RU2622508C1 - Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков - Google Patents

Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков Download PDF

Info

Publication number
RU2622508C1
RU2622508C1 RU2016103657A RU2016103657A RU2622508C1 RU 2622508 C1 RU2622508 C1 RU 2622508C1 RU 2016103657 A RU2016103657 A RU 2016103657A RU 2016103657 A RU2016103657 A RU 2016103657A RU 2622508 C1 RU2622508 C1 RU 2622508C1
Authority
RU
Russia
Prior art keywords
complex
information
station
measuring
portable personal
Prior art date
Application number
RU2016103657A
Other languages
English (en)
Inventor
Александр Михайлович Петушков
Михаил Юрьевич Кисляков
Александр Павлович Маслов
Борис Борисович Гирин
Федор Витальевич Анзигитов
Алексей Валерьевич Костюков
Станислав Викторович Ушаков
Original Assignee
Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") filed Critical Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority to RU2016103657A priority Critical patent/RU2622508C1/ru
Application granted granted Critical
Publication of RU2622508C1 publication Critical patent/RU2622508C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к космической технике. Мобильный измерительный пункт включает центральный пост управления, комплекс обработки информации, радиотелеметрический комплекс, периферийную земную станцию спутниковой связи, антенную систему, средства локальной вычислительной сети, средства пользовательского интерфейса. Центральный пост управления включает совокупность переносных персональных компьютеров и терминал спутниковой связи. Комплекс обработки информации включает совокупность переносных персональных компьютеров, подключённых к коммутатору локальной вычислительной сети. Переносные персональные компьютеры центрального поста управления и/или комплекса обработки информации взаимодействуют через периферийную земную станцию спутниковой связи с центром анализа информации наземного автоматизированного комплекса управления космическими аппаратами и измерений и представляют собой оконечный пункт канала связи с центром анализа информации. Техническим результатом изобретения является обеспечение рационального распределения выполняемых комплексом задач. 2 з.п. ф-лы, 3 ил.

Description

Предлагаемое изобретение относится к области космической техники, а именно к средствам приёма и обработки информации от ракет-носителей и разгонных блоков.
В качестве ближайшего аналога предлагаемого изобретения может быть выбран наземный мобильный измерительный комплекс, предложенный в патенте на изобретение RU2188508, опубликованном в 2002 г. Известный мобильный измерительный комплекс содержит взаимосвязанные между собой посредством вычислительной сети средства управления и обработки информации, включая телеметрическую информацию, средства спутниковой связи, антенную систему. В свою очередь, предлагаемое изобретение представляет собой дальнейшее совершенствование средств мобильных измерительных комплексов космического назначения и позволит предложить мобильный измерительный комплекс, характеризующийся рациональным сочетанием оборудования и оптимальным взаимодействием с оборудованием наземного измерительного комплекса.
Таким образом, предложен мобильный измерительный пункт для изделий ракетно-космической техники, содержащий взаимосвязанные между собой посредством вычислительной сети средства управления и обработки информации, включая телеметрическую, средства спутниковой связи, антенную систему. В отличие от аналога мобильный измерительный пункт включает центральный пост управления, комплекс обработки информации, периферийную земную станцию спутниковой связи, антенную систему, зарезервированные средства локальной вычислительной сети.
Центральный пост управления включает совокупность переносных персональных компьютеров, подключённых к коммутатору локальной вычислительной сети и связанных с антенной системой, для резервирования автоматизированного рабочего места автоматической системы наведения антенны, базовую хронометрическую станцию и терминал спутниковой связи.
Комплекс обработки информации включает совокупность переносных персональных компьютеров, подключённых к коммутатору локальной вычислительной сети с установленным на них программным обеспечением обработки телеметрической информации разгонных блоков и ракет-носителей.
Радиотелеметрический комплекс включает переносные персональные компьютеры, блоки приемников и демодуляторов, подключённые к коммутатору локальной вычислительной сети, и распределитель сигнала, связанный с антенной системой и блоками приемников. При этом переносные компьютеры также подключены к сетевому оборудованию мобильного измерительного пункта в целом.
Антенная система, связанная с переносными персональными компьютерами центрального поста управления (для резервирования автоматизированного рабочего места автоматической системы наведения антенны) и распределителем сигнала радиотелеметрического комплекса, переносной персональный компьютер автоматизированной системы наведения входит в состав антенной системы и подключен к сетевому оборудованию мобильного измерительного пункта.
Переносные персональные компьютеры центрального поста могут взаимодействовать через периферийную земную станцию спутниковой связи с центром анализа информации от ракет-носителей и разгонных блоков для получения баллистической и технологической информации. Переносные персональные компьютеры комплекса обработки информации также могут взаимодействовать через периферийную земную станцию спутниковой связи с центром анализа информации для выдачи сокращенных или сжатых потоков телеметрической информации в центре анализа информации. Переносные персональные компьютеры малогабаритного радиотелеметрического комплекса также могут взаимодействовать через периферийную земную станцию спутниковой связи с центром анализа информации для выдачи на него полных потоков телеметрической информации. При этом любой из вышеперечисленных переносных персональных компьютеров представляет собой оконечный пункт канала связи с указанным центром анализа информации. Периферийная земная станция спутниковой связи соединена с коммутаторами из состава сетевого оборудования мобильного измерительного пункта через блок средств защиты информации.
В целом средства мобильного измерительного пункта представляют собой часть топологии (конфигурации) комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков, соответствующей трассе полёта ракеты-носителя и/или разгонного блока. Мобильный измерительный пункт представляет собой часть надстройки транспортного средства, преимущественно наземного.
Предложенное изобретение поясняется схемами.
Рис. 1 – Структурная схема мобильного измерительного пункта.
Рис. 2 – Схема размещения средств мобильного измерительного пункта в транспортном средстве.
Рис. 3 – Схема расположения мобильных измерительных пунктов при запусках ракет-носителей с космодрома «Восточный» (а) и выводе космических аппаратов на геостационарную (б) и солнечно-синхронную орбиту.
Оборудование мобильного измерительного пункта представляет собой совокупность компьютерных средств обработки данных: серверов, персональных компьютеров, рабочих станций различного типа и т.п.; совокупность средств пользовательского и межсетевого интерфейса; программного обеспечения, необходимого для выполнения расчетов. Перечисленные компьютерные средства управления управляются компетентными специалистами, которые взаимодействуют с вычислительными и информационными ресурсами данных средств, с образованием системы «человек – машина». Оборудование мобильного измерительного пункта (рис. 1, рис. 2) состоит из центрального поста управления 1, комплекса обработки информации 2, радиотелеметрического комплекса 3, периферийной земной станции спутниковой связи 4, антенной системы, средств локальной вычислительной сети и средств пользовательского интерфейса, образующих подсистемы «человек – машина» внутри системы «человек – машина» мобильного измерительного пункта.
Выбор оборудования мобильного измерительного пункта и связей между отдельными аппаратными комплексами обеспечивает рациональное распределение выполняемых мобильным измерительным пунктом задач по приёму телеметрической информации от ракет-носителей, разгонных блоков и космических аппаратов и получения необходимой исходной информации от центра анализа информации от ракет-носителей и разгонных блоков и центров управления полётами.
Центральный пост управления 1 включает совокупность переносных персональных компьютеров – ноутбуков (УВМ 1 ЦПУ, УВМ 2 ЦПУ) 11,2, подключённых к резервированному коммутатору 61,2 локальной вычислительной сети и связанных с антенной системой (для резервирования АРМ АСНА) 5, и терминал спутниковой связи 7 Инмарсат (TT3720A), метеостанцию. Центральный пост управления 1 также оборудован ip телефоном, компьютеры 11,2 подключены к серверу видеорегистратора для мониторинга с камер видеонаблюдения. Центральный пост управления 1 обеспечивает централизованное управление, контроль, тестирование составных частей мобильного измерительного пункта и организацию взаимодействия с внешними абонентами с целью получения технологической и баллистической информации. В частности, при работе центрального поста управления 1 тестируется состояние оборудования мобильного измерительного пункта – компьютеров, сетевых средств и т.п., задаются настройки радиотелеметрического комплекса 3. Также обеспечивается управление компьютеров 11,2, 21,2,3, 31,2, 51 и контроль работы операторов, задаются метки времени в приёмники радиотелеметрического комплекса 3 с выводом декретного времени на цифровое табло. Обеспечивается контроль электромагнитной обстановки, контролируются технические средства периферийной земной станции спутниковой связи 4. Рассчитываются целеуказания для антенной системы по исходным данным, полученными от центра анализа информации, на участках орбитального полёта разгонного блока и космического аппарата.
Комплекс обработки информации 2 включает совокупность переносных персональных компьютеров – ноутбуков (УВМ 6 КОИ, УВМ 7 КОИ, УВМ 8 КОИ) 21,2,3, подключённых к коммутаторам 61,2 локальной вычислительной сети. Комплекс обработки информации 2 формирует сокращённые или сжатые полные потоки телеметрической информации для последующей передачи в центры обработки по спутниковым каналам связи. Каждый из компьютеров 21,2,3 комплекса обработки информации может регистрировать два полных потока телеметрической информации структур «Орбита-IVMO», «Пирит-РБ», РТС-9 (ВИМ), РТС-9Ц (КИМ-Ц), БИТС-2, БИТС-2Т, РТСЦМ -2, БРС-4 («Скут», «Сириус»), поступающих от радиотелеметрического комплекса 3, и обрабатывать телеметрическую информацию от ракеты-носителя «Союз-2» и «Ангара», разгонного блока «Фрегат» и блока выведения «Волга».
Малогабаритный радиотелеметрический комплекс 3 включает совокупность переносных персональных компьютеров – ноутбуков (МРТК УВМ-4, МРТК УВМ-5) 31,2, подключённых к коммутаторам 61,2 из состава сетевого оборудования 5 блоков приемников и демодуляторов, распределитель сигнала 33, связанный с антенной системой 5, и коммутатора, соединяющего ПЭВМ и блоки приемников. Радиотелеметрический комплекс 3 обеспечивает одновременный приём и регистрацию четырёх разночастотных потоков высокочастотных сигналов телеметрической информации в двух ортогональных поляризациях радиоволн в диапазонах радиочастот Д1, Д2 и Д4 с автовыбором между поляризациями.
Антенная система 5, связанная с переносными персональными компьютерами 11,2 центрального поста управления 1 и распределителем 33 сигнала радиотелеметрического комплекса 3, подключена к коммутатору 61,2 локальной вычислительной сети через переносной персональный компьютер автоматизированной системы наведения 51. Антенная система 5 состоит из рефлектора, совмещенного облучателя и малошумящих усилителей диапазонов Д1, Д2 и Д4, подъемно-установочной системы, опорно-поворотного устройства, автоматизированной системы наведения антенны (АСНА), блока контроллера наведения, блока управления приводами, систем горизонтирования и ориентирования, светотехнической системы. Антенная система диаметром 3,8 метров при свертывании укладывается в стандартный 20-футовый контейнер, при этом демонтируется только облучатель, а остальные составные части складываются и закрепляются на сложенном зеркале. Антенная система 5 обеспечивает независимый прием высокочастотных сигналов двух взаимоортогональных поляризаций в диапазонах частот Д1, Д2 и Д4, их усиление малошумящими усилителями и передачу на вход радиотелеметрического комплекса 3.
Периферийная земная станция спутниковой связи 4 соединена с коммутаторами 61,2 локальной вычислительной сети и центральным постом управления 1 через блок средств защиты информации 8. Периферийная земная станция спутниковой связи 4 обеспечивает связь через ретрансляторы геостационарных космических аппаратов по дуплексным цифровым каналам и оборудована собственной автономной системой навигации с магнитным компасом и приёмоиндикатором спутниковой навигационной системы. Через периферийную земную станцию спутниковой связи 4 обеспечивается взаимодействие средств комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков. Антенный пост периферийной земной станции спутниковой связи 4 включает однозеркальную приёмо-передающую антенну с круговой поляризацией: правая – на прием, левая – на передачу.
Мобильный измерительный пункт представляет собой часть надстройки транспортного средства, например наземного транспортного средства – автомобиля (рис. 2). Аппаратура мобильного измерительного пункта и рабочие места операторов размещены в одном из отсеков аппаратного модуля, отделённого от агрегатных отсеков. Аппаратный модуль компонуется с жилым модулем. Мобильный измерительный пункт может быть смонтирован на шасси грузового автомобиля, например типа КАМАЗ 63501-1025 с колесной формулой 8×8. Автомобиль мобильного измерительного пункта может эксплуатироваться совместно с автомобилем материально-технического обеспечения, например типа УАЗ-39309.
Взаимосвязанный с мобильным измерительным пунктом центр анализа информации, представляющий собой систему «человек – машина», сформированную описанным выше образом, совместно со сведениями, передаваемыми с оперативно-технических пунктов управления командно-измерительных пунктов и измерительного комплекса космодрома и центром координации эксплуатации и развития, формирует оценку текущей ситуации, прогнозирует изменения в орбитальной группировке космических аппаратов, планирует запуски ракет-носителей и разгонных блоков. То есть используется для оценки оперативной обстановки по техническому состоянию и прогнозу ее развития. Исходя из полученных данных, формируется топология (конфигурацию) комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков. То есть средства мобильного измерительного пункта представляют собой часть указанной топологии (конфигурации) комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков, соответствующей трассе полёта ракеты-носителя и/или разгонного блока (рис. 3).
Практическое использование предложенного мобильного измерительного пункта может быть проиллюстрировано следующим образом.
Информационное обеспечение запусков космических аппаратов ракетами космического назначения заключается в получении, сборе и обработке данных о функционировании их бортовых систем, траектории, выполнении циклограммы полёта, параметров в момент отделения полезной нагрузки. Если полезной нагрузкой является космический аппарат с разгонным блоком, то требуется получение с него измерительной информации в ходе всего полёта до вывода космического аппарата на заданную орбиту. Для выполнения данных задач из средств наземного автоматизированного комплекса космических аппаратов и измерений формируются территориально-распределённые комплексы средств измерений, сбора и обработки данных от ракет космического назначения и наземные измерительные комплексы разгонных блоков. Топология (конфигурация) средств комплекса средств измерений, сбора и обработки данных информации от ракет космического назначения и наземных измерительных комплексов разгонных блоков определяется параметрами траектории их полёта и формируется на каждый запуск индивидуально.
На рис. 3(а) показан примерный диапазон азимутов запуска ракет космического назначения с космодрома «Восточный» и возможные районы размещения наземных измерительных пунктов, которые бы обеспечили информационное обеспечение запусков по всем направлениям. На рис. 3(б, в) показаны примеры трасс разгонных блоков при выводе космического аппарата на геостационарную [рис. 3(б)] и солнечно-синхронную [рис. 3(в)] орбиты с космодрома «Восточный» и возможные районы размещения наземных измерительных пунктов, которые бы обеспечили информационное обеспечение запусков. Необходимо создание от восьми до десяти стационарных измерительных пунктов наземного базирования и от трёх до четырёх измерительных пунктов морского базирования. Создание сети стационарных измерительных пунктов в приполярных районах сопряжено, в первую очередь, со строительными и организационными трудностями, высокой стоимостью, а также сложностью организации применения технических средств. Кроме того, из-за ожидаемой интенсивности запусков ракет-носителей с космодрома «Восточный» – 10-20 в год коэффициент использования наземных средств не превысит 1%.
Для сокращения потребного числа измерительных пунктов и повышения степени их использования предложено создать нескольких мобильных измерительных пунктов, базирующихся при космодроме. Из мобильных измерительных пунктов формируют архитектуру комплекса средств измерений, сбора и обработки данных от ракет космического назначения и наземных измерительных комплексов разгонных блоков под каждый конкретный запуск. При нахождении мобильных измерительных пунктов в районе космодрома или в районах применения они могут также выполнять сеансы приёма телеметрической информации с космических аппаратов. Также возможно использование стационарных наземных измерительных пунктов на наиболее часто используемых трассах запуска ракет-носителей и разгонных блоков и создание мобильных наземных средств и средств их переброски в районы пролёта ракет-носителей и разгонных блоков по редкоиспользуемым трассам.
При непосредственной подготовке к проведению информационного обеспечения запуска ракеты космического назначения центр анализа информации определяет места размещения измерительных пунктов по трассе полёта ракеты-носителя, разрабатывает способы и временной график доставки мобильных средств на промежуточные и основные рабочие позиции; разрабатывает программу работы каждого средства и подготовку индивидуальных для каждого измерительного пункта данных. При помощи автоматизированной системы оперативно-технических пунктов управления контролируют выдвижение, перемещение, прибытие мобильных измерительных пунктов на рабочие позиции, контролируют готовность к проведению сеансов связи, собирают данные топогеодезической привязки мобильных средств и метеоданные. Центр координации, эксплуатации и развития, получив сообщение о готовности мобильного измерительного пункта к работе, выполняет необходимые изменения в таблице состава и состояния средств и выдаёт необходимое сообщение об изменении в центр ситуационного анализа, координации и планирования. Центр ситуационного анализа, координации и планирования после получения сообщения оповещает об этом центры управления полётом и центр анализа информации и планирует привлечение средств мобильных измерительных пунктов к выполнению задач управления космическими аппаратами и информационного обеспечения запуска ракет-носителей.
В дальнейшем, центр анализа информации детально планирует сеансы связи измерительных пунктов с ракетой космического назначения, выдаёт заявки в центр ситуационного анализа, координации и планирования для включения сеансов связи в суточные планы, рассылает общие (планируемое время «контакта подъема», литеры частот, исходные технологические данные для приема и обработки телеметрической информации) и индивидуальные для каждого измерительного пункта директивы (целеуказания для наведения антенн, время начала и завершения работы), осуществляет коммутацию наземных и спутниковых каналов связи. Непосредственно, в сутки запуска центр анализа информации в установленное время с помощью средств автоматизированной системы оперативно-технологических пунктов управления осуществляет контроль состояния всего комплекса средств измерений, сбора и обработки данных и выдаёт сигнал готовности к информационному обеспечению запуска ракеты космического назначения. Таким образом, при использовании мобильного измерительного пункта центр анализа информации на основании плана запусков рассчитывает траектории полёта ракеты космического назначения, разрабатывает предварительную программу работы средств комплекса средств измерений, сбора и обработки данных от ракет космического назначения и наземных измерительных комплексов разгонных блоков при запуске ракеты космического назначения, готовят данные для обработки телеметрической информации от ракеты-носителя и разгонного блока.
Мобильный измерительный пункт получает данные для перебазирования, готовит средства к выдвижению на рабочие позиции из исходного состояния или с текущей рабочей позиции и перемещается согласно установленному маршруту и графику движения. По прибытии в район применения мобильный измерительный пункт осуществляет развертывание, включение и проверку систем, топогеодезическую привязку, устанавливает связь с центрами анализа информации и координации эксплуатации и развития и передаёт данные о месте размещения и состоянии оборудования. При подготовке к сеансу связи осуществляется подключение к циркулярной связи центра анализа информации по обеспечению запуска, от центра анализа информации получают точное время срабатывания контакта подъема, перерасчитывают целеуказания при несовпадении планового и реального времени контакта подъема, осуществляется наведение антенн, вхождение в связь с ракетой-носителем или разгонным блоком, приём и экспресс-обработка полученной информации и передача полученной информации или результатов обработки в центр анализа информации.
Мобильный измерительный пункт ежедневно в установленное время выходит на связь с оперативно-техническими пунктами управления центра координации, эксплуатации и развития и центра ситуационного анализа, координации и планирования для выдачи ежесуточных отчётов, получения исходных данных для проведения сеансов связи с космическим аппаратом; проводит сеансы связи с космическим аппаратом, производит обработку полученной информации, выдает результаты обработки в соответствующий центр управления полётом.

Claims (13)

1. Мобильный измерительный пункт для изделий ракетно-космической техники, содержащий взаимосвязанные между собой посредством вычислительной сети средства управления и обработки информации, включая телеметрическую информацию, средства спутниковой связи, антенную систему, отличающийся тем, что включает
центральный пост управления, комплекс обработки информации, периферийную земную станцию спутниковой связи, резервированные средства локальной вычислительной сети, средства защиты информации, средства пользовательского интерфейса, при этом
a) центральный пост управления включает
совокупность переносных персональных компьютеров, подключённых к коммутаторам локальной вычислительной сети и связанных с антенной системой,
b) комплекс обработки информации включает совокупность переносных персональных компьютеров, подключённых к коммутатору локальной вычислительной сети,
c) радиотелеметрический комплекс включает
совокупность переносных персональных компьютеров, подключённых к коммутаторам локальной вычислительной сети, и
распределитель сигнала, связанный с антенной системой,
d) антенная система, связанная с переносными персональными компьютерами центрального поста управления и распределителем сигнала радиотелеметрического комплекса, подключена к коммутатору локальной вычислительной сети через переносной персональный компьютер автоматизированной системы наведения, причём
переносные персональные компьютеры центрального поста управления и/или комплекса обработки информации взаимодействуют через периферийную земную станцию спутниковой связи с центром анализа информации от ракет-носителей и разгонных блоков и представляют собой оконечный пункт канала связи с данным центром анализа информации, также
упомянутые средства (a, b, c, d) мобильного измерительного пункта представляют собой часть топологии (конфигурации) комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков, соответствующей трассе полёта ракеты-носителя и/или разгонного блока.
2. Мобильный измерительный пункт по п. 1, отличающийся тем, что периферийная земная станция спутниковой связи соединена с упомянутым коммутатором локальной вычислительной сети и центральным постом управления через блок средств защиты информации.
3. Мобильный измерительный пункт по п. 1, отличающийся тем, что представляет собой часть надстройки транспортного средства, преимущественно наземного.
RU2016103657A 2016-02-04 2016-02-04 Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков RU2622508C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016103657A RU2622508C1 (ru) 2016-02-04 2016-02-04 Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016103657A RU2622508C1 (ru) 2016-02-04 2016-02-04 Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков

Publications (1)

Publication Number Publication Date
RU2622508C1 true RU2622508C1 (ru) 2017-06-16

Family

ID=59068311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016103657A RU2622508C1 (ru) 2016-02-04 2016-02-04 Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков

Country Status (1)

Country Link
RU (1) RU2622508C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759173C1 (ru) * 2021-03-30 2021-11-09 Акционерное общество "Государственный космический научно-производственный центр имени М.В. Хруничева" (АО "ГКНПЦ им. М.В. Хруничева") Способ навигационного контроля орбит выведения космических аппаратов и система для его реализации
RU2768055C1 (ru) * 2021-09-13 2022-03-23 Игорь Владимирович Догадкин Способ уничтожения надводных целей ракетами, отделяемыми от ракеты-носителя с подводным стартом
RU2775091C1 (ru) * 2021-11-08 2022-06-28 Игорь Владимирович Догадкин Способ уничтожения подводной цели, запустившей ракету из-подо льда

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187805A (en) * 1989-10-02 1993-02-16 Motorola, Inc. Telemetry, tracking and control for satellite cellular communication systems
RU2188508C1 (ru) * 2001-11-06 2002-08-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П.Королева" Наземный мобильный измерительный комплекс
WO2003029922A2 (en) * 2001-10-01 2003-04-10 Kline & Walker, Llc Pfn/trac system faa upgrades for accountable remote and robotics control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187805A (en) * 1989-10-02 1993-02-16 Motorola, Inc. Telemetry, tracking and control for satellite cellular communication systems
WO2003029922A2 (en) * 2001-10-01 2003-04-10 Kline & Walker, Llc Pfn/trac system faa upgrades for accountable remote and robotics control
RU2188508C1 (ru) * 2001-11-06 2002-08-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П.Королева" Наземный мобильный измерительный комплекс

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759173C1 (ru) * 2021-03-30 2021-11-09 Акционерное общество "Государственный космический научно-производственный центр имени М.В. Хруничева" (АО "ГКНПЦ им. М.В. Хруничева") Способ навигационного контроля орбит выведения космических аппаратов и система для его реализации
RU2768055C1 (ru) * 2021-09-13 2022-03-23 Игорь Владимирович Догадкин Способ уничтожения надводных целей ракетами, отделяемыми от ракеты-носителя с подводным стартом
RU2775091C1 (ru) * 2021-11-08 2022-06-28 Игорь Владимирович Догадкин Способ уничтожения подводной цели, запустившей ракету из-подо льда
RU2775903C1 (ru) * 2021-12-20 2022-07-11 Игорь Владимирович Догадкин Способ уничтожения подземных целей ракетами, отделяемыми от ракеты-носителя

Similar Documents

Publication Publication Date Title
US10531505B2 (en) Communicating with unmanned aerial vehicles and air traffic control
US8019336B2 (en) Slice based architecture for a multifunction radio
KR20150117879A (ko) 모바일 통신 기반 무인항공기 관제 시스템
EP3258619B1 (en) Airbourne cellular communication system
US20240137110A1 (en) Method Capable of Reducing Frequency Interference, and Communication Satellite System
RU2563972C1 (ru) Пространственно-распределенный комплекс средств создания радиопомех
RU2622508C1 (ru) Мобильный измерительный пункт комплекса средств измерений, сбора и обработки информации от ракет-носителей и/или наземного измерительного комплекса разгонных блоков
CN103684576A (zh) 一种基于小卫星集群自组网的数据高速通信方法
KR20020070990A (ko) 항공기와 위성 통신의 인터페이싱을 위한 시스템 및 방법
RU2530015C2 (ru) Система радиосвязи с подвижными объектами
Gladden et al. Preparing the Mars Relay Network for the Arrival of the Perseverance Rover at Mars
WO2018026521A1 (en) Radio interference detection
JP2002365356A (ja) 地下又は建築構造物内で使用可能なgps方式
RU2284550C2 (ru) Космическая автоматизированная система контроля за подвижными объектами
Aliakbarian et al. A digitally beam-steerable antenna array system for positioning-based tracking applications
RU2290763C1 (ru) Система определения местонахождения и слежения за удаленными подвижными объектами
RU2441203C1 (ru) Комплексированный универсальный всепогодный способ определения местоположения и посадки воздушного судна и устройство его осуществления
RU2622514C1 (ru) Способ информационного обеспечения запусков космических аппаратов ракетами космического назначения и наземный автоматизированный комплекс управления космическими аппаратами научного и социально-экономического назначения и измерений, предусматривающий использование способа
RU2522715C2 (ru) Способ управления многолучевым покрытием зоны обслуживания в спутниковой системе с использованием спутников-ретрансляторов на высокоэллиптической орбите
CN112835382A (zh) 一种基于无人机的5g基站测试系统
RU2503127C2 (ru) Многофункциональная космическая система ретрансляции для информационного обмена с космическими и наземными абонентами
WO2000075685A1 (en) Method and arrangement for correcting positioning information
RU2713679C1 (ru) Унифицированный командно-измерительный пункт
US20240174383A1 (en) Satellite Array System for Detection and Identification
MOORE The Western Aeronautical Test Range of NASA Ames Research Center