RU2627799C1 - Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом - Google Patents

Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом Download PDF

Info

Publication number
RU2627799C1
RU2627799C1 RU2016122246A RU2016122246A RU2627799C1 RU 2627799 C1 RU2627799 C1 RU 2627799C1 RU 2016122246 A RU2016122246 A RU 2016122246A RU 2016122246 A RU2016122246 A RU 2016122246A RU 2627799 C1 RU2627799 C1 RU 2627799C1
Authority
RU
Russia
Prior art keywords
wells
fracturing
horizontal
mhf
multistage
Prior art date
Application number
RU2016122246A
Other languages
English (en)
Inventor
Вадим Валерьевич Ахметгареев
Раис Салихович Хисамов
Ренат Ардинатович Нугайбеков
Александр Михайлович Евдокимов
Original Assignee
Публичное акционерное общество "Татнефть" им. В.Д.Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Татнефть" им. В.Д.Шашина filed Critical Публичное акционерное общество "Татнефть" им. В.Д.Шашина
Priority to RU2016122246A priority Critical patent/RU2627799C1/ru
Application granted granted Critical
Publication of RU2627799C1 publication Critical patent/RU2627799C1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке нефтематеринских коллекторов с применением управляемого многостадийного гидравлического разрыва пласта (МГРП). Способ включает применение в скважинах для изоляции высокопроницаемых зон и трещин закачки смеси поверхностно-активных веществ (ПАВ), полиакриламида (ПАА), сшивателя – ацетата хрома, наполнителя и воды, остановку скважины на технологическую выдержку, отбор продукции из скважин. Согласно изобретению выбирают слабопроницаемый коллектор со средней абсолютной проницаемостью менее 2 мД, на котором бурят или используют уже пробуренные скважины с горизонтальным окончанием. В каждой из данных скважин проводят первый МГРП, во время которого методом низкочастотной сейсмики фиксируют зону распространения трещин. Горизонтальные стволы разделяют пакерами на секции, затем в скважины с проведенным МГРП через каждую секцию горизонтального ствола закачивают изоляционный состав со следующим соотношением компонентов, мас.%: ПАВ – 0,2-5,0, ПАА – 0,005-2,5, ацетат хрома – 0,01-1,0, наполнитель – 0,5-15,0, вода с минерализацией не более 1,5 г/л – остальное. После технологической выдержки в течение 1-10 сут и кольматации трещин первого МГРП закачанным изоляционным составом проводят в тех же скважинах второй МГРП, во время которого также методом низкочастотной сейсмики фиксируют зону распространения трещин. По полученным данным о распространении трещин после первого и второго МГРП принимают решение о проведении в данных скважинах последующих этапов закачки изоляционного состава и проведении МГРП. Причем количество последующих МГРП определяют исходя из полного охвата коллектора зонами трещин МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин. После всех МГРП проводят обработку коллектора закачкой отдельно в каждую ступень горизонтальных стволов растворителя изоляционного состава в объеме 0,8-2,0 от суммы объемов закачанных ранее изоляционных составов в данную ступень горизонтального ствола. Технический результат заключается в повышении коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.

Description

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтематеринских коллекторов с применением управляемого многостадийного гидравлического разрыва пласта (МГРП).
Известен способ регулирования разработки неоднородного нефтяного пласта, включающий закачку в нагнетательную скважину одновременно водного раствора, содержащего полиакриламид (ПАА) со сшивателем, и водного раствора, содержащего поверхностно-активное вещество (ПАВ) и хлористый кальций, затем закачку водного раствора, содержащего ПАВ и хлористый кальций, и закачку вытесняющего агента – воды. В известном способе используют в качестве водного раствора, содержащего ПАА со сшивателем, водный раствор состава, %: ПАА 0,1 - 0,5, сшиватель - ацетат хрома 0,01 - 0,05, вода - остальное, а в качестве водного раствора, содержащего ПАВ и хлористый кальций, - водный раствор состава, %: неионогенное ПАВ 1,0 - 5,0, хлористый кальций 1,5 - 3,5, вода – остальное (патент РФ №2279540, кл. Е21В 43/22, опубл. 10.07 2006).
Наиболее близким по технической сущности к предлагаемому способу является способ выравнивания профиля приемистости в нагнетательных скважинах и ограничения водопритоков в добывающих скважинах, включающий приготовление и последовательную закачку в пласт полимерных гелеобразующих составов. Согласно изобретению предварительно определяют объем закачки, закачивают первую оторочку полимерного состава в объеме 15% порового объема, в качестве первой оторочки используют состав на основе карбоксиметилцеллюлозы (КМЦ) со сшивателем при следующем соотношении компонентов, мас.%: КМЦ - 0,3-5,0, ацетат хрома - 0,05-0,5, вода с минерализацией 0-290 г/л - остальное, причем для приготовления сшивателя используют воду с минерализацией 50-290 г/л, затем закачивают вторую оторочку порциями, чередующимися с закачкой воды с ПАВ и первой оторочкой, в качестве второй оторочки используют состав на основе ПАА со сшивателем при следующем соотношении компонентов, мас.%: ПАА - 0,01-2,0, ацетат хрома 0,05-0,5, вода с минерализацией 0-290 г/л - остальное, а затем останавливают скважину на технологическую выдержку продолжительностью от 1 до 5 сут. Дополнительно суммарную массу концентрации второй оторочки определяют из соотношения оторочек и закачиваемой воды 1:0,5:0,5. ПАА по сухому продукту составляет 0,5-40% от количества КМЦ. Для высокопроницаемых интервалов пласта, начиная, по крайней мере, со второй оторочки, производят закачку регулируемого вязкоупругого состава, включающего полиакриламид, сшиватель, наполнитель и воду (патент РФ №2339803, кл. Е21В 43/22, опубл. 27.11.2008 - прототип).
Общим недостатком известных способов является низкая эффективность при применении в слабопроницаемых нефтематеринских коллекторах. Закачка в такие слабопроницаемые коллекторы значительно затруднена, что приводит к низким коэффициентам охвата и нефтеизвлечения. Тем не менее, гелеобразующий состав может быть использован для кольматации трещин гидроразрыва пласта.
В предложенном изобретении решается задача повышения коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.
Задача решается тем, что в способе разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом, включающем применение в скважинах для изоляции высокопроницаемых зон и трещин закачки смеси ПАВ, ПАА, сшивателя – ацетата хрома, наполнителя и воды, остановку скважины на технологическую выдержку, отбор продукции из скважин, согласно изобретению выбирают слабопроницаемый коллектор со средней абсолютной проницаемостью менее 2 мД, на котором бурят или используют уже пробуренные скважины с горизонтальным окончанием, в каждой из данных скважин проводят первый МГРП, во время которого методом низкочастотной сейсмики фиксируют зону распространения трещин, горизонтальные стволы разделяют пакерами на секции, затем в скважины с проведенным МГРП через каждую секцию горизонтального ствола закачивают изоляционный состав со следующим соотношением компонентов, мас.%: ПАВ – 0,2-5,0, ПАА – 0,005-2,5, ацетат хрома – 0,01-1,0, наполнитель – 0,5-15,0, вода с минерализацией не более 1,5 г/л – остальное, после технологической выдержки в течение 1-10 сут и кольматации трещин первого МГРП закачанным изоляционным составом, проводят в тех же скважинах второй МГРП, во время которого также методом низкочастотной сейсмики фиксируют зону распространения трещин, по полученным данным о распространении трещин после первого и второго МГРП принимают решение о проведении в данных скважинах последующих этапов закачки изоляционного состава и проведении МГРП, причем количество последующих МГРП определяют исходя из полного охвата коллектора зонами трещин МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин, после всех МГРП проводят обработку коллектора закачкой отдельно в каждую ступень горизонтальных стволов растворителя изоляционного состава в объеме 0,8-2,0 от суммы объемов закачанных ранее изоляционных составов в данную ступень горизонтального ствола.
Сущность изобретения
Под нефтематеринскими здесь понимаются неоднородные слабопроницаемые коллекторы с проницаемостью, варьирующейся в пределах от нескольких единиц до нескольких сотен мкД (10-6 мкм2). Небольшие прослои коллектора также могут составлять несколько единиц мД (10-3 мкм2). Примером таких коллекторов могут служить доманиковые отложения на территории Республики Татарстан.
На нефтеотдачу нефтематеринских нефтяных коллекторов существенное влияние оказывает эффективность создаваемой системы разработки. Основным объектом воздействия для повышения нефтеотдачи является скелет породы – повышение его проницаемости. Для этого широкое применение нашли технологии с применением скважин с горизонтальным окончанием и МГРП. Для карбонатных коллекторов – кислотные МГРП. Однако существующие технические решения не в полной мере позволяют эффективно разрабатывать указанные коллекторы с достижением максимального охвата за счет МГРП. В предложенном изобретении решается задача повышения коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.
Способ реализуют следующим образом.
На участке нефтематеринского слабопроницаемого коллектора, средняя абсолютная проницаемость которого составляет менее 2 мД, бурят или используют уже пробуренные скважины с горизонтальным окончанием. В каждой из данных выбранных скважин проводят первый по одной из известных технологий МГРП, во время которого методом низкочастотной сейсмики фиксируют зону распространения трещин.
Как известно, трещины гидроразрыва пласта распространяются вдоль векторов максимальных напряжений коллектора. Поэтому для скважин с горизонтальным окончанием трещины МГРП пойдут по обе стороны от ствола в зависимости от векторов напряжений, при этом в остальных направлениях коллектор останется не охваченным воздействием. Определить, куда пошли трещины МГРП, легче всего методом низкочастотной сейсмики, которая проводится в процессе МГРП. Для того чтобы создать полный охват коллектора зонами трещин МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин, необходимо предварительно изолировать уже созданные трещины. Поэтому после проведения первого МГРП горизонтальные стволы каждой из скважин разделяют пакерами на секции, через каждую секцию горизонтального ствола закачивают изоляционный состав со следующим соотношением компонентов, мас.%:
- ПАВ – 0,2-5,0,
- ПАА – 0,005-2,5,
- ацетат хрома – 0,01-1,0,
- наполнитель – 0,5-15,0,
- вода с минерализацией не более 1,5 г/л – остальное.
В качестве наполнителя используют мел, тальк, древесную муку, глинопорошок, сломель и/или др. компоненты. Необходимость добавления наполнителя связана с достаточно высокой проницаемостью трещин МГРП. Разделение горизонтальных стволов на секции позволяет вести закачку изоляционного состава в каждую трещину МГРП отдельно.
Далее проводят технологическую выдержку в течение 1-10 сут. Согласно исследованиям указанное соотношение компонентов наиболее эффективно кольматирует трещины в большинстве коллекторов. Время схватывания состава не превышает 10 сут и зависит от температуры и пластового давления, однако при выдержке менее 1 сут состав не успевает загустеть до максимальной своей кондиции.
После кольматации трещин первого МГРП закачанным изоляционным составом проводят в тех же скважинах второй МГРП, во время которого также методом низкочастотной сейсмики фиксируют зону распространения трещин. Ввиду того что трещины первого МГРП были закольматированы, при втором МГРП трещины пойдут в другом направлении. По полученным данным о распространении трещин после первого и второго МГРП принимают решение о проведении в данных скважинах последующих этапов закачки указанного изоляционного состава для кольматации трещин и проведении МГРП. Количество последующих МГРП определяют исходя из полного охвата коллектора зонами трещин МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин.
После всех МГРП проводят обработку коллектора закачкой отдельно в каждую ступень горизонтальных стволов растворителя изоляционного состава в объеме по V=(0,8-2,0)·Q, где Q – сумма объемов закачанных ранее изоляционных составов в соответствующую ступень горизонтального ствола. Согласно исследованиям при объеме V<0,8·Q растворителя не хватает, чтобы растворить изоляционный состав в трещинах МГРП, а при V>2,0·Q закачка экономически не целесообразна. В качестве растворителя применяют воду, формамид, уксусную или муравьиную кислоты, диметилсульфоксид.
Далее скважины пускают в добычу. Разработку ведут до полной экономически рентабельной выработки участка нефтематеринского коллектора.
Результатом внедрения данного способа является повышение коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.
Примеры конкретного выполнения способа
Пример 1. На участке нефтематеринского слабопроницаемого карбонатного коллектора, средняя абсолютная проницаемость которого составляет 2 мД, залегающего на глубине 1550 м с пластовой температурой 31ºС и пластовым давлением 15 МПа, мощностью 40 м, бурят три горизонтальные скважины с длиной стволов по 600 м, параллельным расположением горизонтальных стволов и расстоянием между горизонтальными стволами – 200 м. Горизонтальные стволы скважин размещают в западно-восточном направлении. Каждый горизонтальный ствол двух крайних горизонтальных стволов разделяют на шесть секций по 100 м каждая. В центральной горизонтальной скважине горизонтальный ствол разделяют на пять секций по 120 м каждая. В каждой из секций горизонтальных стволов проводят первый кислотный МГРП по традиционной технологии со сдвоенными пакерами и с применением 21%-ного раствора соляной кислоты. Во время МГРП методом низкочастотной сейсмики фиксируют зону распространения трещин. Для этого датчики размещают на дневной поверхности на расстоянии от горизонтальных стволов скважин в плане до 1 км по обе стороны. Было выявлено, что направление трещин первого ГРП во всех скважинах северо-западно – юго-восточное.
После проведения первого МГРП горизонтальные стволы данных трех скважин разделяют пакерами на секции, указанные выше, затем через каждую секцию горизонтального ствола закачивают изоляционный состав со следующим соотношением компонентов, мас.%:
- ПАВ – 5,0,
- ПАА – 2,5,
- ацетат хрома – 1,0,
- наполнитель – 15,0,
- вода с минерализацией 1,5 г/л – остальное.
В качестве поверхностно-активного вещества используют водорастворимый ПАВ – НЕОНОЛ марки АФ9-12 с концентрацией 0,5%, в качестве полиакриламида – Alkoflood 1175, водный раствор ацетата хрома, являющейся сшивателем в данном составе, используют по ТУ 6-0200209912-7000. В качестве наполнителя используют древесную муку.
Далее проводят технологическую выдержку в течение 1 сут. После кольматации трещин первого МГРП закачанным изоляционным составом проводят в тех же трех скважинах аналогичным образом второй МГРП, во время которого также методом низкочастотной сейсмики фиксируют зону распространения трещин. Было выявлено, что направление трещин второго МГРП во всех скважинах северо–южное.
Принимают решение о необходимости проведения в данных трех скважинах еще одного этапа закачки указанного изоляционного состава и МГРП. Направление трещин третьего МГРП получилось северо-восточно – юго-западное.
В результате трех МГРП с соответствующей закачкой изоляционного состава перед каждым МГРП, кроме первого, был достигнут максимальный охват коллектора трещинами МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин. Общий объем закачанного изоляционного состава в каждую ступень МГРП горизонтальных скважин – Q=130-190 м3.
После всех МГРП проводят обработку коллектора последовательной закачкой в каждую ступень МГРП всех трех скважин растворителя изоляционного состава с соответствующим объемом V=2,0·Q= 260-380 м3. В качестве растворителя применяют 7%-ную уксусную кислоту.
Далее центральную горизонтальную скважину пускают под нагнетание воды, а две окружающие скважины – в добычу. Разработку ведут до полной экономически рентабельной выработки участка нефтематеринского слабопроницаемого карбонатного коллектора.
Пример 2. Выполняют, как пример 1. Коллектор имеет иные геолого-физические характеристики. Используют одну пробуренную горизонтальную скважину, на которой проводят два МГРП. Горизонтальный ствол скважины расположен в северо-южном направлении. В результате первого МГРП получают сеть трещин, охватывающих северо-западно – юго-восточное и восточно-западное направления, а в результате второго ГРП – северо-восточно – юго-западное направление. После проведения первого ГРП в данную скважину закачивают изоляционный состав со следующим соотношением компонентов, мас.%: ПАВ – 0,2, ПАА – 0,005, ацетат хрома – 0,01, наполнитель – 0,5, вода с минерализацией 1 г/л – остальное. В качестве наполнителя используют мел. После закачки проводят технологическую выдержку в течение 10 сут. Объем закачанного изоляционного состава в каждую ступень данной скважины составил Q=100-130 м3. После двух МГРП проводят обработку коллектора закачкой растворителя изоляционного состава в объеме V=0,8·Q=80-104 м3. Затем скважину пускают в добычу.
В результате разработки участка, которое ограничили достижением обводненности скважин 98%, было добыто 260,7 тыс.т нефти, коэффициент охвата составил 0,644 д.ед., коэффициент нефтеизвлечения (КИН) – 0,237 д.ед. По прототипу при прочих равных условиях было добыто 163,9 тыс.т нефти, коэффициент охвата составил 0,405 д.ед., КИН – 0,149 д.ед. Прирост коэффициента охвата по предлагаемому способу – 0,239 д.ед., КИН – 0,088 д.ед.
Предлагаемый способ позволяет повысить коэффициенты охвата и нефтеизвлечения нефтематеринских слабопроницаемых коллекторов за счет применения управляемого МГРП.
Применение предложенного способа позволит решить задачу повышения коэффициента охвата и нефтеотдачи нефтематеринских коллекторов.

Claims (1)

  1. Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом, включающий применение в скважинах для изоляции высокопроницаемых зон и трещин закачки смеси поверхностно-активных веществ – ПАВ, полиакриламида – ПАА, сшивателя – ацетата хрома, наполнителя и воды, остановку скважины на технологическую выдержку, отбор продукции из скважин, отличающийся тем, что выбирают слабопроницаемый коллектор со средней абсолютной проницаемостью менее 2 мД, на котором бурят или используют уже пробуренные скважины с горизонтальным окончанием, в каждой из данных скважин проводят первый многостадийный гидравлический разрыв пласта – МГРП, во время которого методом низкочастотной сейсмики фиксируют зону распространения трещин, горизонтальные стволы разделяют пакерами на секции, затем в скважины с проведенным МГРП через каждую секцию горизонтального ствола закачивают изоляционный состав со следующим соотношением компонентов, мас.%: ПАВ – 0,2-5,0, ПАА – 0,005-2,5, ацетат хрома – 0,01-1,0, наполнитель – 0,5-15,0, вода с минерализацией не более 1,5 г/л – остальное, после технологической выдержки в течение 1-10 сут и кольматации трещин первого МГРП закачанным изоляционным составом проводят в тех же скважинах второй МГРП, во время которого также методом низкочастотной сейсмики фиксируют зону распространения трещин, по полученным данным о распространении трещин после первого и второго МГРП принимают решение о проведении в данных скважинах последующих этапов закачки изоляционного состава и проведении МГРП, причем количество последующих МГРП определяют исходя из полного охвата коллектора зонами трещин МГРП как в плане, так и в профиле вокруг каждого горизонтального ствола скважин, после всех МГРП проводят обработку коллектора закачкой отдельно в каждую ступень горизонтальных стволов растворителя изоляционного состава в объеме 0,8-2,0 от суммы объемов закачанных ранее изоляционных составов в данную ступень горизонтального ствола.
RU2016122246A 2016-06-06 2016-06-06 Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом RU2627799C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016122246A RU2627799C1 (ru) 2016-06-06 2016-06-06 Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016122246A RU2627799C1 (ru) 2016-06-06 2016-06-06 Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом

Publications (1)

Publication Number Publication Date
RU2627799C1 true RU2627799C1 (ru) 2017-08-11

Family

ID=59641661

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016122246A RU2627799C1 (ru) 2016-06-06 2016-06-06 Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом

Country Status (1)

Country Link
RU (1) RU2627799C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683453C1 (ru) * 2018-05-18 2019-03-28 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522261A (en) * 1983-04-05 1985-06-11 The Board Of Regents For The University Of Oklahoma Biosurfactant and enhanced oil recovery
RU2003789C1 (ru) * 1992-02-17 1993-11-30 го Владимир Викторович Шел Способ разработки нефт ного месторождени
RU2230890C1 (ru) * 2003-02-21 2004-06-20 Закрытое акционерное общество "Алойл" Способ разработки нефтяной залежи
RU2279540C1 (ru) * 2005-03-21 2006-07-10 Открытое акционерное общество "Акционерная нефтяная компания "Башнефть" (ОАО "АНК "Башнефть") Способ регулирования разработки неоднородного нефтяного пласта
RU2339803C2 (ru) * 2006-12-08 2008-11-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ выравнивания профиля приемистости в нагнетательных скважинах и ограничения водопритока в добывающих скважинах
RU2362010C1 (ru) * 2007-12-26 2009-07-20 Сергей Борисович Бекетов Способ многократного гидравлического разрыва горизонтального ствола скважины

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522261A (en) * 1983-04-05 1985-06-11 The Board Of Regents For The University Of Oklahoma Biosurfactant and enhanced oil recovery
RU2003789C1 (ru) * 1992-02-17 1993-11-30 го Владимир Викторович Шел Способ разработки нефт ного месторождени
RU2230890C1 (ru) * 2003-02-21 2004-06-20 Закрытое акционерное общество "Алойл" Способ разработки нефтяной залежи
RU2279540C1 (ru) * 2005-03-21 2006-07-10 Открытое акционерное общество "Акционерная нефтяная компания "Башнефть" (ОАО "АНК "Башнефть") Способ регулирования разработки неоднородного нефтяного пласта
RU2339803C2 (ru) * 2006-12-08 2008-11-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ выравнивания профиля приемистости в нагнетательных скважинах и ограничения водопритока в добывающих скважинах
RU2362010C1 (ru) * 2007-12-26 2009-07-20 Сергей Борисович Бекетов Способ многократного гидравлического разрыва горизонтального ствола скважины

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683453C1 (ru) * 2018-05-18 2019-03-28 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов

Similar Documents

Publication Publication Date Title
US9938810B2 (en) Conductivity enhancement of complex fracture networks in subterranean formations
CN107965306B (zh) 一种注酸压裂方法
RU2496001C1 (ru) Способ разработки нефтегазовой залежи с применением гидравлического разрыва пласта
RU2708746C1 (ru) Способ пропантного многостадийного гидравлического разрыва нефтяного пласта
RU2014134812A (ru) Способ повышения эффективности операции гидравлического разрыва
CN103952134A (zh) 一种粘弹性酸化液及其制备方法
CN107654215B (zh) 一种把煤层气井改造为煤系气井的方法
US10717922B2 (en) Composition and method for stimulation of oil production in sandstone formations
CN109931045A (zh) 一种双缝系统的自支撑酸压方法
US10767474B2 (en) Surfactant selection methods for wetting alteration in subterranean formations
US10087737B2 (en) Enhanced secondary recovery of oil and gas in tight hydrocarbon reservoirs
RU2683453C1 (ru) Способ повышения эффективности разработки слабопроницаемых нефтяных коллекторов
RU2515651C1 (ru) Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
RU2528308C1 (ru) Способ разработки нефтяной залежи с проведением гидроразрыва пласта
RU2627799C1 (ru) Способ разработки нефтематеринских коллекторов управляемым многостадийным гидроразрывом
US20110192601A1 (en) Method for drilling and fracture treating multiple wellbores
RU2709260C1 (ru) Способ повышения эффективности разработки слабопроницаемых нефтяных залежей
RU2610473C1 (ru) Способ разработки нефтематеринских коллекторов управляемым гидроразрывом
RU2540713C1 (ru) Способ разработки нефтяной залежи
RU2456431C1 (ru) Способ изоляции водопритока
CN105986792B (zh) 一种提高浅层油藏采收率方法
RU2319832C2 (ru) Способ освоения скважин с карбонатным продуктивным пластом, вскрытым радиальными каналами
Kiani* et al. A novel enhanced oil recovery approach to water flooding in Saskatchewan's tight oil plays
RU2517674C1 (ru) Способ разработки неоднородной нефтяной залежи
RU2579093C1 (ru) Способ повторного гидравлического разрыва пласта