RU2623728C1 - Тепломеханический преобразователь ("Русский двигатель") - Google Patents

Тепломеханический преобразователь ("Русский двигатель") Download PDF

Info

Publication number
RU2623728C1
RU2623728C1 RU2016107548A RU2016107548A RU2623728C1 RU 2623728 C1 RU2623728 C1 RU 2623728C1 RU 2016107548 A RU2016107548 A RU 2016107548A RU 2016107548 A RU2016107548 A RU 2016107548A RU 2623728 C1 RU2623728 C1 RU 2623728C1
Authority
RU
Russia
Prior art keywords
heat
rotor
heating
converter
rollers
Prior art date
Application number
RU2016107548A
Other languages
English (en)
Inventor
Николай Васильевич Ясаков
Original Assignee
Николай Васильевич Ясаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Васильевич Ясаков filed Critical Николай Васильевич Ясаков
Priority to RU2016107548A priority Critical patent/RU2623728C1/ru
Application granted granted Critical
Publication of RU2623728C1 publication Critical patent/RU2623728C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like

Landscapes

  • Rolls And Other Rotary Bodies (AREA)

Abstract

Изобретение относится к области теплоэнергетики, в частности к нетрадиционным преобразователям тепловой энергии в механическую работу. Преобразователь имеет зоны нагрева и охлаждения, установленный в подшипниках ротор с теплочувствительными элементами, а также золотниковое устройство, управляющее потоками подаваемых к ним нагревательного и охлаждающего теплоносителей. Ротор выполнен в виде биметаллического барабана, посаженного на упругую втулку с теплообменными каналами, примыкающую к золотниковому устройству. Барабан оснащен контактирующими с его поверхностью роликами. Такая конструкция барабана придает ему свойство изменять свою форму при разности температур отдельных участков (сегментов) его поверхности, при этом в местах ее контакта с роликами возникают тангенциальные силы взаимодействия, создающие на роторе вращательный момент. Представленный преобразователь работает на малых скоростях, не создает шума и вибраций. 5 ил.

Description

Изобретение относится к области теплоэнергетики, в частности к нетрадиционным преобразователям тепловой энергии в механическую работу. Оно может быть применено в приводах электрических агрегатов, насосно-компрессорного и другого оборудования промышленного, сельскохозяйственного и иного назначения, преимущественно с использованием возобновляемых природных энергоресурсов, а также энергии теплосодержащих выбросов в окружающую среду.
Известно множество конструкций нетрадиционных преобразователей тепловой энергии в механическую работу, представленных, например, в изобретениях SU 478123 кл. F03G 7/06, 1973; SU 709830 кл. F03G 7/06, 1978; SU 987162 кл. F03G 7/06, 1981; SU 1307084 кл. F03G 7/06,1987; RU 2200252 C2 кл. F03G 7/06, 2001, которые из-за своего несовершенства не нашли практического применения.
Известна конструкция тепломеханического преобразователя по патенту RU №2442906, 2012 г., сходная с заявляемым устройством тем, что рабочим телом в нем являются твердые материалы с высоким коэффициентом теплового расширения.
К тому же, оба устройства могут работать в режиме когенерации.
Упомянутый тепломеханический преобразователь, содержащий установленный в подшипниках вал, теплочувствительные элементы, а также зоны нагрева и охлаждения (температурные зоны), имеет фланец, связанный с теплочувствительными элементами и опирающийся через подшипник на наклонный фланец вала, жестко связанного с золотником, управляющим потоками нагревательного и охлаждающего теплоносителей (тепловых агентов).
Опорный фланец позволяет преобразовывать поочередное изменение длин связанных с ним теплочувствительных элементов под действием меняющейся температуры в циклическое изменение направления его наклона, воздействующее на фланец вала, получающего при этом вращающий момент.
Данный аналог отличается простотой конструкции, универсальностью по виду используемых источников преобразуемой тепловой энергии, возможностью работы в режиме автоматического поддержания стабильной частоты вращения в условиях изменяющейся нагрузки. Главным его недостатком является низкий КПД из-за ограниченного предела упругости рабочих теплочувствительных элементов (ТЧЭ). При этом он имеет большой продольный размер даже в расчете на значительную - около сотни градусов - разность температур используемых тепловых агентов. При разности в два-три десятка градусов этот размер окажется за пределами практических возможностей использования такого преобразователя.
Задачей при разработке заявляемого преобразователя наряду с упрощением конструкции являются сокращение габаритов и - главное - обеспечение возможности его работы при малых перепадах температур тепловых агентов, позволяющей использовать такие низкопотенциальные теплоисточники, как тепловые аккумуляторы, термальные воды или перепад температур в морских акваториях.
Поставленная задача решается тем, что заявляемый тепломеханический преобразователь, содержащий зоны нагрева и охлаждения, установленный в подшипниках ротор с теплочувствительными элементами, а также золотниковое устройство, управляющее потоками подаваемых к ним нагревательного и охлаждающего теплоносителей, отличающийся тем, что согласно изобретению ротор выполнен в виде цилиндрического биметаллического барабана, посаженного на упругую втулку с теплообменными каналами, примыкающую к золотниковому устройству, при этом барабан оснащен контактирующими с его поверхностью роликами.
Такая конструкция барабана придает ему свойство изменять свою форму при разности температур отдельных участков (сегментов) его поверхности, при этом в местах ее контакта с роликами возникают тангенциальные силы взаимодействия Ft, создающие вращательный момент.
На фиг. 1 показано принципиальное решение тепломеханического преобразователя, на фиг. 2 - ротор в поперечном разрезе, на фиг. 3 - вариант распределительного канала золотника в зоне нагрева, на фиг. 4 - развертка поверхности упругой втулки с теплообменными каналами и диаграмма оптимального распределения температуры по контуру теплочувствительного слоя барабана, на фиг. 5 - общий вид шестизонного преобразователя.
Устройство преобразователя в принципе предельно простое. На фиг. 1 показано поперечное сечение биметаллического цилиндра: сплошной линией - при одинаковой температуре по всей его поверхности (это круговой цилиндр), а штрихпунктирной линией - при одинаково нагретых (слева и справа) и одинаково охлажденных (вверху и внизу) симметрично расположенных сегментах. Если температурное поле в металле распределено по кругу так, как показано на диаграмме (фиг. 3), то - при отсутствии роликов -барабан примет форму, близкую к эллиптическому цилиндру с указанной ориентацией осей (это при большем коэффициенте температурного расширения у внутреннего слоя цилиндра).
Итак, заявляемый тепломеханический преобразователь в представленном на фиг. 2 четырехзонном варианте содержит ротор 1, состоящий из биметаллического барабана 2, посаженного на упругую втулку 3 с теплообменными каналами, шарнирных звеньев 4, связывающих ее со ступицей вала 5. С торцов к ротору примыкают диски 6 (см. фиг. 4) золотникового устройства, подключенного к внешним контурам: к источникам горячего и охлаждающего теплоносителя, а также к утилизаторам "сбросного" тепла. Золотниковое устройство неподвижно связано с корпусом преобразователя. Своей наружной поверхностью барабан 2 касается свободно сидящих на своих осях роликов 7 (см. фиг. 2).
При этом следует сказать, что более перспективными могут оказаться преобразователи с большим числом температурных зон. Вариант шестизонного тепломеханического преобразователя показан на фиг. 5.
Поскольку изготовление барабана из обычного биметаллического листового проката может оказаться проблематичным, можно воспользоваться его упрощенной конструкцией. Она представляет собой пару вставленных один в другой цилиндров, склеенных известным теплоизоляционным составом, применяемым для наружных покрытий.
Внутренний цилиндр должен быть изготовлен из металла с большим коэффициентом температурного расширения, например листового проката из наиболее прочных алюминиевых сплавов. При такой конструкции барабана к материалу наружного цилиндра не предъявляется никаких требований по его термическим свойствам: он изолирован от нагрева и потому его размеры неизменны, следовательно, он может быть изготовлен из обычной безшовной стальной тонкостенной трубы соответствующего диаметра.
Упругая втулка 3 может быть из теплостойкого полимера.
В таком варианте конструкции ротора 1 будут сокращены и теплопотери барабана.
Работа тепломеханического преобразователя основана на свойстве его барабана 2 менять свою форму при изменении температурного поля в его сегментах: при их одинаковой температуре он является круговым цилиндром, расположенным между плотно примыкающими к нему роликами 7. С изменением температуры металла, как показано на диаграмме (фиг. 4), внутренний слой в нагретых зонах расширяется, увеличивая там радиус кривизны стенки цилиндра, а в зонах охлаждения наоборот: радиус кривизны уменьшается. При отсутствии роликов 7 форма цилиндра в его поперечном сечении приняла бы вид, близкий к эллипсу. Однако ролики нарушают эту форму, создавая местные механические напряжения (сила F), под действием тангенциальной составляющей этой силы он поворачивается вокруг своей оси. А поскольку зоны нагрева и охлаждения сохраняют свое положение, они восстанавливают прежнюю ориентацию осей эллипса и, таким образом, поворот цилиндра продолжается.
Изображенное на диаграмме оптимальное "синусоидальное" распределение температурного поля можно создать разными способами: простейший из них показан на фиг. 3. Это вариант с распределением потока теплоносителя каналами в золотниковых дисках 6, обозначенными штрихпунктирным контуром с входным отверстием посредине. Однако такой вариант требует большого притока тепла, основная часть которого сбрасывается с выходящим из преобразователя потоком.
Более экономичным вариантом является способ с рекуперацией тепла, показанный на развертке втулки 3 (см. фиг. 4), при котором тепло сегментов, перемещающихся в зоны охлаждения, отбирается встречным потоком и передается на предварительный нагрев следующих за ними сегментов. А поток горячего теплоносителя от его источника подается только на экстремальный нагрев (средней части нагреваемых сегментов), после чего он возвращается в источник, если им является теплоаккумулятор либо другой источник с замкнутым контуром нагрева теплоносителя.
При этом сбрасываемый из системы рекуперации поток содержит небольшой тепловой потенциал, но и он может быть утилизирован в других целях. А собственный КПД преобразователя с такой системой теплообмена повышается в несколько раз.
Вращение барабана 2 (вместе с втулкой 3) передается ступице вала 5 шарнирными звеньями 4, обеспечивающими возможность упругой деформации ротора 1.
Регулирование крутящего момента на валу ротора 1 и его частоты вращения возможно в автоматическом режиме небольшим перемещением осей роликов 7 вокруг барабана, а также изменением параметров (температуры, интенсивности потока) теплоносителей.
Представленный преобразователь работает на малых скоростях, не создает шума и вибраций. Не требует высококвалифицированного сервиса, удобный для использования в когенераторных установках (микроТЭЦ).
Освоение массового производства заявленного преобразователя позволит решить проблему комплексного энергоснабжения самых разноплановых объектов преимущественно от возобновляемых источников энергии, упростить конструкцию энергетических установок, работающих на таких источниках и - при использовании новых конструкционных материалов - повысить их эффективность, а также поможет в решении важных социальных вопросов, включая проблему занятости населения.

Claims (1)

  1. Тепломеханический преобразователь, содержащий зоны нагрева и охлаждения, установленный в подшипниках ротор с теплочувствительными элементами, а также золотниковое устройство, управляющее потоками нагревательного и охлаждающего теплоносителей к теплочувствительным элементам, отличающийся тем, что ротор выполнен в виде цилиндрического биметаллического барабана, посаженного на упругую втулку с теплообменными каналами, примыкающую к золотниковому устройству, при этом барабан оснащен контактирующими с его поверхностью роликами.
RU2016107548A 2016-03-01 2016-03-01 Тепломеханический преобразователь ("Русский двигатель") RU2623728C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016107548A RU2623728C1 (ru) 2016-03-01 2016-03-01 Тепломеханический преобразователь ("Русский двигатель")

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016107548A RU2623728C1 (ru) 2016-03-01 2016-03-01 Тепломеханический преобразователь ("Русский двигатель")

Publications (1)

Publication Number Publication Date
RU2623728C1 true RU2623728C1 (ru) 2017-06-30

Family

ID=59312342

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016107548A RU2623728C1 (ru) 2016-03-01 2016-03-01 Тепломеханический преобразователь ("Русский двигатель")

Country Status (1)

Country Link
RU (1) RU2623728C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694568C1 (ru) * 2018-11-07 2019-07-16 Николай Васильевич Ясаков Тепловой твердотельный двигатель

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275561A (en) * 1978-08-03 1981-06-30 Wang Frederick E Energy conversion system
US4302938A (en) * 1978-08-14 1981-12-01 Li Yao T Nitinol engine for low grade heat
SU1000590A1 (ru) * 1981-10-12 1983-02-28 за витель В. А. Нахалов Тепловой двигатель
SU1153107A1 (ru) * 1983-09-12 1985-04-30 Каунасский Политехнический Институт Им.Антанаса Снечкуса Тепловой двигатель
RU2200252C2 (ru) * 2001-03-30 2003-03-10 Ульяновский государственный технический университет Тепловой двигатель
RU2442906C1 (ru) * 2010-09-13 2012-02-20 Николай Васильевич Ясаков Тепломеханический преобразователь

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275561A (en) * 1978-08-03 1981-06-30 Wang Frederick E Energy conversion system
US4302938A (en) * 1978-08-14 1981-12-01 Li Yao T Nitinol engine for low grade heat
SU1000590A1 (ru) * 1981-10-12 1983-02-28 за витель В. А. Нахалов Тепловой двигатель
SU1153107A1 (ru) * 1983-09-12 1985-04-30 Каунасский Политехнический Институт Им.Антанаса Снечкуса Тепловой двигатель
RU2200252C2 (ru) * 2001-03-30 2003-03-10 Ульяновский государственный технический университет Тепловой двигатель
RU2442906C1 (ru) * 2010-09-13 2012-02-20 Николай Васильевич Ясаков Тепломеханический преобразователь

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2694568C1 (ru) * 2018-11-07 2019-07-16 Николай Васильевич Ясаков Тепловой твердотельный двигатель

Similar Documents

Publication Publication Date Title
JP6465457B2 (ja) 誘導加熱装置、及び発電システム
WO2016084937A1 (ja) ジャーナル軸受、回転機械
CN208675021U (zh) 冷却机构、电机装置及汽车
US9140242B2 (en) Temperature differential engine device
US20110186041A1 (en) Apparatus for pivoting solar troughs on a central axis
RU2623728C1 (ru) Тепломеханический преобразователь ("Русский двигатель")
US4472939A (en) Energy conversion system
WO2020165608A1 (en) Solar receiver
RU2636956C1 (ru) Безроторный тепломеханический преобразователь
BR112022023958A2 (pt) Sistema de arrefecimento e sistema gerador movido a vento
RU2442906C1 (ru) Тепломеханический преобразователь
RU2728009C1 (ru) Тепломеханический преобразователь
ITRM20100428A1 (it) Assorbitore di calore da radiazione solare per motore stirling
CN109764707B (zh) 一种旋转伸缩可拆卸型翅片热管
JP5518687B2 (ja) 回転電機のスラスト軸受装置
CN207569063U (zh) 一种超高效自冷却轴承
JP2008057363A (ja) 蒸気タービン
US8356971B2 (en) Disc turbine with streamlined hub vanes and co-axial exhaust tube
CN211151745U (zh) 发电机双轴承冷却系统及包括其的直驱风力发电机
US20180080341A1 (en) Turbine shaft bearing and turbine apparatus
CN107448611A (zh) 可调密封间隙的迷宫密封装置
JP2017010698A (ja) 誘導加熱装置、及び発電システム
CN206488681U (zh) 一种换热管
SU1262096A1 (ru) Тепловой двигатель
JP6494065B2 (ja) 軸受パッド、該軸受パッドを備える軸受装置、及び該軸受装置を備える回転機械

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180302