RU2622231C2 - Устройство сейсмической связи - Google Patents

Устройство сейсмической связи Download PDF

Info

Publication number
RU2622231C2
RU2622231C2 RU2015117621A RU2015117621A RU2622231C2 RU 2622231 C2 RU2622231 C2 RU 2622231C2 RU 2015117621 A RU2015117621 A RU 2015117621A RU 2015117621 A RU2015117621 A RU 2015117621A RU 2622231 C2 RU2622231 C2 RU 2622231C2
Authority
RU
Russia
Prior art keywords
seismic
output
input
signal
microcontroller
Prior art date
Application number
RU2015117621A
Other languages
English (en)
Other versions
RU2015117621A (ru
Inventor
Юрий Сергеевич Воронцов
Сергей Николаевич Дегилевич
Светлана Валентиновна Дрокина
Валентин Александрович Кочнев
Александр Валентинович Кочнев
Екатерина Александровна Кохонькова
Данил Сергеевич Кудинов
Георгий Яковлевич Шайдуров
Александр Александрович Щитников
Original Assignee
Акционерное Общество Научно-Внедренческий Инженерный Центр "Радиус"
Общество С Ограниченной Ответственностью Научно-Производственная Фирма "Иридий"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество Научно-Внедренческий Инженерный Центр "Радиус", Общество С Ограниченной Ответственностью Научно-Производственная Фирма "Иридий" filed Critical Акционерное Общество Научно-Внедренческий Инженерный Центр "Радиус"
Priority to RU2015117621A priority Critical patent/RU2622231C2/ru
Publication of RU2015117621A publication Critical patent/RU2015117621A/ru
Application granted granted Critical
Publication of RU2622231C2 publication Critical patent/RU2622231C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/223Radioseismic systems
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mining & Mineral Resources (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Transceivers (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано для задач геокартирования в инженерной сейсморазведке. Предложена система сейсмической связи, содержащая сейсмические передатчики, расположенные в шахтной выработке, и сейсмический приемник, расположенный на поверхности Земли, включающий в себя N сейсмических датчиков, соответственно образующих антенную решетку, N усилителей и блок обработки сигналов. Согласно изобретению каждый из N сейсмических датчиков через соответствующий усилитель соединен с коммутатором, выход которого соединен через аналого-цифровой преобразователь с входом микроконтроллера, являющегося и входом блока обработки сигналов, который содержит N оперативных запоминающих устройств, подключенных к микроконтроллеру по N-разрядной двунаправленной шине, N управляемых цифровых линий задержки, каждая из которых соединена входом с выходом микроконтроллера по N-разрядной шине, а выходом с соответствующим входом сумматора, который одним выходом подключен через измеритель отношения сигнал/шум, ко второму входу микроконтроллера, а другим выходом к дешифратору, который одним выходом подсоединен к индикатору, а вторым к радиопередающему устройству. Технический результат – повышение мощности принимаемого сигнала и помехоустойчивости передачи. 2 ил.

Description

Изобретение относится к области радиотехники, в частности реализации шахтной связи путем беспроводной передачи сигнала через толщу горных пород и может быть использовано для задач геокартирования в инженерной сейсморазведке.
Известно: «Устройство беспроводной аварийно-технологической сигнализации и связи» (Патент RU 2131515, МПК G08B 7/06, опубликован 27.09.2009) [1]. Известное устройство включает в себя установленный на поверхности земли передающий комплект, длинные антенны с заземлителями, излучающие низкочастотное магнитное поле, расположенный в шахтной выработке приемный комплект, содержащий антенну, подключенную к входу преобразователя. Дополнительно приемный комплект снабжен шахтерским радиомаяком, для каждого рабочего, и мобильным поисковым шахтным пеленгатором.
Недостатком известного устройства беспроводной аварийной связи является невозможность реализации канала связи из горной выработки на поверхность Земли, так как невозможно разместить в выработке антенну больших размеров, необходимую для передачи сигнала.
Известна «Система сейсмической телеметрии и связи» (Патент US 2011/0310701 A1, опубликован 22.12.2011) [2]. Система предназначена для передачи телеметрических данных между подземной структурой и поверхностью Земли. Система включает в себя сеть приемных устройств, в пределах подземной структуры, которая собирает данные телеметрии от передатчика данных, расположенного в пределах подземной структуры. Подземная радиостанция предназначена для связи с сетью приемных устройств и включает в себя подземное устройство обработки для преобразования данных телеметрии в закодированный сигнал. Управляемый сейсмический передатчик, находящийся в контакте с подземной структурой, передает закодированный сейсмический сигнал через горную породу. Система включает в себя также приемную станцию на поверхности Земли, имеющую в составе сейсмические датчики, образующие фазированную антенную решетку, и блок обработки сигналов (БОС). Сейсмические датчики находятся в контакте с грунтом, на поверхности Земли. Блок обработки сигналов связан с сейсмическими датчиками, через соответствующие усилители, и может преобразовывать принятый закодированный сейсмический сигнал в данные телеметрии.
Недостатком известной системы беспроводной сейсмической связи является недостаточная мощность принимаемого сигнала и помехоустойчивость передачи, также невозможность определения направления прихода сейсмического сигнала в аварийной ситуации, так как нет возможности управления размерами и направлением диаграммы направленности.
Задачей предлагаемого технического решения является реализация аварийной беспроводной системы с большей мощностью принимаемого сигнала, помехоустойчивостью передачи, а также реализация системы для определения направления прихода сейсмического сигнала в аварийной ситуации путем создания системы управления диаграммой направленности.
Для решения поставленной задачи в систему сейсмической телеметрии и связи, содержащую сейсмические передатчики, расположенные в шахтной выработке, и сейсмический приемник, расположенный на поверхности Земли, включающий в себя N сейсмических датчиков, соответственно образующих антенную решетку, N усилителей и блок обработки сигналов, согласно изобретению каждый из N сейсмических датчиков через соответствующий усилитель соединен с коммутатором, выход которого соединен через аналого-цифровой преобразователь с входом микроконтроллера, являющегося и входом блока обработки сигналов, который содержит N оперативных запоминающих устройств, подключенных к микроконтроллеру по N-разрядной двунаправленной шине, N управляемых цифровых линий задержки, каждая из которых соединена входом с выходом микроконтроллера по N-разрядной шине, а выходом с соответствующим входом сумматора, который одним выходом подключен через измеритель отношения сигнал/шум, ко второму входу микроконтроллера, а другим выходом к дешифратору, который одним выходом подсоединен к индикатору, а вторым к радиопередающему устройству.
На фиг. 1 схематично представлено заявляемое устройство. На фиг. 2 схематично представлена реализация узкой диаграммы направленности для приема сигнала при помощи антенной решетки.
Устройство сейсмической связи содержит M сейсмических передатчиков 11…, 1M, расположенных в защитных камерах в горных выработках, N сейсмических датчиков (21…2N) расположенных на поверхности Земли и образующих фазированную антенную решетку по двум направлениям x и y. Каждый из N датчиков соединен через соответствующий усилитель (31…3Ν), с коммутатором 4, выходом, соединенным с аналого-цифровым преобразователем (АЦП) 5. АЦП подсоединен к входу микроконтроллера (МК) 6, являющегося входом и блока обработки сигналов (БОС). МК по двунаправленной N-разрядной шине соединен с N блоками ОЗУ (71…7Ν), и по другой N-разрядной шине с N управляемыми цифровыми линиями задержки (81…8Ν), соединенных выходами с сумматором 9. Он включает в себя N входов, одним выходом через измеритель отношения сигнал/шум 10 соединенным с микроконтроллером, а другим с дешифратором 11, который соединен с индикатором 12 и радиопередающим устройством 13. Антенная решетка из сейсмических датчиков создает диаграмму направленности (ДН) решетки x 14, сечение «пятна» решетки x на дне шахты 15, сечение «пятна» обеих решеток x и y 16.
При отсутствии аварийной ситуации в шахтной выработке для связи с поверхностью и оповещения персонала возможно использование простых абонентских телефонных линий. Однако при возникновении аварийной ситуации в шахте (взрывы, обвалы, обрушения), проводные средства связи могут выйти из строя, следовательно, для обеспечения аварийной связи, шахтной выработки с поверхностью, включается дополнительный сейсмический канал связи. Для защиты персонала в шахтной выработке обычно создается прочная защитная камера для его временного укрытия, в которой расположен сейсмический передатчик. В шахтной выработке могут находиться и другие защитные камеры для персонала с сейсмическими передатчиками (11…1M). При необходимости передачи аварийного сообщения оператор использует компьютер. Для набора сообщения используется клавиатура или предоставляется выбор заранее записанных текстовых сообщений для передачи. Далее осуществляется обработка сообщения, а также генерация кода и обеспечение последовательности передачи элементов сообщения. Совместно со схемой синхронизации, которая подает импульсы для формирования протокола связи, блок кодирования управляет последовательностью сейсмических импульсов, задавая работу сейсмического источника, включенного в сейсмический передатчик 1. Электропитание сейсмического передатчика в аварийной ситуации может обеспечиваться импульсным источником бесперебойного питания, который включает в себя несколько аккумуляторных батарей и преобразователь напряжения, для его повышения, что необходимо для работы сейсмического источника [3]. Сейсмический источник механически соединен с излучающим стержнем, вмурованным в стену шахтной выработки, который является также частью сейсмического передатчика для излучения сейсмического сигнала в породу. Далее сейсмический сигнал поступает через породу на входы N сейсмических датчиков (21…2Ν), размещенных на поверхности Земли, в виде ортогонально расположенных линейных групп и образующих фазированную антенную решетку. Это необходимо для создания узконаправленной подвижной диаграммы направленности при помощи подстройки задержек сигналов. Диаграмма направленности такого вида обеспечивает быстрый поиск активного сейсмического передатчика и точное определение места его положения. Количество сейсмических датчиков выбирается в зависимости от конкретной шумовой обстановки в районе их расположения, так как их число влияет на уровень отношения сигнал/шум по напряжению qu, и определяется исходя из минимальной вероятности ошибки.
Отношение сигнал/шум по напряжению qu для одного сейсмического датчика находится по формуле [4]:
Figure 00000001
где Uc - уровень полезного сигнала [B],
Uш - уровень шума [B].
Для повышения отношения сигнал/шум в сейсмическом приемнике используется фазированная антенная решетка из линейных групп N сейсмических датчиков, которая обеспечивает накопление и корреляцию полезного сигнала путем его повторения. Как известно, шум в каждом сейсмическом датчике некоррелирован за счет того, что расстояние между сейсмическими датчиками не менее половины длины волны сейсмического сигнала (l≥λ/2). Тогда отношение сигнал/шум для линейной группы N сейсмических датчиков по мощности определяется по формуле:
Figure 00000002
где N - количество сейсмических датчиков,
Figure 00000003
- дисперсия шума [B2].
Отношение сигнал/шум по напряжению для нескольких сейсмических датчиков оценивается по формуле:
Figure 00000004
Отношение сигнал/шум по напряжению пропорционально
Figure 00000005
. Следовательно, с увеличением количества сейсмических датчиков увеличивается отношение сигнал/шум.
Сейсмические датчики (21…2N), находящиеся в непосредственном контакте грунтом (заглублены в грунт для уменьшения шумов на поверхности Земли), улавливают распространяющийся в горной породе сейсмический сигнал, и преобразуют его в аналоговый электрический сигнал, после чего сигналы со всех датчиков поступают на соответствующие усилители (31…3N), которые увеличивают амплитуду слабого электрического сигнала при низком уровне собственных шумов. После усиления сигнал поступает на коммутатор 4, который переключается между всеми сейсмическими датчиками для последующего преобразования в цифровой сигнал в аналого-цифровом преобразователе 5. Цифровой сигнал с АЦП поступает на микроконтроллер 6 для обработки. С микроконтроллером по двунаправленной N-разрядной шине соединено N ОЗУ (71…7N) по числу сейсмические датчиков для временного хранения оцифрованного сигнала, адресов и значений задержек для всех сейсмических передатчиков (11…1M) и накопления сообщения. К выходу микроконтроллера, по N-разрядной шине, подсоединено N управляемых цифровых линий задержек (81…8N) по числу сейсмических датчиков. Так как скорость сейсмических волн 1500-7000 м/с, а сейсмические датчики расположены на расстоянии l≥λ/2, необходимо учесть влияние задержки, с которой сигнал доходит до каждого сейсмического датчика. Для компенсации задержки в блок обработки сигналов встроена система подстройки задержек (МК, ОЗУ, управляемые цифровые линии задержек, сумматор, измеритель отношения сигнал/шум). Она позволяет создавать при помощи линии сейсмических датчиков узконаправленную и подвижную диаграмму направленности для поиска активного сейсмического передатчика из M передатчиков и определения сигнала с максимальным уровнем отношения сигнал/шум. Подстройка задержки осуществляется на этапе «обучения» (настройки) для каждого сейсмического датчика отдельно, по критерию отношения сигнал/шум, чтобы подобрать значения задержек для каждого сейсмического передатчика (11…1Μ), находящегося в шахтной выработке. Каждая из управляемых цифровых линий задержки производит подстройку задержки совместно с сумматором 9 и измерителем отношения сигнал/шум 10, который определяет максимальное отношение сигнал/шум для каждого сейсмического датчика, после этого значение задержки через МК 6 записывается в память соответствующего ОЗУ 7. После подстройки всех сейсмических датчиков, значение задержки для каждого сейсмического передатчика записывается в память ОЗУ. Это позволяет оперативно определить активный передатчик и произвести соответствующую подстройку сейсмического приемника по задержке.
После обработки цифрового сигнала и окончания приема сообщения, он поступает через сумматор с N входами по числу сейсмических датчиков на дешифратор 11, который преобразует цифровой сигнал в сообщение для вывода на индикатор 12 и (или): передачу через радиопередающее устройство 13. Оно встроено для дельнейшей передачи сообщения в том случае, если сейсмический приемник расположен отдельно от командного пункта.
Из этого следует, что заявляемое устройство позволяет повысить отношение сигнал/шум, мощность сигнала, реализовать узконаправленную подвижную диаграмму направленности определить место положения активного сейсмического передатчика и реализовать беспроводную аварийную связь для передачи сообщений из шахтной выработки на поверхность Земли, из небольшого объема горной выработки, с использованием сейсмических сигналов.
Технический результат подтвержден экспериментально на макете устройства и заключается в создании канала беспроводной аварийной связи между шахтной выработкой небольшого размера и поверхностью Земли с использованием малогабаритного точечного сейсмического передатчика, не требующего большого пространства для размещения, а также в создании узконаправленной диаграммы направленности, для улучшения помехоустойчивости и возможности определения направления прихода сигнала. Также устройство позволяет осуществлять поиск активных сейсмических передатчиков и определять их местоположение в шахтных выработках.
Указанный технический результат экспериментально подтвержден на экспериментальном макете макет устройства, с мощностью излучателя 2 кВт и несущей частотой вибрации 215 Гц показал по результатам наземных испытаний дальность более 1000 м при отношении сигнал/шум 17 дБ и скорости передачи 0.1 бит/с. Испытания были проведены в угольной шахте г. Абаза, Хакасия.

Claims (1)

  1. Устройство сейсмической связи, содержащее сейсмические передатчики, расположенные в шахтной выработке, и сейсмический приемник, расположенный на поверхности Земли, включающий в себя N сейсмических датчиков, соответственно образующих антенную решетку, N усилителей и блок обработки сигналов, отличающееся тем, что каждый из N сейсмических датчиков через соответствующий усилитель соединен с коммутатором, выход которого соединен через аналого-цифровой преобразователь с входом микроконтроллера, являющегося и входом блока обработки сигналов, который содержит N оперативных запоминающих устройств, подключенных к микроконтроллеру по N-разрядной двунаправленной шине, N управляемых цифровых линий задержки, каждая из которых соединена входом с выходом микроконтроллера по N-разрядной шине, а выходом с соответствующим входом сумматора, который одним выходом подключен через измеритель отношения сигнал/шум ко второму входу микроконтроллера, а другим выходом к дешифратору, который одним выходом подсоединен к индикатору, а вторым - к радиопередающему устройству.
RU2015117621A 2015-05-08 2015-05-08 Устройство сейсмической связи RU2622231C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015117621A RU2622231C2 (ru) 2015-05-08 2015-05-08 Устройство сейсмической связи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015117621A RU2622231C2 (ru) 2015-05-08 2015-05-08 Устройство сейсмической связи

Publications (2)

Publication Number Publication Date
RU2015117621A RU2015117621A (ru) 2016-11-27
RU2622231C2 true RU2622231C2 (ru) 2017-06-13

Family

ID=57758978

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015117621A RU2622231C2 (ru) 2015-05-08 2015-05-08 Устройство сейсмической связи

Country Status (1)

Country Link
RU (1) RU2622231C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363094A (en) * 1991-12-16 1994-11-08 Institut Francais Du Petrole Stationary system for the active and/or passive monitoring of an underground deposit
RU2131515C1 (ru) * 1997-03-26 1999-06-10 Закрытое акционерное общество научно-внедренческий инженерный центр "Радиус" Устройство беспроводной аварийно-технологической сигнализации и связи
RU2363963C1 (ru) * 2008-04-15 2009-08-10 Общество с ограниченной ответственностью научно-производственное объединение "Сатурн" Многоканальная система для предупреждения о возникновении сейсмических толчков и цунами
US8031555B2 (en) * 2008-01-07 2011-10-04 University Of Utah Research Foundation Seismic location and communication system
US20110310701A1 (en) * 2009-12-15 2011-12-22 Gerard Schuster Seismic Telemetry and Communications System
CN103312421A (zh) * 2013-07-08 2013-09-18 高铭 一种矿井安全避险无线透地通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363094A (en) * 1991-12-16 1994-11-08 Institut Francais Du Petrole Stationary system for the active and/or passive monitoring of an underground deposit
RU2131515C1 (ru) * 1997-03-26 1999-06-10 Закрытое акционерное общество научно-внедренческий инженерный центр "Радиус" Устройство беспроводной аварийно-технологической сигнализации и связи
US8031555B2 (en) * 2008-01-07 2011-10-04 University Of Utah Research Foundation Seismic location and communication system
RU2363963C1 (ru) * 2008-04-15 2009-08-10 Общество с ограниченной ответственностью научно-производственное объединение "Сатурн" Многоканальная система для предупреждения о возникновении сейсмических толчков и цунами
US20110310701A1 (en) * 2009-12-15 2011-12-22 Gerard Schuster Seismic Telemetry and Communications System
CN103312421A (zh) * 2013-07-08 2013-09-18 高铭 一种矿井安全避险无线透地通信系统

Also Published As

Publication number Publication date
RU2015117621A (ru) 2016-11-27

Similar Documents

Publication Publication Date Title
US2400309A (en) Oscillation generator
US7382687B2 (en) Underwater station
RU2371738C1 (ru) Гидроакустическая навигационная система
JPS63184088A (ja) 地震前兆の電界変動の観測法
RU2622231C2 (ru) Устройство сейсмической связи
KR20120009640A (ko) 천해용 잠수함 경계 시스템
KR102124353B1 (ko) 지하공간내 안전사고에 대응할 수 있는 구조신호 송수신시스템
RU119191U1 (ru) Гидроакустическое устройство управления объектами в водной среде
Merrill Some early historical aspects of project sanguine
KR101903880B1 (ko) 지중 매설물 탐지 장치 및 방법
CN112838913A (zh) 一种矿用电磁式可控震源低频抗干扰地震波通讯方法
RU130346U1 (ru) Система беспроводной аварийно-вызывной шахтной сигнализации и связи на экстремально низких частотах
US20100322034A1 (en) Acoustic communication and locating devices for underground mines
Glickstein et al. Historical Overview
Kumar et al. Trapped miners detection, location and communication system
RU112940U1 (ru) Устройство для беспроводной аварийной связи поверхности земли с подземными выработками
RU2260249C2 (ru) Система подводной кабельной глубоководной связи с подводными лодками
Cheng et al. Parametric underwater transmission based on pattern time delay shift coding system
Ilsley et al. Experiments in underground communication through earth strata
RU57536U1 (ru) Система связи с подводными объектами
RU57829U1 (ru) Система оперативного шахтного оповещания
CN107989604B (zh) 一种井间声波测井发射探头
RU2230431C2 (ru) Аварийная система внутрикорабельной радиосвязи
Kumar et al. TRAPPED MINERS DETECTION, LOCATION
Giannetti Coltano: the forgotten story of Marconi's early powerful intercontinental station

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170509

NF4A Reinstatement of patent

Effective date: 20190606