RU2627579C1 - Способ получения нанокапсул унаби - Google Patents

Способ получения нанокапсул унаби Download PDF

Info

Publication number
RU2627579C1
RU2627579C1 RU2016115892A RU2016115892A RU2627579C1 RU 2627579 C1 RU2627579 C1 RU 2627579C1 RU 2016115892 A RU2016115892 A RU 2016115892A RU 2016115892 A RU2016115892 A RU 2016115892A RU 2627579 C1 RU2627579 C1 RU 2627579C1
Authority
RU
Russia
Prior art keywords
unabi
nanocapsules
suspension
powder
rpm
Prior art date
Application number
RU2016115892A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2016115892A priority Critical patent/RU2627579C1/ru
Application granted granted Critical
Publication of RU2627579C1 publication Critical patent/RU2627579C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/72Rhamnaceae (Buckthorn family), e.g. buckthorn, chewstick or umbrella-tree
    • A61K36/725Ziziphus, e.g. jujube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Manufacturing & Machinery (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится в области нанотехнологий и пищевой промышленности. Способ получения нанокапсул унаби характеризуется тем, что порошок унаби диспергируют в суспензию натрий карбоксиметилцеллюлозы в этиловом спирте в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают 10 мл хлористого метилена, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 1:5, или 5:1. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 5 пр.., 1 ил.

Description

Изобретение относится к области нанотехнологии и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК А61K 009/50, А61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. 2359662, МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул унаби, отличающимся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - унаби при получении нанокапсул методом осаждения нерастворителем с применением хлористого метилена в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлористым метиленом в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки и унаби - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул унаби в натрий карбоксиметилцеллюлозе.
Унаби или «зизифус» принадлежит к семейству крушиновых. Мякоть плодов зизифуса обладает лекарственными свойствами. Содержащиеся в плодах вещества укрепляют сердечную мышцу, понижают кровяное давление и очень полезны для больных гипертонией. Используют их и как тонизирующее средство. Плоды унаби включают в диету при болезнях печени, гипертонии (как понижающее давление и мочегонное средство), заболеваниях органов дыхания (отмечено, что они оказывают смягчающий эффект при бронхитах, трахеитах, заболеваниях горла). Отвар листьев и коры унаби применяется при легочных заболеваниях, а наружно - при кожных.
ПРИМЕР 1. Получение нанокапсул унаби, соотношение ядро/оболочка 1:3 (см. чертеж).
1 г порошка унаби медленно добавляют в суспензию 3 г натрий карбоксиметилцеллюлозы в этиловом спирте, присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 8 мл хлористого метилена. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул унаби, соотношение ядро/оболочка 1:1
1 г порошка унаби диспергируют в суспензию 1 г натрий карбоксиметилцеллюлозы в этиловом спирте, в присутствии 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл хлористого метилена. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
Пример 3. Получение нанокапсул унаби, соотношение ядро/оболочка 5:1
2,5 г порошка унаби диспергируют в суспензию 0,5 г натрий карбоксиметилцеллюлозы в этиловом спирте, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 10 мл хлористого метилена. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 3 г порошка нанокапсул. Выход составил 100%.
Пример 4. Получение нанокапсул унаби, соотношение ядро/оболочка 1:5
0,5 г порошка унаби диспергируют в суспензию 2,5 г натрий карбоксиметилцеллюлозы в этиловом спирте, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 10 мл хлористого метилена. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 3 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 5. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto.длительность единичного измерения 215s, использование шприцевого насоса.

Claims (1)

  1. Способ получения нанокапсул унаби, характеризующийся тем, что порошок унаби диспергируют в суспензию натрий карбоксиметилцеллюлозы в этиловом спирте в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, затем приливают 10 мл хлористого метилена, полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 1:5, или 5:1.
RU2016115892A 2016-04-22 2016-04-22 Способ получения нанокапсул унаби RU2627579C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016115892A RU2627579C1 (ru) 2016-04-22 2016-04-22 Способ получения нанокапсул унаби

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016115892A RU2627579C1 (ru) 2016-04-22 2016-04-22 Способ получения нанокапсул унаби

Publications (1)

Publication Number Publication Date
RU2627579C1 true RU2627579C1 (ru) 2017-08-09

Family

ID=59632590

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016115892A RU2627579C1 (ru) 2016-04-22 2016-04-22 Способ получения нанокапсул унаби

Country Status (1)

Country Link
RU (1) RU2627579C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2173140C1 (ru) * 2000-12-26 2001-09-10 Зао "Мирра - М" Способ получения кремнийорганолипидных микрокапсул для создания медицинских, косметических препаратов
RU2359662C2 (ru) * 2003-08-22 2009-06-27 Даниско А/С Микрокапсулы

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
RU2173140C1 (ru) * 2000-12-26 2001-09-10 Зао "Мирра - М" Способ получения кремнийорганолипидных микрокапсул для создания медицинских, косметических препаратов
RU2359662C2 (ru) * 2003-08-22 2009-06-27 Даниско А/С Микрокапсулы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Солодовник В.Д. "Микрокапсулирование", 1980. Nagavarma B.V.N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, pages 16-23. *

Similar Documents

Publication Publication Date Title
RU2557900C1 (ru) Способ получения нанокапсул витаминов
RU2626828C1 (ru) Способ получения нанокапсул резвератрола в каппа-каррагинане
RU2562561C1 (ru) Способ получения нанокапсул витаминов в каррагинане
RU2605596C1 (ru) Способ получения нанокапсул витаминов группы в
RU2586612C1 (ru) Способ получения нанокапсул адаптогенов в ксантановой камеди
RU2613883C1 (ru) Способ получения нанокапсул розмарина в альгинате натрия
RU2599484C1 (ru) Способ получения нанокапсул экстракта зеленого чая
RU2596479C1 (ru) Способ получения нанокапсул адаптогенов в каррагинане
RU2590666C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2599838C1 (ru) Способ получения нанокапсул адаптогенов
RU2639092C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2599009C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих седативным действием в конжаковой камеди
RU2597153C1 (ru) Способ получения нанокапсул адаптогенов в геллановой камеди
RU2578411C1 (ru) Способ получения нанокапсул рибофлавина
RU2565392C1 (ru) Способ получения нанокапсул витаминов в ксантановой камеди
RU2609196C1 (ru) Способ получения нанокапсул унаби в альгинате натрия
RU2627579C1 (ru) Способ получения нанокапсул унаби
RU2605594C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием
RU2599843C1 (ru) Способ получения нанокапсул экстракта зеленого чая в пектине
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди
RU2613881C1 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2627585C1 (ru) Способ получения нанокапсул сухого экстракта шиповника в агар-агаре
RU2591802C1 (ru) Способ получения нанокапсул экстракта зеленого чая
RU2644727C1 (ru) Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция