RU2626866C1 - Production method of articles from high-tensile ceramics - Google Patents

Production method of articles from high-tensile ceramics Download PDF

Info

Publication number
RU2626866C1
RU2626866C1 RU2016109731A RU2016109731A RU2626866C1 RU 2626866 C1 RU2626866 C1 RU 2626866C1 RU 2016109731 A RU2016109731 A RU 2016109731A RU 2016109731 A RU2016109731 A RU 2016109731A RU 2626866 C1 RU2626866 C1 RU 2626866C1
Authority
RU
Russia
Prior art keywords
oxide
plasma
slip
plasticiser
mixture
Prior art date
Application number
RU2016109731A
Other languages
Russian (ru)
Inventor
Николай Владимирович Дедов
Александр Николаевич Жиганов
Сергей Борисович Точилин
Игорь Юрьевич Русаков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority to RU2016109731A priority Critical patent/RU2626866C1/en
Application granted granted Critical
Publication of RU2626866C1 publication Critical patent/RU2626866C1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

FIELD: metallurgy.
SUBSTANCE: production method of the high-tensile ceramics involves the plasma-chemical powder preparation from the tetragonal zirconium oxide and aluminium oxide, its mixing with the organic binder (plasticiser), moulding, removing the binder in the backfill and calcining. The moulding slip is prepared from the mixture of plasma-chemical ultradisperse powder, containing 75-82 wt % of zirconium oxide, 15-20 wt % of aluminium oxide, 3-5 wt % of lithium oxide, including the plasticiser in the amount of 25-60 wt % of the mixture mass. The slip is moulded in the die mould, heated up to 60-85°C, into the blank under the pressure of 0.3-0.6 MPa, are calcinated in the backfill to remove the plasticiser, then the moulded blank is sintered at the temperature 1690-1800°C.
EFFECT: ceramic products with the claimed composition and the specified sintering parameters have the bending strength of at least 1215 MPa, the produced ceramic blanks are characterized by the high impact strength, heat resistance and heat stability.
1 tbl

Description

Изобретение относится к области получения новых высокопрочных материалов, а именно к оксидной керамике алюминат-литиевого класса на основе оксида циркония, и может использоваться для изготовления лопаток газовых турбин и блоков цилиндров двигателей внутреннего сгорания.The invention relates to the field of obtaining new high-strength materials, namely, oxide ceramics of the aluminate-lithium class based on zirconium oxide, and can be used for the manufacture of gas turbine blades and cylinder blocks of internal combustion engines.

Известен поликристаллический материал, способ и устройство для его получения, изделие из этого материала [RU 2199616, C30B 28/06, C30B 29/22, A61B 17/32, опуб. 27.02.2003], где материал состоит из кристаллов тетрагональной модификации диоксида циркония игольчатой или пластинчатой формы размерами не более 0,05 мм с соотношением длины и максимального поперечного сечения не менее 2:1, ориентированных параллельно своим длинным осям и образующих прямоугольную решетку. Материал получают методом плавления в холодном контейнере при горизонтальном перемещении его относительно индуктора.A polycrystalline material is known, a method and a device for its production, an article from this material [RU 2199616, C30B 28/06, C30B 29/22, A61B 17/32, publ. 02.27.2003], where the material consists of needle-shaped or plate-shaped tetragonal modification of zirconium dioxide crystals with dimensions of not more than 0.05 mm with a ratio of length and maximum cross section of at least 2: 1 oriented parallel to their long axes and forming a rectangular lattice. The material is obtained by melting in a cold container with horizontal movement relative to the inductor.

Недостатком способа является сложность получения исходного материала методом плавления в холодном контейнере и недостаточная прочность керамического материала.The disadvantage of this method is the difficulty of obtaining the starting material by melting in a cold container and the insufficient strength of the ceramic material.

Наиболее близким аналогом к предлагаемому изобретению является изобретение «Шихта для изготовления керамики» [RU 2164503, C04B 35/488, C04B 35/119, опуб. 27.03.2001, бюл. №7]. Шихта содержит плазмохимическую смесь оксида алюминия, диоксида циркония, стабилизирующей его добавки и оксида алюминия при следующем соотношении компонентов, мас. %: оксид лития 0,15-0,35; оксид алюминия 1,9-76,0; диоксид циркония стабилизированный - остальное. Предел прочности при изгибе образцов керамики, полученных из шихты, составлял до 1180 МПа.The closest analogue to the proposed invention is the invention of "the mixture for the manufacture of ceramics" [RU 2164503, C04B 35/488, C04B 35/119, publ. 03/27/2001, bull. No. 7]. The mixture contains a plasma-chemical mixture of alumina, zirconia, stabilizing additives and alumina in the following ratio, wt. %: lithium oxide 0.15-0.35; alumina 1.9-76.0; stabilized zirconia - the rest. The bending strength of ceramic samples obtained from a mixture was up to 1180 MPa.

Предлагаемый состав шихты не обеспечивает получения керамического материала с более высокими прочностными характеристиками.The proposed composition of the charge does not provide ceramic material with higher strength characteristics.

Задачей изобретения является получение керамических изделий с более высокими прочностными характеристиками.The objective of the invention is to obtain ceramic products with higher strength characteristics.

Поставленная задача решается тем, что способ получения высокопрочной керамики включает приготовление плазмохимического порошка из тетрагонального оксида циркония и оксида алюминия, смешивание его с органической связкой (пластификатором), формование, удаление связки в засыпке и обжиг, при этом готовят шликер из смеси плазмохимического ультрадисперсного порошка, содержащего 75-82 мас.% оксида циркония, 15-20 мас.% оксида алюминия, 3-5 мас.% оксида лития и пластификатора 25-60% от массы смеси, шликер формуют в пресс-форме, нагретой до 60-85°С, при давлении 0,3-0,6 МПа, выдержкой 3-5 минут и обжигают при температуре 90-120°С в течение 10-15 часов в засыпке (сорбирующем веществе), после чего шликер спекают при температуре 1690-1800°С в течение 2-5 часов.The problem is solved in that the method of producing high-strength ceramics involves the preparation of a plasma-chemical powder from tetragonal zirconium oxide and aluminum oxide, mixing it with an organic binder (plasticizer), molding, removing the binder in the backfill and firing, while preparing a slip from a mixture of plasma-chemical ultrafine powder, containing 75-82 wt.% zirconium oxide, 15-20 wt.% alumina, 3-5 wt.% lithium oxide and plasticizer 25-60% by weight of the mixture, the slip is molded in a mold heated to 60-85 ° C, with pressure they are 0.3-0.6 MPa, aged 3-5 minutes and fired at a temperature of 90-120 ° C for 10-15 hours in a bed (sorbent substance), after which the slip is sintered at a temperature of 1690-1800 ° C for 2-5 hours.

Технология шликерного литья включает: приготовление плазмохимического порошка, введение пластификатора, формирование изделия, закрепление формы, спекание и финишную механическую обработку.Slip casting technology includes: preparation of a plasma chemical powder, the introduction of a plasticizer, the formation of the product, the fixing of the form, sintering and finishing machining.

Исходный ультрадисперсный (нано-)порошок (УДП) оксида циркония, оксида алюминия и оксида лития получают путем денитрации водных растворов солей циркония, алюминия и лития в плазмохимическом реакторе. УДП состоит из частиц тетрагонального и моноклинного оксида циркония с границей из аморфного алюмината лития, структура порошка тонкозернистая со средним размером частиц 30-40 нм. В порошок вводят заданное количество пластификатора, например, в виде пчелиного воска или парафина. Увеличение доли пластификатора более 60% приводит к высокой (20-30%) пористости изделия при последующих термических операциях.The initial ultrafine (nano) powder (UDP) of zirconium oxide, aluminum oxide and lithium oxide is obtained by denitration of aqueous solutions of zirconium, aluminum and lithium salts in a plasma chemical reactor. UDP consists of particles of tetragonal and monoclinic zirconium oxide with a border of amorphous lithium aluminate, the structure of the powder is fine-grained with an average particle size of 30-40 nm. A predetermined amount of plasticizer is introduced into the powder, for example, in the form of beeswax or paraffin. An increase in the proportion of plasticizer over 60% leads to a high (20-30%) porosity of the product during subsequent thermal operations.

Формование изделия производят в подогретой до 80°С металлической пресс-форме давлением до 0,5 МПа и выдержкой до 10 минут.The product is molded in a metal mold heated to 80 ° C with a pressure of up to 0.5 MPa and a holding time of up to 10 minutes.

С целью извлечения пластификатора производится обжиг изделия в сорбирующем веществе (например, порошок отожженного глинозема) при температуре 90-120°С в течение 10-15 часов, потеря массы составляет 20-30%. Процесс окончательного удаления пластификатора происходит при 1000-1100°С за 2-3 суток. Усадка изделия составляет при этом 10-15%. Спекание изделия производят при температуре 1690-1800°С в течение 2-5 часов. В результате получили изделие с зернистой поверхностью, размеры изделия подлежат доводке абразивами и алмазным инструментом. Усадка изделия при спекании составляет 3-4%.In order to extract the plasticizer, the product is fired in a sorbent substance (for example, annealed alumina powder) at a temperature of 90-120 ° C for 10-15 hours, the weight loss is 20-30%. The process of final removal of the plasticizer occurs at 1000-1100 ° C for 2-3 days. The shrinkage of the product is 10-15%. Sintering of the product is carried out at a temperature of 1690-1800 ° C for 2-5 hours. The result is a product with a granular surface, the dimensions of the product are subject to fine-tuning with abrasives and diamond tools. Shrinkage of the product during sintering is 3-4%.

Керамическое изделие получается в виде бруска, состоящего из тетрагонально-моноклинной окиси циркония с соотношением до 10:1, другие фазы не выявляются, плотность керамики 5600-5700 кг/м, пористость 6-8%. Определяли предел прочности при изгибе. Результаты опытов представлены в таблице.The ceramic product is obtained in the form of a bar consisting of tetragonal-monoclinic zirconium oxide with a ratio of up to 10: 1, other phases are not detected, the ceramic density is 5600-5700 kg / m, porosity 6-8%. Bending strength was determined. The results of the experiments are presented in the table.

Как видно из таблицы, изготовление шликера с заявляемым составом и указанными параметрами спекания позволяет получать керамические изделия с более высокими (не менее 1215 МПа) прочностными характеристиками, чем у аналога. Кроме того, дополнительные испытания показали, что получаемые керамические образцы отличаются очень высокой ударопрочностью, жаростойкостью и жаропрочностью до 1500-1600°С.As can be seen from the table, the manufacture of a slip with the claimed composition and the specified sintering parameters allows to obtain ceramic products with higher (not less than 1215 MPa) strength characteristics than that of the analogue. In addition, additional tests showed that the resulting ceramic samples are characterized by very high impact resistance, heat resistance and heat resistance up to 1500-1600 ° C.

Получаемый керамический материал может использоваться для изготовления лопаток газовых турбин и блоков цилиндров двигателей внутреннего сгорания.The resulting ceramic material can be used for the manufacture of gas turbine blades and cylinder blocks of internal combustion engines.

Figure 00000001
Figure 00000001

Claims (1)

Способ получения высокопрочной керамики, включающий приготовление плазмохимического порошка из тетрагонального оксида циркония и оксида алюминия, смешивание его с органической связкой (пластификатором), формование, удаление связки в засыпке и обжиг, отличающийся тем, что готовят шликер из смеси плазмохимического ультрадисперсного порошка, содержащего 75-82 мас.% оксида циркония, 15-20 мас.% оксида алюминия, 3-5 мас.% оксида лития и пластификатора 25-60% от массы смеси, шликер формуют в пресс-форме, нагретой до 60-85°С, при давлении 0,3-0,6 МПа, выдержкой 3-5 минут и обжигают при температуре 90-120°С в течение 10-15 часов в засыпке, после чего спекают при температуре 1690-1800°С в течение 2-5 часов.A method of obtaining high-strength ceramic, including the preparation of a plasma-chemical powder from tetragonal zirconium oxide and aluminum oxide, mixing it with an organic binder (plasticizer), molding, removing the binder in the backfill and firing, characterized in that a slip is prepared from a mixture of plasma-chemical ultrafine powder containing 75- 82 wt.% Zirconium oxide, 15-20 wt.% Alumina, 3-5 wt.% Lithium oxide and plasticizer 25-60% by weight of the mixture, the slip is molded in a mold heated to 60-85 ° C, at pressure 0.3-0.6 MPa, shutter speed 3-5 minutes and fired at a temperature of 90-120 ° C for 10-15 hours in the backfill, and then sintered at a temperature of 1690-1800 ° C for 2-5 hours.
RU2016109731A 2016-03-17 2016-03-17 Production method of articles from high-tensile ceramics RU2626866C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109731A RU2626866C1 (en) 2016-03-17 2016-03-17 Production method of articles from high-tensile ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109731A RU2626866C1 (en) 2016-03-17 2016-03-17 Production method of articles from high-tensile ceramics

Publications (1)

Publication Number Publication Date
RU2626866C1 true RU2626866C1 (en) 2017-08-02

Family

ID=59632669

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109731A RU2626866C1 (en) 2016-03-17 2016-03-17 Production method of articles from high-tensile ceramics

Country Status (1)

Country Link
RU (1) RU2626866C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2164503C2 (en) * 1999-05-21 2001-03-27 Сибирский химический комбинат Blend for preparing ceramics
US6592695B1 (en) * 2000-11-16 2003-07-15 General Electric Company Binder system for ceramic arc discharge lamp
RU2286316C2 (en) * 2004-11-26 2006-10-27 Институт физики прочности и материаловедения (ИФПМ) СО РАН Method of manufacture of the strong ceramics
RU2307110C2 (en) * 2005-07-22 2007-09-27 ООО "Нанокерамика" Method for producing ceramic mass
US20120328879A1 (en) * 2009-12-24 2012-12-27 Saint-Gobian Centre De Recherches Et D'Etudes European Powder comprising zirconia and alumina granules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2164503C2 (en) * 1999-05-21 2001-03-27 Сибирский химический комбинат Blend for preparing ceramics
US6592695B1 (en) * 2000-11-16 2003-07-15 General Electric Company Binder system for ceramic arc discharge lamp
RU2286316C2 (en) * 2004-11-26 2006-10-27 Институт физики прочности и материаловедения (ИФПМ) СО РАН Method of manufacture of the strong ceramics
RU2307110C2 (en) * 2005-07-22 2007-09-27 ООО "Нанокерамика" Method for producing ceramic mass
US20120328879A1 (en) * 2009-12-24 2012-12-27 Saint-Gobian Centre De Recherches Et D'Etudes European Powder comprising zirconia and alumina granules

Similar Documents

Publication Publication Date Title
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
JP6607575B2 (en) Products with high alumina content
EP1794087A1 (en) A zirconia ceramic
TW201107268A (en) Method for producing aluminum titanate ceramic body
Frolova et al. Molding features of silicon carbide products by the method of hot slip casting
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
JP2527880B2 (en) Ceramic binder and method of using the same
DE102012003483B3 (en) Thermal shock and corrosion resistant ceramic based on calcium zirconate and process for its preparation
KR20110104485A (en) Method for producing aluminum titanate fired body
RU2458023C1 (en) Method of producing silicon nitride-based sintered articles
RU2626866C1 (en) Production method of articles from high-tensile ceramics
KR101763122B1 (en) Manufacturing method of ceramic core, ceramic core, precision casting method and precision casting products
Liu et al. Pressureless sintering behavior of injection molded alumina ceramics
JP6888087B2 (en) Composite ceramic materials, articles, and manufacturing methods
Lee et al. Recycling of coal fly ash for fabrication of porous mullite composite
JP2023163322A (en) Method for producing zirconia composite ceramic and method for producing zirconia ceramic prosthesis for dental use
JP2015513517A (en) Dimensional control of ceramic honeycomb structures by the amount of alumina hydrate
Sajko et al. Microstructure and mechanical properties of low-pressure injection-moulded reaction-bonded alumina ceramics
RU2634767C2 (en) Method of obtaining products from high-strength ceramics
JP3878976B2 (en) High strength and high toughness alumina sintered body and manufacturing method thereof
JP4096096B2 (en) Hexaluminate porous ceramics and method for producing the same
JP2017538651A (en) Ceramic powder with controlled size distribution
Kul’met’eva et al. Preparation of zirconia ceramics from powder synthesized by a sol-gel method
JP6366976B2 (en) Heat treatment member made of porous ceramics
Zhao et al. 3D printing of calcia-based ceramic core composites

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180318