RU2623471C2 - Способ выращивания зеленых гидропонных кормов с использованием наноматериалов - Google Patents

Способ выращивания зеленых гидропонных кормов с использованием наноматериалов Download PDF

Info

Publication number
RU2623471C2
RU2623471C2 RU2015145502A RU2015145502A RU2623471C2 RU 2623471 C2 RU2623471 C2 RU 2623471C2 RU 2015145502 A RU2015145502 A RU 2015145502A RU 2015145502 A RU2015145502 A RU 2015145502A RU 2623471 C2 RU2623471 C2 RU 2623471C2
Authority
RU
Russia
Prior art keywords
iron
nanoparticles
seeds
nanomaterials
growing
Prior art date
Application number
RU2015145502A
Other languages
English (en)
Other versions
RU2015145502A (ru
Inventor
Сергей Александрович Мирошников
Елена Анатольевна Сизова
Татьяна Николаевна Холодилина
Татьяна Дмитриевна Дерябина
Нина Николаевна Докина
Борис Георгиевич Рогачев
Лев Никитович Павлов
Original Assignee
Федеральное Государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства filed Critical Федеральное Государственное бюджетное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства
Priority to RU2015145502A priority Critical patent/RU2623471C2/ru
Publication of RU2015145502A publication Critical patent/RU2015145502A/ru
Application granted granted Critical
Publication of RU2623471C2 publication Critical patent/RU2623471C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Hydroponics (AREA)

Abstract

Изобретение относится к сельскохозяйственному производству. Способ осуществляют путем обработки семян электрохимически активированным катодным раствором наночастиц сплава железа и кобальта в процентном соотношении соответственно 70 на 30. Лабораторные испытания показали высокую эффективность влияния этого комплекса при концентрации 0,001 мас. %. Способ позволяет повысить активацию прорастания семян и урожайность. 2 табл.

Description

Изобретение относится к сельскохозяйственному производству и может быть использовано для активации произрастания семян и повышения урожайности в системе выращивания кормовых культур методами аэропоники и гидропоники.
Способ осуществляют путем обработки семян электрохимически активированной катодной водной суспензией наночастиц сплава железа и кобальта в процентном соотношении соответственно 70 на 30. Лабораторные испытания показали высокую эффективность влияния этого коплекса при концентрации 0,001 мас. %
Взаимодействие наночастиц металлов с растениями сопровождается их встраиванием в мембраны, проникновением в клетки и клеточные органеллы, взаимодействием с нуклеидными кислотами и белками, что существенно изменяет функции различных биологических структур [1, 2, 3, 4]. При этом на фоне многочисленных форм влияния наночастиц [5, 6, 7] некоторые из них находят практическое применение для предпосевной обработки семян и в качестве микроудобрений [1, 8, 9].
Используя достижения нанотехнологии с применением совместно с методом активации проращивания семян путем их обработки электрохимически активированной (ЭХА) водой - католитом, образующимся в катодной зоне диафрагменного электролизера, который обладает биостимулирующим действием, предоставляется возможность значительно повысить выход и питательность зеленых гидропонных кормов (ЗГК) [10, 11, 12, 13, 14].
Многочисленные исследования показали, что аэроионная активация семян и вегетативной массы повышает продуктивность и качество ЗГК [17, 18, 19].
Оценка влияния микроэлементов Fe и Со в форме ионов минеральных солей и наночастиц сплава Fe×Со в тесте прорастания семян ячменя при аэрогидропонном выращивании ЗГК проводилось на модернизированной модели проращивателя «Здоровья КЛАД» производства фирмы ООО «Стексель» [15].
Использование стабилизированной желатином электрохимически активированной катодной воды с pH 7-8 и Eh=-350…-400 мВ увеличивает в 2,3-3,4 раза энергию прорастания семян по сравнению с обычной водопроводной водой. Основные агротехнические процессы выращивания представлены в табл.1.
Отличительной особенностью этой технологии является то, что проводится аэрогидропонная активация пузырьков воздуха после прохождения через слой стабилизированного катодного раствора.
В качестве стабилизатора использовался пептид, представленным желатином (ТУ 9219-011-99205730-08) в концентрации не менее 0,01 мас. %, что гарантировало сохранность его свойств суспензии pH 8 и Eh=-350…-400 мВ при проведении эксперимента, кроме того, раствор демонстрирует противомикробную и противогрибковую активность [14, 16].
Наиболее близким техническим решением, принятым за прототип, является способ предпосевной обработки семян стабилизированной электрохимически активированной катодной водной суспензией наночастиц железа [14].
При гидропонном выращивании зеленых кормов преимущество признано за фуражной культурой - ячменем [21].
Материалом для эксперимента были взяты семена ячменя сорта «Донецкий 8», качество их соответствовало первому классу ГОСТ 10469-76.
Режим выращивания: влажность корневой зоны ЗГК на уровне 80-90%, суточный расход воды из емкости увлажнения 300-350 мл/сут.
Применение питательного раствора не предусмотрено.
В свою очередь использование стабилизатора [5] обеспечило длительную сохранность полезных свойств катодного раствора в течение всего периода выращивания уже зеленых проростков (7-8 сут) по показателю рН на уровне 89-92%, Eh - 71,4%.
При проведении исследования использованы наночастицы Fe и Со, полученные методом высокотемпературной конденсации на установке «Ми-Ген» как сферические образования размером 62,5±0,6 нм. В свою очередь использование методов рентгеновской дифрактометрии идентифицировало на поверхности наночастиц оксидные пленки, составляющие 4-15% от их массы [20].
При оценке влияния сплава наночастиц Fe×Со при выращивании ЗГК проводилось в сравнении с влиянием обработок семян ячменя ЭХА катодными водными растворами, содержащими соответственно ионы Fe и Со сернокислых соединений FeSO4⋅7Н2О и CoSO4⋅6H2O. Раздел на ионные фракции растворов осуществлялся на биоэлектроактиваторе ЭСПЕРО-1 (табл. 1).
Концентрация ионов Fe и Со и наночастиц сплава Fe×Со определялась нами на основании данных авторов из ранее проведенных работ. Так концентрация наночастиц Fe и Со 0,001 мас. % положительно влияла как на энергию прорастания, так и на лабораторную всхожесть семян. Увеличение концентрации до 0,01 мас. % приводило к подавлению прорастания даже по сравнению с контролем [1, 14].
На этом основании нами определена при лабораторных опытах концентрация ионов Fe и Со и наночастиц сплава Fe×Со - 0,001 мас. % (табл. 2).
Исследования химического состава и питательности ЗГК из зерна ячменя проводились в «Испытательном центре ФГБНУ ВНИИМС», г. Оренбург (аттестат аккредитации №РОСС RU. 0001.21 ПФ59 от 19.05.2001 г.).
Анализ данных по всем вариантам эксперимента показал высокую продуктивность ЗГК, однако влияние действия наночастиц сплава Fe×Со (II вариант) превосходил показатели по содержанию протеина в среднем на 5,2%, кормовых единиц на 15,4% и каротина на 33,7% (табл. 2).
Предпосевная обработка семян ячменя (I, II, III и IV варианты) вызвала глубокие качественные и количественные изменения белкового состава корма, при этом наночастицы Fe и Со (II вариант) в качестве биостимуляторов обменных процессов активнее участвуют в окислительно-восстановительных процессах, способствуют образованию и накоплению хлорофилла, каротина и жиров и при дозировке в растворе 0,001 мас. % предоставляют возможность одновременного восполнения в корме этих несовместимых элементов-антагонистов и повышают урожайность по сухому веществу корма на 2% (табл. 2).
Кобальт, взаимодействуя с железом, вызывает синергический эффект, способствует включению железа в состав цитохромов, нуклеиновых кислот и белков, играющих основную роль в процессе фотосинтеза, что сопоставимо с имеющимися литературными сведениями [23, 24, 25].
Из вышесказанного свидетельствует, что выращивание ЗГК с использованием наночастиц комплекса железо-кобальт при предпосевной обработке - замачивании семян ячменя в ЭХА католите и последующей аэрогидропонной активацией семян и вегетативной массы способствует повышению урожайности корма, благодаря положительному влиянию на образование и накопление хлорофилла, на синтез и накопление сахаров и жиров, прочность связей с белком. Наночастицы, как биостимуляторы обменных процессов, вызывают качественные и количественные изменения белкового состава корма.
Список использованной литературы
1. Виноградова Д.Л., Малышев Р.А., Фолманис Г.Э. Экономические аспекты применения нанотехнологий в земледелии / Под общ. редакцией Г.В. Павлова. - М.: Исследовательский центр проблем качества подготовки специалистов, 2005, с. 8-34.
2. Коваленко Л.В., Фолманис Г.Э. Активация прорастания семян ультрадисперсными порошками железа // Достижения науки и техники АПК. 2001. №9. С. 7-8.
3. Коваленко Л.В., Фолманис Г.Э. Биологически активные нанопорошки железа. М.: Наука, 2006. 124 с.
4. Nel. A.E., Madler L., Velegol D., Xia Т., Hoek E.M., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding, biophysicochemical interactions at the nano-bio interface // Nat. Mater. 2009, Vol. 8, P. 543-557.
5. Дерябина Т.Д. Оценка безопасности ионов, нано- и микрочастиц железа и меди в тесте прорастания семян Triticum aestivum // Вестник Оренбургского государственного университета. 2011, №12 (131), с. 386-389.
6. Soenen S.J., Himmelreich U., Nuytten N., De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labeling // Biomaterials. 2011, Vol. 32(l), P. 195-205.
7. Mahmoudi M., Hofmann H.,, Rothen-Rutishauser В., Petri-Fink A. Assessing the in. vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles // Chem. Rev. 2012, Vol. 112(4), P.2323-2338.
8. Коваленко Л.В., Фолманис Г.Э. Биологически активные нанопорошки железа. М.: Наука, 2006, 124 с.
9. Райкова А.П., Паничкин Л.А., Райкова Н.Н. Исследования влияния ультрадисперсных порошков металлов, полученных различными способами, на рост и развитие растений // Материалы Международной научно-технической конференции «Нанотехнологии и информационные технологии - технологии 21 века». М., 2006, с. 118-123.
10. Бутко М.П., Фролов B.C., Титанов B.C. Применение электрохимически активированных растворов хлорида натрия для санации объектов АПК. - Веткорм, №1, 2007 г. - С. 25-27.
11. Джурабов М. Применение электроактивированной воды в сельском хозяйстве. - Механизация и электрификация сельского хозяйства, №11, 1986 г. - С. 51-53.
12. Калунянц К.А., Кочеткова А.А., Сушенкова О.А., Садова А.И., Филатова Т.В. Интенсификация технологических процессов обработки зерна электрохимическим воздействием // Совещание по электрохимической активации сред. Тезисы докладов. - Всесоюзное химическое общество им. Д.И. Менделеева, 1987. - С. 83.
13. Патент на изобретение №2429592 РФ. Способ выращивания гидропонных кормов / С.А. Мирошников, Т.Д. Дерябина и др. Опубл. 27.09.2010.
14. Заявка на изобретение №2014149835 РФ. Способ предпосевной обработки семян / С.А. Мирошников, Е.А. Сизова и др. Дата поступления 09.12.2014.
15. Патент на полезную модель №152402 РФ Установка для выращивания гидропонных зеленых кормов / А.В. Харламов, Н.Н. Докина и др. Опубл. 27.05.2015.
16. Патент на изобретение №2234945 РФ. Стабилизатор водного раствора и водосодержащего сырья с самопроизвольно изменяющимися окислительно-восстановительными свойствами / В.М. Дворников. Опубл. 27.08.2004.
17. Чижевский А.Л. Аэроионофикация в народном хозяйстве. - М.: Госпланиздат, 1960. - 758 с.
18. Патент на изобретение №2349071 РФ. Способ обработки озимой пшеницы / Э.А. Александрова, Р.М. Герчаулова и др. Опубл. 20.03.2009.
19. Патент на изобретение №2349072 РФ. Способ некорневой подкормки озимой пшеницы / Э.А. Александрова, Р.М. Герчаулова и др. Опубл. 20.03.2009.
20. Жиган А.Н., Лейпунский И.О., Кусков М.Л. и др. Установка для получения и исследования физико-химических свойств наночастиц металлов. - Приборы и техника эксперимента, №6, 2000, с. 12.
21. Давтян Г.С., Бабаханян М.А. Непрерывное гидропоническое производство свежего травяного корма и эффективность его применения. - Ереван, Изд-во АН Арм. ССР, 1977. - С. 71.
22. Нормы и рационы кормления сельскохозяйственных животных. Справочное пособие. 3-е издание переработанное и дополненное / Под ред. А.П. Калашникова, В.И. Фисинина, В.В. Щеглова, Н.И. Клейменова. - М., 2003. С. 432-433.
23. Пейве Я.В. Руководство по применению микроудобрений. - М.: Сельхозиздат, 1963. - С. 201-209.
24. Патент на изобретение №2517228 РФ. Способ производства корма для рыб / А.Е. Аринжанов, Е.П. Мирошникова и др. Опубл. 27.05.2014.
25. Ягодин Б.А. Кобальт в жизни растений. М.: «Наука», 1970. - С. 13, 55, 72, 292, 297.
26. Кругляков Ю.А. Оборудование для непрерывного выращивания зеленого корма гидропонным способом. - М.: ВО «Агропромиздат», 1981. - С. 13.
Figure 00000001
Figure 00000002

Claims (1)

  1. Способ выращивания зеленых гидропонных кормов с использованием наноматериалов, включающий предварительную обработку семян электрохимически активированной катодной водной суспензией наночастиц металлов, отличающийся тем, что при предварительной обработке - замачивании семян в электроактивированном католите в течение 10-15 мин используются наночастицы комплекса железо-кобальт размером 62,5±0,6 нм, синтезированного методом высокотемпературной конденсации на установке Ми-ген-3 при процентном соотношении железа к кобальту, равном 70 на 30, и вводится в дозировке к раствору при замачивании 0,001 мас. %, при этом при аэрации корневой системы и непосредственно растений в течение их вегетации используется электрохимически активированная катодная вода с рН 7-8 и Eh=-350…-400 мВ, стабилизированная желатином в концентрации не менее 0,01 мас. % при постоянном ее принудительном барботаже кислородом воздуха.
RU2015145502A 2015-10-22 2015-10-22 Способ выращивания зеленых гидропонных кормов с использованием наноматериалов RU2623471C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145502A RU2623471C2 (ru) 2015-10-22 2015-10-22 Способ выращивания зеленых гидропонных кормов с использованием наноматериалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145502A RU2623471C2 (ru) 2015-10-22 2015-10-22 Способ выращивания зеленых гидропонных кормов с использованием наноматериалов

Publications (2)

Publication Number Publication Date
RU2015145502A RU2015145502A (ru) 2017-04-27
RU2623471C2 true RU2623471C2 (ru) 2017-06-26

Family

ID=58642154

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145502A RU2623471C2 (ru) 2015-10-22 2015-10-22 Способ выращивания зеленых гидропонных кормов с использованием наноматериалов

Country Status (1)

Country Link
RU (1) RU2623471C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757791C1 (ru) * 2021-03-10 2021-10-21 Ооо "Мещерский Научно-Технический Центр" Способ предпосевной обработки семян ярового ячменя на серых лесных почвах с использованием наночастиц меди и оксида меди

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821455A (en) * 1986-08-13 1989-04-18 Societe Francaise D'entretian Et Montages Industriels Sofremi Zone Industrielle Industrial method and device for germinating cereals and/or leguminous plants
UA39017A (ru) * 2000-12-28 2001-05-15 Український Державний Університет Харчових Технологій Состав кормовой добавки
RU2544960C1 (ru) * 2013-09-24 2015-03-20 Государственное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства Российской академии сельскохозяйственных наук Способ выращивания зеленых гидропонных кормов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821455A (en) * 1986-08-13 1989-04-18 Societe Francaise D'entretian Et Montages Industriels Sofremi Zone Industrielle Industrial method and device for germinating cereals and/or leguminous plants
UA39017A (ru) * 2000-12-28 2001-05-15 Український Державний Університет Харчових Технологій Состав кормовой добавки
RU2544960C1 (ru) * 2013-09-24 2015-03-20 Государственное научное учреждение Всероссийский научно-исследовательский институт мясного скотоводства Российской академии сельскохозяйственных наук Способ выращивания зеленых гидропонных кормов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757791C1 (ru) * 2021-03-10 2021-10-21 Ооо "Мещерский Научно-Технический Центр" Способ предпосевной обработки семян ярового ячменя на серых лесных почвах с использованием наночастиц меди и оксида меди

Also Published As

Publication number Publication date
RU2015145502A (ru) 2017-04-27

Similar Documents

Publication Publication Date Title
RU2582499C1 (ru) Способ предпосевной обработки семян
CA2764253C (en) Bioorganic preparation for processing plants (variants)
WO2008155781A2 (en) Golden yellow algae and method of producing the same
CN104080338A (zh) 电化学处理的营养液
CN101468926A (zh) 花卉无土载培营养液
CN104262015A (zh) 一种含有壳寡糖的冲施肥
JP2019519206A (ja) 抗酸化水を含む栄養剤、及びその栄養剤で植物栽培用、動物飼育用又は魚類養殖用の給水を製造する方法
Chernikova et al. Comparative analysis of the use of biostimulants on the main types of soil
CN106831108A (zh) 一种抗逆促生长的叶面肥及其制备方法
RU2623471C2 (ru) Способ выращивания зеленых гидропонных кормов с использованием наноматериалов
RU2544960C1 (ru) Способ выращивания зеленых гидропонных кормов
KR102013024B1 (ko) 가축분뇨액비를 배지로 이용한 클로렐라 배양여액 및 미네랄을 포함하는 미량요소복합비료 조성물
CN109824386A (zh) 一种聚谷氨酸蛋白肽纳米硒叶面肥
RU2520021C2 (ru) Способ обогащения селеном перца сладкого сортотипа паприка
RU2700616C1 (ru) Способ предпосевной обработки семян яровой сильной пшеницы
RU2614778C1 (ru) Аэрогидропонный способ выращивания зеленых кормов
RU2766695C1 (ru) Биоудобрение на основе сапропеля и способ его получения
RU2349072C1 (ru) Способ некорневой подкормки озимой пшеницы
Prisa Water structuring device for the quality improvement of aromatic plants
Raghavendra et al. Potency of Mancozeb Conjugated Silver Nanoparticles Synthesized from Goat, Cow and Buffalo Urine Against Colletotrichum gloeosporioides Causing Anthracnose Disease.
CN110790363A (zh) 一种畜禽养殖污水资源化处理方法及其应用
RU2552938C2 (ru) Биопрепарат для повышения продуктивности сельскохозяйственной продукции и способ получения биопрепарата для повышения продуктивности сельскохозяйственной продукции
US20210352902A1 (en) Composition for growth stimulation and resistance to stress factors for plants of the cannabaceae family
TWI671277B (zh) 一種蚓糞產製液肥及其應用
RU2708914C1 (ru) Способ возделывания рыжика озимого на семена

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171023