RU2622387C2 - Способ генерирования химически активных частиц в жидкости с использованием электрического разряда - Google Patents

Способ генерирования химически активных частиц в жидкости с использованием электрического разряда Download PDF

Info

Publication number
RU2622387C2
RU2622387C2 RU2015141152A RU2015141152A RU2622387C2 RU 2622387 C2 RU2622387 C2 RU 2622387C2 RU 2015141152 A RU2015141152 A RU 2015141152A RU 2015141152 A RU2015141152 A RU 2015141152A RU 2622387 C2 RU2622387 C2 RU 2622387C2
Authority
RU
Russia
Prior art keywords
discharge
liquid
plasma
radiation
electric discharge
Prior art date
Application number
RU2015141152A
Other languages
English (en)
Other versions
RU2015141152A (ru
Inventor
Игорь Михайлович Пискарев
Original Assignee
Игорь Михайлович Пискарев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Михайлович Пискарев filed Critical Игорь Михайлович Пискарев
Priority to RU2015141152A priority Critical patent/RU2622387C2/ru
Publication of RU2015141152A publication Critical patent/RU2015141152A/ru
Application granted granted Critical
Publication of RU2622387C2 publication Critical patent/RU2622387C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к области генерирования химически активных частиц физическими методами воздействия и может быть использовано в биомедицинских исследованиях. Основу изобретения составляет искровой электрический разряд на воздухе, создающий плазму, излучение которой создает в обрабатываемой жидкости химический эффект. Технический результат - увеличение энергетической эффективности воздействия. Способ генерирования химически активных частиц в жидкости с использованием электрического разряда содержит этап, при котором на обрабатываемый объект воздействуют импульсным ультрафиолетовым излучением плазмы электрического разряда (200-280 нм), величина разрядной емкости С составляет 3.3 нф, величина высокого напряжения 11 кВ, величина балластного сопротивления R=14 МОм, зазор между разрядными электродами 3 мм. Мощность импульса электрического разряда оптимизирована для получения максимального химического эффекта в жидкости. Положение максимума спектра излучения плазмы выбрано в районе 220 нм. При увеличении мощность разряда максимум спектра сдвигается в область более коротких волн, когда большая часть энергии поглощается воздухом, а при уменьшении мощности максимум спектра сдвигается в область более длинных волн, химическая активность которых меньше. Кроме того, при большой мощности разряда активные частицы, образующиеся в жидкости под действием излучения, гибнут во взаимодействиях между собой, не производя химического эффекта. 2 ил., 2 табл.

Description

Область техники
Изобретение относится к области генерирования химически активных частиц физическими методами воздействия и может быть использовано в биомедицинских исследованиях. Приборы этого типа используются в биофизических исследованиях для изучения реакций активных форм кислорода и азота, образующихся под действием физического воздействия, в биомедицинских исследованиях и в медицине, когда механизм действия генерируемых активных частиц в данных условиях становится полностью изученным и показан их терапевтический эффект.
Уровень техники
Известен способ получения химически активных частиц под действием излучения ртутной лампы. В отпаянной колбе, наполненной газом и содержащей ртуть, под действием приложенного переменного напряжения промышленной частоты зажигается дуговой электрический разряд. После разогрева лампы в газовой фазе появляются пары ртути. Под действием электрического разряда в молекулах ртути возбуждается уровень, который разряжается с испусканием фотона с длиной волны λ=253.7 нм. Лампа имеет высокий коэффициент полезного действия, почти вся энергия, выделяемая в электрическом разряде, уносится фотонами с λ=253.7 нм. Лампа обладает сильным бактерицидным эффектом, так как молекулы ДНК поглощают фотоны 253.7 нм и после этого разрушаются. Однако химический эффект в облучаемой жидкости практически не заметен [1, 2].
Известен также способ генерирования химически активных частиц с использованием скользящего электрического разряда [3]. Скользящий разряд формируется в точке минимального расстояния между двумя расходящимися проводящими электродами. Между электродами через сопло продувается газ, который направляется на обрабатываемый объект. Для зажигания и поддержания разряда может использоваться постоянное высокое напряжение, переменный ток и высоковольтные импульсы. Зависимости химических эффектов скользящего разряда от способов его зажигания и поддержания замечено не было. Установлена зависимость химических эффектов от скорости продува газом и от диаметра сопла, через которое газ поступает в область разряда, и от состава газа. Образующаяся в области разряда плазма является горячей. Поток газа, направленный вдоль оси реактора, увлекает разряд вдоль поверхности электродов к их концу, разряд скользит по поверхности электродов. По мере удаления от точки возникновения длина разряда увеличивается и температура в области дуги уменьшается. Дуговой разряд распадается и остается светящаяся область. Температура светящейся области уменьшается до температуры окружающей среды. После тушения плазмы остаются вторичные активные частицы, образовавшиеся после взаимодействия газовой смеси с первичными продуктами в области возникновения разряда. При реализации этого способа был обнаружен химический эффект скользящего электрического разряда, заключающийся в уменьшении pH обрабатываемой жидкости. Химический эффект зависит от состава продуваемого через разрядный промежуток газа, однако в работе [3] не рассматривалась оптимизация параметров скользящего разряда с целью увеличения химического эффекта.
Наиболее близким к заявляемому техническому решению является генератор плазмы скользящего разряда, в котором через разрядный промежуток продувается влажный воздух [4]. В работе [4] размер сопла, через которое в разрядный промежуток подается влажный воздух, и скорость продува были оптимизированы, получен сильный химический эффект. Электрические параметры разряда не оптимизировались. Описанный способ принят за прототип изобретения.
Раскрытие изобретения
Рассмотрим реализацию способа, оптимизацию химического эффекта, создаваемого излучением плазмы в обрабатываемой жидкости. Схема формирования разряда представлена на фиг. 1. Импульсный конденсатор С марки КВИ-3 (рабочее напряжение 10 кВ) заряжался через балластное сопротивление R=14 МОм от источника питания Uип=11 кВ. Величина емкости варьировалась от 1 до 20 нФ. Электроды из прутка нержавеющей стали диаметром 2 мм имели суммарную длину не более 15 мм. Обкладки конденсатора соединялись с электродами алюминиевой шиной сечением 100 мм2. Зазор между электродами устанавливался так, чтобы пробивное напряжение промежутка составляло 6 кВ (расстояние между электродами ~3 мм). При подаче постоянного высокого напряжения происходил искровой разряд. Частота повторения импульсов разряда зависела от величины емкости C и сопротивления R. Длительность переднего фронта импульса 50 нc. Полная длительность импульса 100 мкс.
Энергия, выделяемая в одном импульсе, определялась энергией, запасенной в конденсаторе. Исследовалась зависимость величины pH пробы воды объемом 40 мл, наливаемой в чашку 6 (фиг. 1), после обработки излучением плазмы электрического искрового разряда в течение 10 минут от величины емкости С. Проба воды находилась на расстоянии 20 мм от области электрического разряда. Емкость C меняли от 1 до 20 нФ. Величина балластной емкости R оставалась неизменной. При изменении величины C менялась частота повторения импульсов, но энергия, потребляемая от источника питания, была неизменной, в диапазоне 3.3<C<20 нФ средний потребляемый от источника питания ток составлял 0.5 мА. Обрабатывалась дважды дистиллированная вода, рН=6.5. Результаты измерений представлены на фиг. 2.
Из фиг. 2 видно, что после обработки величина pH воды уменьшается от 6.5 в исходной воде до 3-3.4 в обработанной. Наибольшее уменьшение pH достигалось при величине разрядной емкости C=3.3 нФ, получено значение рН=3.07±0.02. Проводились дополнительные эксперименты с целью выяснить, связано ли уменьшение pH с действием излучения плазмы или оно обусловлено попаданием в воду частиц, образующихся в области электрического разряда.
Излучатель (область разряда) закрывали поочередно фильтрами, устанавливаемыми в положение 4 (см. фиг. 1): 1) стеклянным фильтром с полосой пропускания от 278 нм и выше; 2) кварцевым стеклом с полосой пропускания от 185 нм и выше; 3) без фильтра - полоса пропускания излучения определялась слоем воздуха; 4) без фильтра в положении 4, но излучатель закрывали фторопластовой пластиной толщиной 1 мм, устанавливаемой в положение 3 (фиг. 1), непрозрачной для излучения. При этом в случае 4 газовые полости над водой и в зоне разряда свободно сообщались.
Выявлено, что под действием длинноволнового излучения разряда с λ>278 нм (случай 1) значение pH воды не меняется. При обработке воды открытым разрядом без фильтра и с кварцевым фильтром, у которого область пропускания при λ>185 нм (случаи 2, 3), в обоих случаях наблюдается снижение pH до уровня ~3.0. В случае 4, когда световое излучение из области разряда было закрыто фторопластовой пластинкой, а газовые полости разряда и над поверхностью воды сообщались, разницы в величине pH исходной и обработанной воды не наблюдалось. Таким образом можно утверждать, что химический эффект в жидкости обусловлен действием УФ-излучения плазмы искрового разряда с λ<280 нм.
Оценим спектральные характеристики излучения. Для этого рассмотрим соотношение между энерговкладом в плазменный шнур и температурой плазмы. Пусть η - КПД преобразования электрической энергии в нагрев плазмы, W0=CU2/2 - энергия заряда конденсатора. Тогда
Figure 00000001
Здесь ρ=1.29 10-3 г/см3 - плотность воздуха; r - радиус плазменного шнура; ℓ - длина разрядного промежутка; cv=0.72 Дж г-1 град-1 - теплоемкость воздуха при постоянном объеме.
Если напряжение, при котором происходит пробой искрового промежутка, U=6 кВ, то для C=3.3 нФ энергия разряда составит
Figure 00000002
. При длине искрового промежутка ℓ=3 мм и диаметре плазменного шнура ~0.7 мм (диаметр шнура оценивался визуально путем фотографирования искры) температура нагрева плазменного шнура согласно соотношению (1) составит ~1.3 104К. В случае излучения черного тела в соответствии с законом смещения Вина максимум спектра излучения (λmax) связан с температурой тела (Т): λmax(м)=2.9 10-3/Т (К). При Т~1.3 104К λmax=220 нм. Такое излучение будет проходить через воздух и попадать в жидкость, поэтому выбор емкости C=3.3 нФ является оправданным. Характер спектра излучения, положение максимума спектра определено экспериментально, результаты расчета были подтверждены.
При увеличении емкости и разрядного напряжения максимум излучения будет смещаться в область вакуумного ультрафиолета с λ<180 нм. Излучение с λ<180 нм поглощается воздухом, не доходит до поверхности обрабатываемого объекта. Из-за потери излучения с λ<180 нм КПД источника УФ-излучения уменьшается.
При уменьшении емкости меньше оптимального значения выделение энергии в импульсе уменьшается, температура разряда уменьшается, максимум спектра смещается в сторону более длинных волн, химическая активность которых слабее. По мере остывания искрового шнура после окончания разряда максимум спектра излучения будет смещаться в сторону более длинных волн, проходить через всю область 180-280 нм и вызывать химические и биохимические эффекты. С увеличением длины волны больше 280 нм химические эффекты уменьшаются, изменение pH обрабатываемой воды уже не происходит.
Краткое описание чертежей
На фиг. 1 изображена блок-схема опытной установки для определения химического эффекта излучения:
1 - искровой разрядник; 2 - корпус разрядника; 3 - место установки фторопластовой пластинки; 4 - место установки стеклянных светофильтров; 5 - реакционная камера; 6 - ячейка с жидкостью.
На фиг. 2 представлен график зависимости pH пробы воды объемом 40 мл после обработки излучением плазмы импульсного электрического искрового разряда в течение 10 минут от величины емкости разрядного конденсатора C (нФ). Напряжение питания 11 кВ, средний потребляемый ток 0.5 мА. Балластное сопротивление R=14 МОм.
Осуществление изобретения
Сравнение энергетической эффективности скользящего разряда (прототип) и источника излучения на основе предлагаемого изобретения
С помощью заявляемого способа обрабатывались пробы воды объемом 150 мл. Время обработки 1 час. Обрабатывались растворы с pH от 3 до 13. Кислая среда создавалась добавлением в дистиллированную воду азотной кислоты, щелочная - NaOH. Дополнительно измеряли изменение pH гидрокарбонатного буферного раствора NaHCO3 (0.1 М)/Na2CO3 (0.1 М), рН0=9.86. Время обработки гидрокарбонатного буфера 1 и 2 часа. Использовалась дважды дистиллированная вода рН0=6.5, химически чистые реактивы. Величина pH измерялась сразу после обработки раствора излучением плазмы прибором Эксперт-001 фирмы Эконикс (Москва, Россия). В связи с малой разницей исходных и конечных значений pH измерения при каждом pH0 повторялись 6 раз. Идентификацию ионов кислотных остатков осуществляли с помощью ионоселективных электродов ЭM-NO3-01 (ионы NO3 -) и ЭM-NO2-01 (ионы NO2 -) ("Тбилприбор" НПО "Аналитприбор", Грузия, г. Тбилиси, 2010 г.).
Сразу после обработки излучением плазмы искрового разряда кислотность раствора уменьшалась. Начальные значения рН0 и конечные pHtreat, а также соответствующие изменению ΔpH=pH0-pHtreat выходы ионов Δ[Н+]=10рН ° -pH treat, связанные с наработкой ионов кислотных остатков, приведены в таблице 1. Выходы Δ[H+] и соответствующие им ошибки получены путем усреднения 6 серий измерений. Из таблицы 1 видно, что выход кислотных остатков при рН0 от 3.06 до 11.5 практически не меняется и находится в пределах (1-3)×10-3 моль(л ч)-1, среднее значение (1.8±1)×10-3 моль(л ч)-1.
Figure 00000003
Figure 00000004
В растворе бикарбонатного буфера NaHCO3/Na2CO3 (величина рКа=9.86) при Cacid(NaHCO3)=Csalt(Na2CO3)=0.1 моль/л рН0=9.86±0.02. Через 1 час обработки излучением плазмы кислотность уменьшилась до pHtreat=9.8±0.02, а через 2 часа до pHtreat=9.75±0.02. Если в буферном растворе под действием внешнего воздействия образуется Δ[pH+] ионов водорода, компенсирующих образование кислотных остатков, то значение pH буферного раствора будет определяться выражением:
Figure 00000005
где рКа - константа диссоциации кислоты, Cacid и Csalt - концентрации кислоты и ее соли. Соотношение (2) позволяет найти Δ[H+], если известно значение pHtreat после обработки. Обозначим
Figure 00000006
, тогда:
Figure 00000007
Подставляя значения pHtreat, измеренные для бикарбонатного буфера, получим Δ[H+]=(6.9±4)×10-3 моль (л ч)-1. Значение Δ[H+] для бикарбонатного буфера в пределах ошибок измерений близко значениям, полученным для растворов HNO3 и NaOH с рН0<11.5 и приведенным в таблице 1: в среднем Δ[H+]=(1.8±1)×10-3 моль (л ч)-1. Значит, условия проведения обработки не влияют на выход кислотных остатков.
С помощью ионоселективных электродов сразу после обработки воды в ней обнаружены ионы NO2 - и NO3 -. При нейтральных значениях рН0 в растворе оказывается 20% ионов NO2 - и 80% ионов NO3 -, с увеличением рН0 относительное содержание ионов NO2 - увеличивается.
Аналогичные измерения зависимости Δ[H+] от кислотности pH0 под действием скользящего разряда были выполнены с использованием прототипа в работе [4]. Объем обрабатываемой жидкости составлял 170 мл. Мощность разряда 900 Вт, время обработки 1 час. В качестве детектирующих использовались буферные растворы различного состава со значениями pH0 от 2.12 до 11.8. Во всех растворах после обработки наблюдалось уменьшение pH, что свидетельствует о наработке под действием скользящего разряда кислоты (см. соотношение 2). Рассчитанные по формуле 3 значения Δ[H+] приведены в таблице 2. Для всех использованных буферных систем авторами работы [4] были взяты случаи, когда концентрации слабой кислоты и ее соли равны Cacid=Csalt. Тогда в исходном необработанном растворе при Cacid=Csalt и Δ[H+]=0 значение рН0=рКа (см. формулу 2). Исходя из этого, при расчете Δ[H+] по формуле 3 в таблице 2 использовались фактически полученные значения рКа. Эти значения рКа близки табличным величинам, хотя имеются некоторые отличия. Из таблицы 2 видно, что во всем диапазоне исследованных значений pH0 величина Δ[Н+] не зависит от рН0 и в среднем составляет 2.5 10-2 моль л-1ч-1.
Figure 00000008
Figure 00000009
Таким образом, в диапазоне рН0 от 3 до 11.8 выход кислотных остатков под действием излучения плазмы составляет (1.9±1)×10-3 моль л-1ч-1 в объеме обрабатываемой жидкости 150 мл, а под действием скользящего разряда в том же диапазоне рН0 величина Δ[H+]=2.5 10-2 моль(л ч)-1 в объеме обрабатываемой жидкости 170 мл. Видим, что выход под действием скользящего разряда при практически том же объеме обрабатываемой воды примерно в 15 раз больше, чем под действием излучения плазмы, но мощность скользящего разряда прототипа 900 Вт, а мощность генератора излучения плазмы, выполненного с использованием заявляемого способа, составляет 0.59 Вт. Такая разница в химическом эффекте на единицу затрачиваемой энергии связана с оптимизацией выхода активных частиц генератора излучения плазмы.
Таким образом, скорость образования кислотных остатков в нейтральной среде под действием источника излучения плазмы искрового разряда мощностью 0.59 Вт в 15 раз меньше скорости их образования под действием плазмы скользящего разряда мощностью 900 Вт (мощность скользящего разряда в 1500 раз больше). Тем самым энергетическая эффективность генератора излучения плазмы примерно в 100 раз выше, чем скользящего разряда.
Высокий энергетический выход под действием излучения плазмы обусловлен оптимизацией мощности искрового разряда, за счет чего минимальное количество активных частиц гибнет во взаимодействиях между собой.
Источники информации
1. Техническое описание ртутной лампы ДБК-9.
2. Пискарев И.М., Иванова И.П., Трофимова С.В. Сравнение химических эффектов УФ-излучения искрового разряда на воздухе и ртутной лампы низкого давления. // Химия высоких энергий. 2013. 47. №5. С. 376-380.
3. Brisset J.-L., Benstaali В., Moussa D., Fanmoe J., Njoyim-Tamungang E. Acidity control of plasma-chemical oxidation: application to dye removal, urban waste abatement ant microbial inactivation. // Plasma Sources Science and Technology. 2011. 20. P. 034021 (12 pp).
4. Brisset J.-L., Moussa D, Doubla A., Hnatiuc E., Hnatiuc В., Youbi G.K., Herry J.-M., Naitali M., Bellon-Fontaine M.-N. Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media; examples of gliding discharge treted solutions. // Ind. Eng. Chem. Res. 2008. 47. P. 5761-5781.

Claims (1)

  1. Способ генерирования химически активных частиц в жидкости с использованием электрического разряда, отличающийся тем, что на обрабатываемый объект воздействуют импульсным ультрафиолетовым излучением плазмы электрического разряда (200-280 нм), величина разрядной емкости С составляет 3.3 нФ, величина высокого напряжения 11 кВ, величина балластного сопротивления R=14 МОм, зазор между разрядными электродами 3 мм.
RU2015141152A 2015-09-29 2015-09-29 Способ генерирования химически активных частиц в жидкости с использованием электрического разряда RU2622387C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015141152A RU2622387C2 (ru) 2015-09-29 2015-09-29 Способ генерирования химически активных частиц в жидкости с использованием электрического разряда

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015141152A RU2622387C2 (ru) 2015-09-29 2015-09-29 Способ генерирования химически активных частиц в жидкости с использованием электрического разряда

Publications (2)

Publication Number Publication Date
RU2015141152A RU2015141152A (ru) 2017-04-04
RU2622387C2 true RU2622387C2 (ru) 2017-06-15

Family

ID=58505833

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015141152A RU2622387C2 (ru) 2015-09-29 2015-09-29 Способ генерирования химически активных частиц в жидкости с использованием электрического разряда

Country Status (1)

Country Link
RU (1) RU2622387C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211306U1 (ru) * 2021-10-27 2022-05-31 Общество с ограниченной ответственностью "ФЕРАН" Устройство для плазмохимической очистки стоков от микробиологических загрязнений

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095151C1 (ru) * 1995-04-19 1997-11-10 Институт электрофизики Уральского отделения РАН Способ очистки и обеззараживания воды и устройство для его реализации
EP1042006B1 (en) * 1997-12-01 2001-08-22 Zamir Tribelski A method for disinfecting liquids and gases and devices for use thereof
US6558638B2 (en) * 1998-03-14 2003-05-06 Splits Technologies Limited Treatment of liquids
RU2326820C1 (ru) * 2006-12-05 2008-06-20 Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН) Способ очистки и стерилизации жидких или газообразных сред и устройство для его осуществления
EP2153851A1 (en) * 2007-04-11 2010-02-17 Olexandr Borisovich Zayika Method for treating water and aqueous solutions by means of a gas-discharge plasma and a device for carrying out said method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2095151C1 (ru) * 1995-04-19 1997-11-10 Институт электрофизики Уральского отделения РАН Способ очистки и обеззараживания воды и устройство для его реализации
EP1042006B1 (en) * 1997-12-01 2001-08-22 Zamir Tribelski A method for disinfecting liquids and gases and devices for use thereof
US6558638B2 (en) * 1998-03-14 2003-05-06 Splits Technologies Limited Treatment of liquids
RU2326820C1 (ru) * 2006-12-05 2008-06-20 Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН) Способ очистки и стерилизации жидких или газообразных сред и устройство для его осуществления
EP2153851A1 (en) * 2007-04-11 2010-02-17 Olexandr Borisovich Zayika Method for treating water and aqueous solutions by means of a gas-discharge plasma and a device for carrying out said method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ind. Eng. Chem. Res. 2008, 47, c. 5761-5781. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211306U1 (ru) * 2021-10-27 2022-05-31 Общество с ограниченной ответственностью "ФЕРАН" Устройство для плазмохимической очистки стоков от микробиологических загрязнений

Also Published As

Publication number Publication date
RU2015141152A (ru) 2017-04-04

Similar Documents

Publication Publication Date Title
Stalder et al. Repetitive plasma discharges in saline solutions
Nikiforov et al. The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet
JP2018513965A (ja) マルチモードプラズマ式光学発光ガス検出器
CN103349890B (zh) 一种基于纳秒脉冲放电技术脱除室内有害气体的装置
RU2622387C2 (ru) Способ генерирования химически активных частиц в жидкости с использованием электрического разряда
RU2326820C1 (ru) Способ очистки и стерилизации жидких или газообразных сред и устройство для его осуществления
US20020071795A1 (en) Apparatus and method for generating ozone
Yakushin et al. Degradation of organic substances in aqueous solutions under the action of pulsed high-voltage discharges
Takahashi et al. Influence of reactor geometry and electric parameters on wastewater treatment using discharge inside a bubble
Piskarev et al. Formation of peroxynitrite induced by spark plasma radiation
Jiang et al. Investigation of pulsed dielectric barrier discharge system on water treatment by liquid droplets in air
Zhang et al. Air disinfection by nanosecond pulsed DBD plasma
US20020074290A1 (en) System and method for treating drinking water
Shuaibov et al. The formation of excited molecules chloride argon, chlorine and hydroxyl radicals in the nanosecond barrier discharge
RU2347743C2 (ru) Генератор озона и перекиси водорода
Li et al. Enhanced degradation of phenol by carbonate ions with dielectric barrier discharge
KR100278150B1 (ko) 다중 방전형 고효율 오존발생장치
Rozoy et al. NO removal in a photo-triggered discharge reactor
Piskarev Acid-generating effect of plasma species and pulsed ultraviolet plasma radiation
Sasaki et al. Electron temperatures and electron densities in microwave helium discharges with pressures higher than 0.1 MPa
Mok et al. Gaseous electrical discharge-induced degradation of organic compound in wastewater: UV irradiation and ozonation effect
Sun et al. Diagnosis of OH radicals in air negative pulsed discharge with nozzle-cylinder electrode by optical emission spectroscopy
Shuaibov et al. Characteristics and parameters of plasma of a gas-discharge UV–VUV lamp on a system of bands of argon chloride and chlorine molecules
Selma et al. Decolorization of indigo carmine dye by spark discharge in water
RU2001882C1 (ru) Способ очистки сточных вод от органических веществ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190930