RU2626892C2 - Прямоточная камера сгорания газотурбинного двигателя - Google Patents

Прямоточная камера сгорания газотурбинного двигателя Download PDF

Info

Publication number
RU2626892C2
RU2626892C2 RU2015147887A RU2015147887A RU2626892C2 RU 2626892 C2 RU2626892 C2 RU 2626892C2 RU 2015147887 A RU2015147887 A RU 2015147887A RU 2015147887 A RU2015147887 A RU 2015147887A RU 2626892 C2 RU2626892 C2 RU 2626892C2
Authority
RU
Russia
Prior art keywords
fuel
combustion chamber
air
combustion
turbine engine
Prior art date
Application number
RU2015147887A
Other languages
English (en)
Other versions
RU2015147887A (ru
Inventor
Вениамин Михайлович Мысляев
Ирина Вениаминовна Максакова
Максим Валерьевич Елесин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)"
Priority to RU2015147887A priority Critical patent/RU2626892C2/ru
Publication of RU2015147887A publication Critical patent/RU2015147887A/ru
Application granted granted Critical
Publication of RU2626892C2 publication Critical patent/RU2626892C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means

Abstract

Камера сгорания газотурбинного двигателя содержит корпус, топливовоздушный канал с топливной форсункой и свечой. Камера сгорания выполнена прямоточной. Топливовоздушный канал расположен аксиально к корпусу и соединен с ним. В корпусе на обтекателе расположен регистр с углом закрутки лопаток 60±5°. На внутренней поверхности корпуса за счет центробежных сил закрученного топливовоздушного потока образована топливная пленка. Изобретение направлено на уменьшение токсичности, повышении кпд, повышении надежности запуска при сжигании бедных топливовоздушных смесей. 4 ил.

Description

Изобретение относится к конструкции камер сгорания газотурбинных двигателей и может найти применение в области турбомашиностроения и газотурбинных установок.
В настоящее время наиболее широкое применение в газотурбинных силовых установках, состоящих из компрессора, камеры сгорания и газовой турбины, самолетов, вертолетов и конвертированной наземной стационарной и мобильной техники, получили прямоточные индивидуальные и блочные камеры сгорания.
Известна прямоточная индивидуальная камера сгорания газотурбинного двигателя (ГТД) (Пчелкин Ю.М. Камеры сгорания газотурбинных двигателей, М.: Машиностроение, 1984), содержащая корпус с расположенными в нем жаровой трубой, регистром, плохообтекаемым телом завихрителем - стабилизатором, форсункой и свечой. Топливо подается форсункой в зону обратных токов (ЗОТ) - жаровой трубы, образованную с помощью закрученного регистром-завихрителем первичного воздушного потока, где осуществляется процесс приготовления топливовоздушной смеси, испарение топлива и его сгорание при коэффициенте избытка воздуха - α, близкому к стехиометрическому (α=0,8÷0,95), предопределяющему высокую температуру продуктов сгорания Тсг=2500…2800 К. Такая организация процесса сгорания топлива в ЗОТ обеспечивает выполнения первого главного технического требования к камерам сгорания, особенно двигателей летательных аппаратов (самолетов, вертолетов), из условий их безопасной эксплуатации: безсрывное сжигание смеси (α=0,6÷0,8) и стабилизацию пламени на всех режимах работы ГТД.
Вторым техническим требованием, общим для всех типов камер сгорания газотурбинных воздушных и наземных газотурбинных двигателей, является ограничение максимальной температуры рабочего тела (РТ) на входе в проточную часть турбины (сопловую решетку) - Тлоп, которая не должна превышать допустимую из условия термостойкости материала лопаток турбины. Создание лопаток из материалов с устойчивым к окислению барьерным покрытием позволило повысить эту температуру до 1600 К - для авиационных и вертолетных газотурбинных двигателей и до 1400 К - для конвертированных газотурбинных двигателей стационарной и мобильной техники (Ковецкий В.М. Газотурбинные двигатели в энергетике. Достижения, особенности, возможности / В.М. Ковецкий, Ю.Ю. Ковецкая. - Киев: Науч. кн., 2008. - 254 с.).
Снижение температуры продуктов сгорания с Тсг=2500÷2800 К до предельно допустимой Тлоп=1400÷1600 К осуществляется в специальной зоне смешения (ЗСМ) частью закрученного в завихрителе ламинарного однофазного первичного воздуха, вторичным и третичным потоками воздуха, образующими рабочее тело.
Известная камера сгорания с конструктивным отделением процесса сгорания в ЗОТ от процесса приготовления рабочего тела в ЗСМ - названного двухзонным - послойным способом смесеобразования (ПССО) имеет ряд недостатков (Семенов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. – М., 1958):
- узкий диапазон устойчивого горения топливовоздушной смеси, не позволяющий обеспечить сжигание бедной смеси с температурой продуктов сгорания 1300÷1600 К в одной зоне, равной объему камеры сгорания и предопределяющий создание двух зон в жаровой трубе, а значит и увеличение конструктивных и весовых параметров камеры сгорания;
- высокая температура Тсг при высокой прозрачности однофазного первичного воздуха обеспечивает большую долю выделяемой лучистой энергии Ел (пропорциональную Т4) без диссипации в воздухе, передаваемую «стенке» и далее в атмосферу, что снижает термический КПД, а значит и эффективный КПД ГТД, а также требует установку жаровой трубы из жаропрочной стали;
- высокая температура продуктов сгорания Тсг=2500÷2800 К, предопределяющая большое количественное образование нормируемых токсичных компонентов: окиси углерода, несгоревших углеводородов и сажи (крекингом жидкой фазы топлива);
- высокое количественное образование оксидов азота, «токсичная агрессивность» которых в 41,1 раза превышает агрессивность окиси углерода при температуре продуктов сгорания 2500÷2800 К в ЗОТ, значительно превышающей температуру активации эндотермической реакции окисления азота кислородом воздуха, по опытным данным, равную Такт≈1700 К.
Известна прямоточная камера сгорания газотурбинного двигателя (RU 2273798, F23R 3/16, опубл. 10.04.2006), содержащая корпус, жаровую трубу, двухъярусный завихритель, наружный ярус которого имеет закручивающий элемент с входом и выходом, а также канал, сообщающий выход из закручивающего элемента с внутренней полостью жаровой трубы. Для снижения неравномерности температурного поля рабочего тела на входе в жаровую трубу из закручивающего элемента установлена диафрагма с отверстиями, площадь проходного сечения которых меньше площади выхода из закручивающего элемента и меньше площади проходного сечения канала.
Однако дополнительная установка двухъярусного завихрителя для создания закрученного потока смеси, обеспечивающая нормальный запуск двигателя, усложняет конструкцию камеры сгорания, увеличивает вес, и не исключает недостатки других известных камер сгорания с ПССО.
Наиболее близкой к заявляемой по конструкции, способа организации процесса смесеобразования и сжигания топлива является вращающаяся камера сгорания (ВКС) реактивной ступени реактивно-турбинного двигателя (РТД) (RU 2406933, F23R 3/16, опубл. 20.12.2010). Данная ВКС РГД содержит корпус, топливную форсунку, свечу пускового зажигания, расположение в радиальном топливовоздушном канале, перпендикулярно оси корпуса камеры и валу реактивного колеса двигателя. Канал топливовоздушной смеси выполнен сужающимся и спиральным, создающим угол закрутки потока смеси, на входе в ВКС, возрастающим от 0° до 60°. Выход из камеры сгорания выполнен в виде расширяющегося сопла. В камере обеспечивается интенсификация тепло- и массообмена, защита стенок камеры от высокой температуры, уменьшение массогабаритных размеров, экономия жаропрочных материалов снижение содержания оксидов азота и других токсичных компонентов, в рабочем теле КС.
Однако известные положительные качества малогабаритной камеры сгорания реактивного турбинного двигателя (РТД) проявляются только при использовании,ее применении в качестве вращающейся камеры сгорания (ВКС) первой реактивной ступени другого типа двигателя (RU 105679,МПК Р0С 3/00, опубл. 20.06.2011 г.), для преобразования части тепловой энергии топлива в тепловую энергию продуктов сгорания, преобразующуюся в сопле в кинетическую энергию создающую реактивную силу - Р и крутящий момент
Mкр.=P⋅R,
где R - радиус топливовоздушного канала камеры, перпендикулярного оси камеры сгорания.
Использование этих преимуществ ВКС в «стационарной» прямоточной камере сгорания требует другого конструктивного решения организации процесса преобразования тепловой энергии топлива в энергию рабочего тела для первой газотурбинной ступени газотурбинного двигателя.
В основу изобретения положена задача создания камеры сгорания теплового двигателя - ГТД со всеми оптимальными параметрами, определяющими его конкурентоспособность:
- ресурсосберегающими (удельной массовой мощностью и удельным эффективным расходом топлива широкого фракционного состава);
- динамическими (приспособляемости и приемистости);
- и главное экологическими (прежде всего наиболее агрессивными оксидами азота) параметрами.
Указанная задача решается тем, что в прямоточной камере сгорания газотурбинного двигателя, содержащей корпус с аксиально присоединенным к нему топливовоздушным каналом, расположенными в канале форсункой и свечой зажигания, регистром, установленным на обтекателе с оптимальным углом закрутки топливовоздушного (двухфазного) потока. Таким образом, конструктивно организуется пленочно-вихревой процесс смесеобразования и сжигания топлива (ПВССО).
Техническим результатом несложных и недорогих конструктивных преобразований: замены плохообтекаемого тела-стабилизатора на хорошо обтекаемое тело-регистр, ликвидации жаровой трубы и вынос форсунки и свечи в аксиальный топливовоздушный канал, является замена послойного способа смесеобразования и сгорания топлива с ЗОТ (α=0,85÷0,95) на ЗСМ (α до 2 и более, в зависимости от Тлоп) пленочно-вихревым способом смесеобразования и сгорания топлива широкого фракционного свойства (от метана до дизельного) с α=f(Тлопакт).
Такая замена решает главную цель работы:
- снижение токсичности рабочего тела по оксидам азота NOx без установки трехкомпонентного нейтрализатора, снижающего ресурсосберегающие параметры ГТД;
- расширение диапазона безсрывного и надежного сгорания бедной топливовоздушной смеси (α>>1) позволяет понизить максимальную температуру продуктов сгорания до температуры рабочего тела до Тлоп, не превышающую Такт NOx, и уменьшить потери лучистой энергии - Ел, теплопередачу теплопроводностью Eλ. в «стенку» и окружающую среду, что позволяет повысить КПД камеры сгорания и эффективный КПД - ГТД - ηе, габаритные и весовые параметры и другие технико-экономические показатели ГТД.
Сущность предлагаемого изобретения поясняется чертежами:
фиг. 1 - конструктивная схема прямоточной КС;
фиг. 2 - фотография КС на стенде;
фиг. 3 - экспериментальные зависимости зон устойчивой работы камеры сгорания: Д2 (при ПССО) и Д1 (при ПВССО) от α.
фиг. 4 - график распределения температуры рабочего тела РТ по диаметру h, мм; Gв и α.
Камера сгорания (фиг. 1) содержит корпус 1, аксиально к нему расположенный топливовоздушный канал 2 (с размещенными в нем форсункой 3 и свечой зажигания 4), соединенный с корпусом 1, в котором расположен регистр 5 с углом закрутки лопаток β=60±5° на хорошо обтекаемом теле - обтекателе 6. На внутренней поверхности корпуса 1, за счет центробежных сил закрученного двухфазного топливовоздушного потока 7, образована топливная пленка 8, при испарении образующая паровую топливовоздушную смесь 9, сгорающую в зоне горения 10. Продукты сгорания (рабочее тело 11) подаются на неподвижную сопловую решетку 12.
Процесс преобразования внутренней тепловой энергии топлива в тепловую энергию рабочего тела в камере сгорания происходит следующим образом.
Воздух от компрессора поступает во входное сечение топливовоздушного канала, в котором обеспечивается скорость, достаточная для организации требуемого качества распыла топлива, подаваемого форсункой 3 в зону свечи зажигания 4. После воспламенения топливовоздушной смеси, свеча зажигания 4 отключается, а пламя за время задержки воспламенения, закручиваясь в регистре 5, выносится непосредственно в камеру сгорания, что обеспечивает долговечность свечи и форсунки. Вынос пламени в камеру сгорания обеспечивается тем, что скорость закрученного потока воздуха с распыленным в нем топливом больше скорости распространения фронта пламени. Фронт пламени стабилизируется в средней части 7 камеры, которая с целью уменьшения скорости смеси, может быть увеличена в поперечном сечении. При поступлении закрученного топливовоздушного потока в камеру сгорания, где установкой обтекателя 6, вместо стабилизатора, ликвидирована зона обратных токов, за счет центробежных сил происходит сепарация основной массы топлива на стенку камеры с образованием сплошной и прочной топливной пленки 8, которая за счет теплоты испарения значительно снижает температуру стенки 1. Испарение топлива происходит с поверхности пленки с подачей паров 9 в кольцевую зону горения 10.
Кольцевой закрученный слой паров топлива 9 между пламенем 10 и пленкой 8 имеет степень черноты ε≈0,82 и часть лучистой энергии диссипирует в этот слой, увеличивая долю тепловой энергии, передаваемую турбулентной теплопередачей в рабочее тело. Пленка топлива также поглощает часть лучистой энергии и эта часть лучистой энергии передает через стенку камеры сгорания в окружающую среду.
Диссипация части лучистой энергии, за счет высокого «термосопротивления» топливной пленки и паров топлива, снижает температуру стенки, а вместе с ликвидацией зоны смешения позволяет убрать из конструкции камеры сгорания жаровую трубу и повысить термический КПД камеры сгорания.
Продукты сгорания, как более легкие, перемещаясь к оси камеры, образуют зону потока рабочего тела 11. Толщина пленки уменьшается к выходу из камеры в сопловой аппарат - 12 турбины. Уменьшение диаметра камеры сгорания при выходе рабочего тела в сопловой аппарат выполняет роль дефлектора, способствующего тепло- и массообмену в камере сгорания и завершению процесса горения в сопле (или в сопловом аппарате при снижении температуры рабочего тела при расширении).
При испытаниях на стенде опытного образца прямоточной прозрачной камеры сгорания: диаметром dкс=52 мм; длиной зоны горения Lкс=108 мм; давлением Ркс=5,5 кг/см2 и коэффициенте избытка воздуха α=1,52, получены:
- максимальная температура - 1680 K при степени неравномерности температурного поля 15÷20%;
- содержание токсичных компонентов:
gNOx=2÷2.5/г⋅кВт⋅ч,
gCO=0,035%,
gCH=0,005%,
что соответствует нормам Евро-5.
Камера сгорания отличается простотой и надежностью интенсификации тепломассообмена при конструктивно организованном пленочно-вихревом способе смесеобразования методом непосредственного воздействия на реакцию окисления углеводородного топлива и окисления азота кислородом воздуха. Такая конструкция камеры сгорания решает не только главную в настоящее время экологическую задачу - снижение содержания наиболее токсичных оксидов азота и других нормированных токсичных компонентов СО, СН и С в рабочем теле, но и проблему одновременного повышения основных технико-экономических показателей: повышение КПД, сжигания бедных топливовоздушных смесей при надежном запуске и бесперебойной работы газотурбинных двигателей летательных аппаратов (большой мощности), наземных мобильных и стационарных (мощностью от 300-400 кВт) силовых установок без установки систем нейтрализации отработавших газов.
Кроме того, успешное решение проблемы токсичности в предложенной КС с пленочно-вихревым способом преобразования тепловой энергии углеводородного топлива широкого фракционного состава (от метана до дизельного) - ШФС, в кинетическую энергию рабочего тела делает ГТД тепловым ДВС со всеми наилучшими в настоящее время критериальными параметрами (Nm, ge, K и экологии). Это повышает их конкурентоспособность в установке на тяжелой мобильной технике при повышении ее агрегатной мощности (до 1800-2000 кВт танковой) и особенно внедряемых Белазов мощностью до 5000 кВт (вместо двух дизелей с Ne=2500 кВт), работающих в тяжелых экологических условиях.

Claims (1)

  1. Камера сгорания газотурбинного двигателя, содержащая корпус, топливовоздушный канал с топливной форсункой и свечой, отличающаяся тем, что камера сгорания выполнена прямоточной, топливовоздушный канал расположен аксиально к корпусу и соединен с ним, в корпусе на обтекателе расположен регистр с углом закрутки лопаток 60±5°, при этом на внутренней поверхности корпуса за счет центробежных сил закрученного топливовоздушного потока образована топливная пленка.
RU2015147887A 2015-11-06 2015-11-06 Прямоточная камера сгорания газотурбинного двигателя RU2626892C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015147887A RU2626892C2 (ru) 2015-11-06 2015-11-06 Прямоточная камера сгорания газотурбинного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015147887A RU2626892C2 (ru) 2015-11-06 2015-11-06 Прямоточная камера сгорания газотурбинного двигателя

Publications (2)

Publication Number Publication Date
RU2015147887A RU2015147887A (ru) 2017-05-18
RU2626892C2 true RU2626892C2 (ru) 2017-08-02

Family

ID=58715468

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015147887A RU2626892C2 (ru) 2015-11-06 2015-11-06 Прямоточная камера сгорания газотурбинного двигателя

Country Status (1)

Country Link
RU (1) RU2626892C2 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498288A (en) * 1978-10-13 1985-02-12 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4766722A (en) * 1985-08-02 1988-08-30 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) Enlarged bowl member for a turbojet engine combustion chamber
RU2008568C1 (ru) * 1991-03-05 1994-02-28 Всероссийский теплотехнический научно-исследовательский институт Кольцевая камера сгорания
RU2170391C1 (ru) * 2000-03-20 2001-07-10 Открытое Акционерное Общество "Турбомоторный Завод" Горелочное устройство камер сгорания
RU2300049C1 (ru) * 2005-12-19 2007-05-27 Александр Никифорович Грязнов Мини-парогенератор
US20070130954A1 (en) * 2005-12-08 2007-06-14 General Electric Company Swirler Assembly
RU2414649C2 (ru) * 2009-04-30 2011-03-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Камера сгорания газотурбинного двигателя

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498288A (en) * 1978-10-13 1985-02-12 General Electric Company Fuel injection staged sectoral combustor for burning low-BTU fuel gas
US4766722A (en) * 1985-08-02 1988-08-30 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) Enlarged bowl member for a turbojet engine combustion chamber
RU2008568C1 (ru) * 1991-03-05 1994-02-28 Всероссийский теплотехнический научно-исследовательский институт Кольцевая камера сгорания
RU2170391C1 (ru) * 2000-03-20 2001-07-10 Открытое Акционерное Общество "Турбомоторный Завод" Горелочное устройство камер сгорания
US20070130954A1 (en) * 2005-12-08 2007-06-14 General Electric Company Swirler Assembly
RU2300049C1 (ru) * 2005-12-19 2007-05-27 Александр Никифорович Грязнов Мини-парогенератор
RU2414649C2 (ru) * 2009-04-30 2011-03-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Камера сгорания газотурбинного двигателя

Also Published As

Publication number Publication date
RU2015147887A (ru) 2017-05-18

Similar Documents

Publication Publication Date Title
US10295190B2 (en) Centerbody injector mini mixer fuel nozzle assembly
Lefebvre et al. Gas turbine combustion: alternative fuels and emissions
US10352569B2 (en) Multi-point centerbody injector mini mixing fuel nozzle assembly
US4112676A (en) Hybrid combustor with staged injection of pre-mixed fuel
AU2021257969B2 (en) Fuel nozzle assembly
US4206593A (en) Gas turbine
US2828609A (en) Combustion chambers including suddenly enlarged chamber portions
US20040003596A1 (en) Fuel premixing module for gas turbine engine combustor
CA2194911C (en) Low-emission combustion chamber for gas turbine engines
RU2014110628A (ru) Трубчато-кольцевая камера сгорания со ступенчатыми и тангенциальными топливовоздушными форсунками для использования в газотурбинных двигателях
US10935245B2 (en) Annular concentric fuel nozzle assembly with annular depression and radial inlet ports
US20160061452A1 (en) Corrugated cyclone mixer assembly to facilitate reduced nox emissions and improve operability in a combustor system
US8006500B1 (en) Swirl combustor with counter swirl fuel slinger
CN110131750A (zh) 一种使用气体燃料的燃气轮机低排放燃烧室
AU2019271951B2 (en) Combustion section and fuel injector assembly for a heat engine
AU2019271950B2 (en) Fuel injector assembly for a heat engine
US20100232930A1 (en) Gas turbine engine
CN103939943A (zh) 一种用于化学回热循环的双旋流双燃料喷嘴
CN109424446A (zh) 用于衰减燃气涡轮发动机中的燃烧动力学的燃烧系统和方法
RU2014110629A (ru) Тангенциальная кольцевая камера сгорания с предварительно смешанным топливом и воздухом для использования в газотурбинных двигателях
US8413446B2 (en) Fuel injector arrangement having porous premixing chamber
RU2626892C2 (ru) Прямоточная камера сгорания газотурбинного двигателя
US8893504B2 (en) Igniter
Nomura et al. Hydrogen combustion test in a small gas turbine
RU2014110630A (ru) Тангенциальная и беспламенная кольцевая камера сгорания для использования в газотурбинных двигателях

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171107