную поверхность центрального зеркала 5 и далее на отражательную поверхность зондирующего зеркала 4. При этом часть зондирующего излучения λ1, прошедшая через радиально-щелевую диафрагму 10, проецируется на рабочую сторону лимба 9 с измерительной шкалой в виде изображения щели - световой метки 13. Одновременно со световой меткой в зондирующем λ1 пучке и, соответственно, в отраженном от объекта λ3 пучке формируется теневая метка 12 (сечения Б-Б в пучке λ1 и В-В в пучке λ3, соответственно). При наличии объекта лазерное излучение зондирующего пучка λ1 с теневой меткой 12 (сечение Б-Б) отражается от объектов и проецируется на приемное зеркало 6 в виде пучка λ3 с теневой меткой 12 (сечение В-В) и далее, отражаясь от поверхности центрального зеркала 5, направляется в зеркально-линзовый объектив ФПУ 7. ФПУ регистрирует изображение (пространственное распределение интенсивности излучения λ3 в сечении) от объекта и сравнивает его посредством электронной системы 8 с опорной визирной меткой контрольного пучка λ2, сформированной визирной осью призмы Дове в формирователе 1 комбинированного оптического пучка. При рассогласовании меток в фокальной плоскости ФПУ 7 теневой 12 в лазерном пучке λ3 и опорной визирной в контрольном пучке λ2 электронной системой 8 осуществляется автоматическая коррекция углового согласования оптических осей зондирующего λ1 (передающего канала) и отраженного λ3 от объектов пространства (приемного канала) пучков.
Выполнение центрального зеркала 5 полупрозрачным светоделительным для зондирующего пучка излучением λ1 так, что основная часть спроецированного на его поверхность излучения отражается на зондирующее зеркало 4, а часть излучения λ1, прошедшая через зеркало 5, проецируется на оптический вход ФПУ 7, позволяет формировать изображения опорных визирных меток от пучков λ1 и λ2 изучений и теневой метки от отраженного от объекта приемного излучения λ3. При несовпадении изображений меток электронной системой 8 осуществляется автоматическая коррекция углового согласования оптических осей. Следовательно, наличие теневых меток в пучках λ1 и λ3 и их согласование с опорной визирной меткой, образованной визирной осью призмы Дове в формирователе 1 комбинированного оптического пучка ∑λ позволяет упростить конструкцию, исключив контрольное излучение λ2 и связанные с ним системы генерации, контроля и управления лазерным λ2 излучением.
Таким образом, радиально-щелевое диафрагмирование зондирующего пучка, выполненное в зондирующем зеркале 4, позволяет одновременно формировать теневые метки в зондирующем и отраженном пучках и световую метку, проецируемую на поверхность лимба в виде изображения радиальной щели. При этом световая метка движется синхронно в двух измерениях по окружности кольцевого лимба при азимутальной развертке и по его высоте, описывая круги при угломестной развертке (осевое вращение зеркала 4) или изменяя угол наклона зеркала. Дополнительное введение люминесцентного слоя на рабочую поверхность лимба обеспечивает преобразование ИК-излучения зондирующего пучка в видимую световую метку (при использовании зондирующих лазеров соответствующего ИК-излучения).
Claims (3)
1. Способ азимутально-угломестной индикации в оптико-локационных системах, состоящий: в формировании из зондирующего и контрольного лазерных излучений комбинированного оптического пучка; его проецировании и телескопическом расширении по главной оптической оси, коллинеарной оси вращения системы коаксиальных валов, последующем перископическом изменении направлений зондирующего и контрольного лазерных пучков, расположенных вне непосредственном поле зрения комбинированного фотоприемного устройства, системой синхронно вращающихся зондирующего, центрального и приемного зеркал, кинематически связанных с коаксиальными валами и обеспечивающих азимутальное круговое и секторальное по углу места сканирования пространства, а также разделении-суммировании зондирующих и отраженных от объектов в пространстве и контрольных лазерных пучков и их проекций на комбинированное фотоприемное устройство, отличающийся тем, что зондирующий пучок диафрагмируется радиально-щелевой диафрагмой зондирующего зеркала с одновременным формированием теневой метки в зондирующем пучке и световой метки, прошедшей через радиально-щелевую диафрагму и проецируемой на поверхность лимба, в виде изображения щели радиально-щелевой диафрагмы.
2. Устройство азимутально-угломестной индикации в оптико-локационных системах, содержащее формирователь комбинированного оптического пучка, состоящего из зондирующего и контрольного лазерных излучений, систему коаксиальных валов с телескопическим расширителем комбинированного оптического пучка, встроенным во внутренний вал системы коаксиальных валов, оси вращения которых коллинеарны главной оптической оси комбинированного оптического пучка, систему зеркал, состоящую из зондирующего, центрального и приемного зеркал, кинематически связанных с системой коаксиальных валов, комбинированное фотоприемное устройство, а также электронную систему контроля, управления, обработки и отображения информации, отличающееся тем, что введены лимб, выполненный в виде цилиндра или конуса, ось вращения которого коллинеарна главной оптической оси, и радиально-щелевая диафрагма, выполненная в зондирующем зеркале.
3. Устройство по п. 2, отличающееся тем, что введен люминесцентный слой на вешнюю и(или) внутреннюю сторону лимба.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015154507A RU2628301C2 (ru) | 2015-12-18 | 2015-12-18 | Способ и устройство азимутально-угломестной индикации в оптико-локационных системах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015154507A RU2628301C2 (ru) | 2015-12-18 | 2015-12-18 | Способ и устройство азимутально-угломестной индикации в оптико-локационных системах |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015154507A RU2015154507A (ru) | 2017-06-22 |
RU2628301C2 true RU2628301C2 (ru) | 2017-08-15 |
Family
ID=59240472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015154507A RU2628301C2 (ru) | 2015-12-18 | 2015-12-18 | Способ и устройство азимутально-угломестной индикации в оптико-локационных системах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2628301C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2699944C1 (ru) * | 2018-11-26 | 2019-09-11 | Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Оптическая система формирования и наведения лазерного излучения |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2084925C1 (ru) * | 1995-04-14 | 1997-07-20 | Юрий Васильевич Чжан | Система импульсной лазерной локации |
RU2292566C1 (ru) * | 2005-09-15 | 2007-01-27 | Российская Федерация, от имени которой выступает государственный заказчик-Министерство Обороны Российской Федерации | Многофункциональная оптико-локационная система |
RU2372628C1 (ru) * | 2008-04-15 | 2009-11-10 | Российская Федерация, от имени которой выступает государственный заказчик - Федеральное агентство по атомной энергии (Росатом) | Многофункциональная оптико-локационная система |
US8896819B2 (en) * | 2009-11-20 | 2014-11-25 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
-
2015
- 2015-12-18 RU RU2015154507A patent/RU2628301C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2084925C1 (ru) * | 1995-04-14 | 1997-07-20 | Юрий Васильевич Чжан | Система импульсной лазерной локации |
RU2292566C1 (ru) * | 2005-09-15 | 2007-01-27 | Российская Федерация, от имени которой выступает государственный заказчик-Министерство Обороны Российской Федерации | Многофункциональная оптико-локационная система |
RU2372628C1 (ru) * | 2008-04-15 | 2009-11-10 | Российская Федерация, от имени которой выступает государственный заказчик - Федеральное агентство по атомной энергии (Росатом) | Многофункциональная оптико-локационная система |
US8896819B2 (en) * | 2009-11-20 | 2014-11-25 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2699944C1 (ru) * | 2018-11-26 | 2019-09-11 | Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Оптическая система формирования и наведения лазерного излучения |
Also Published As
Publication number | Publication date |
---|---|
RU2015154507A (ru) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11536567B2 (en) | Surveying instrument | |
CN103959090B (zh) | 用于搜索目标的具有位置敏感检测器的激光跟踪器 | |
CN103003713B (zh) | 具有投影器的激光扫描器或激光跟踪器 | |
US9658335B2 (en) | Measurement system with a measuring device and a scanning module | |
CN106104204B (zh) | 具有扫描功能的距离测量仪器 | |
RU2292566C1 (ru) | Многофункциональная оптико-локационная система | |
CN103512728B (zh) | 全范围多光轴一致性标定装置和方法 | |
CN113340279B (zh) | 具有同轴射束偏转元件的勘测装置 | |
CN104748720B (zh) | 空间测角装置及测角方法 | |
CN104006885B (zh) | 时空联合调制傅里叶变换成像光谱仪及制作方法 | |
Li et al. | MEMS mirror based omnidirectional scanning for LiDAR optical systems | |
RU2628301C2 (ru) | Способ и устройство азимутально-угломестной индикации в оптико-локационных системах | |
KR102642068B1 (ko) | 별 추적기 상에 장착된 미러를 구비한 오토콜리메이터를 포함하는 관찰 기구 | |
RU2372628C1 (ru) | Многофункциональная оптико-локационная система | |
CN106225725B (zh) | 便携式阵列调零激光大工作距自准直装置与方法 | |
CN106017362B (zh) | 一种便携式高动态精度大工作距自准直装置与方法 | |
JP7289252B2 (ja) | スキャナシステムおよびスキャン方法 | |
CN106052659B (zh) | 一种便携式激光大工作距自准直装置与方法 | |
RU2664788C1 (ru) | Оптико-электронная система поиска и сопровождения цели | |
CN106323200B (zh) | 一种激光大工作距自准直装置与方法 | |
CN106052597B (zh) | 一种便携式高频响大工作距自准直装置与方法 | |
RU2800187C1 (ru) | Устройство определения астрономического азимута | |
Yang et al. | Dispersion imaging spectrometer for detecting and locating energetic targets in real time | |
CN106247991B (zh) | 便携式组合调零激光大工作距自准直装置与方法 | |
CN106017440B (zh) | 便携式组合调零高频响大工作距自准直装置与方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191219 |