RU2621551C1 - Способ освоения засоленных сероземно-луговых земель центральной части азербайджана - Google Patents

Способ освоения засоленных сероземно-луговых земель центральной части азербайджана Download PDF

Info

Publication number
RU2621551C1
RU2621551C1 RU2016118894A RU2016118894A RU2621551C1 RU 2621551 C1 RU2621551 C1 RU 2621551C1 RU 2016118894 A RU2016118894 A RU 2016118894A RU 2016118894 A RU2016118894 A RU 2016118894A RU 2621551 C1 RU2621551 C1 RU 2621551C1
Authority
RU
Russia
Prior art keywords
soil
sowing
crops
plants
soils
Prior art date
Application number
RU2016118894A
Other languages
English (en)
Inventor
Юрий Анатольевич Мажайский
Мустафа Гылман оглы Мустафаев
Михаил Иванович Голубенко
Original Assignee
Юрий Анатольевич Мажайский
Мустафа Гылман оглы Мустафаев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юрий Анатольевич Мажайский, Мустафа Гылман оглы Мустафаев filed Critical Юрий Анатольевич Мажайский
Priority to RU2016118894A priority Critical patent/RU2621551C1/ru
Application granted granted Critical
Publication of RU2621551C1 publication Critical patent/RU2621551C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/02Methods for working soil combined with other agricultural processing, e.g. fertilising, planting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • B09C1/105Reclamation of contaminated soil microbiologically, biologically or by using enzymes using fungi or plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Изобретение относится к области сельского хозяйства и мелиорации. Способ включает удаление солей из почвы путем высевания на ней однолетних растений с последующей их уборкой и использования в дальнейшем кормовых культур. При этом проводят двухъярусное внесение в пахотный и подпахотный горизонты толщиной в 50-60 см соответственно органических и минеральных удобрений. Затем используют посев однолетних культур в виде хлопчатника или зерновых в чистом виде. Далее осуществляют полную замену посевом люцерны в течение трех лет. После этого используют эти поля под кукурузу на силос или другие клубеньковые растения. Способ позволяет повысить эффективность рассоления почвы. 3 табл.

Description

Изобретение относится к сельскому хозяйству и может быть использовано при освоении засоленных земель.
Современная поверхность Кура-Аразской низменности Азербайджана создана главным образом деятельностью рек, по имени которых она и названа. Стекая с гор, эти реки несут большое количество песка и ила, в связи с чем воды этих рек относятся к одним из самых мутных. Из речных наносов и образовалась поверхность низменной аллювиальной равнины. Каждая равнина имеет свои особенности рельефа, почв, растительности и хозяйственного использования. Изучение этих равнин на водно-солевой баланс позволило выявить их недостатки, снижающие эффективность сельскохозяйственного производства на мелиорируемых землях.
Основным способом освоения засоленных земель является способ промывки почвы с последующим удалением промывных вод с помощью дренажно-коллекторной сети. При этом способе рассоления в зависимости от региона и степени засоления почвы требуется от 5 до 20 тыс.м3/га (Борьба с засолением земель. Под ред. В.А. Ковды. Международная серия «Охраны природы». М.: Колос, 1981).
Известен способ рассоления почвы, в котором удаление солей из почвы проводят посредством растений-галофитов, высеваемых на орошаемой площади, их скашиванием и вывозом за пределы участка (Авторское свидетельство SU №1611242, кл. A01B 79/00, A01G 25/00 от 07.12.1990).
В этом способе фруктовые деревья возделывают на барханых песках при капельном орошении минерализованной водой. Посев на этих же почвах растений-галофитов (солянок) приводит к уменьшению солей почвы, создавая тем самым благоприятные условия для развития корневой системы фруктового дерева. К окончанию поливного периода растения скашивают и удаляют с последующим их использованием на корм скоту.
Ограничением этого способа является то, что засоленными могут быть не только почвы типа барханных песков, обладающих повышенным испарением воды с их поверхности, а также благоприятными условиями для выращивания солянок. Кроме того, данный способ не исключает повторного засоления почвы из глубинных слоев, что приводит к низкой продуктивности сельскохозяйственных угодий. Помимо этого обычные виды солянок имеют низкую биомассу и питательную ценность, поэтому кормление ими скота возможно только с использованием большого количества традиционных кормов. Кроме того, этот способ разработан для песчаных почв при орошении их минерализованными водами и не затрагивает вопросов рассоления засоленных сереземно-луговых почв при орошении их пресной водой в условиях мелиоративного севооборота.
Известны способы рассоления почвы (Авторские свидетельства SU №1606023, кл. A01G 25/00 от 15.11.1990 и №1428297, кл. A01G 25/00 от 07.10.1988).
Недостатки этих способов: большие нормы промывной воды, которая расходуется не только непроизводительно, но и является источником большого количества засоленных дренажных вод, которые сбрасываются в естественные водоприемники, что приводит к загрязнению последних и ухудшению экологической обстановки на орошаемых территориях.
Известен способ освоения засоленных средне-суглинистых земель, в котором удаление солей производят путем высевания галофитов с последующей их уборкой, в начале освоения земель галофиты высевают в чистом виде, а в последующие годы осуществляют смешанный посев галофитов и кормовых культур, изменяя их соотношение в течение нескольких лет, а затем осуществляют полную замену галофитов кормовыми культурами (Патент RU №2034900, кл. C09K 17/00, A01B 79/02 от 10.05.1992).
Этот способ применим для рассоления засоленных средне-суглинистых почв при орошении их пресной водой в условиях мелиоративного севооборота, однако этот способ при посеве галофитов недостаточно эффективен для получения сельскохозяйственных кормов, как и предыдущие, т.е. его использование не позволяет получить достаточное количество кормов с большой питательной биомассой.
Технической задачей предлагаемого изобретения является повышение эффективности рассоления почвы при использовании в первый год двухъярусного внесения в пахотный и подпахотный горизонты соответственно органических и минеральных удобрений, обладающих запасом питательных веществ при использовании посева в течение не только одной культуры, но и при использовании других клубеньковых растений.
Способ освоения засоленных сероземно-луговых земель Центральной части Азербайджана, включающий удаление солей из почвы путем высевания на ней однолетних растений с последующей их уборкой, использование в дальнейшем кормовых культур, проводят двухъярусное внесение в пахотный и подпахотный горизонты толщиной в 50…60 см соответственно органические и минеральные удобрения, затем используют посев однолетних культур в виде хлопчатника или зерновых в чистом виде, затем осуществляют полную замену посевом люцерны в течение трех лет, а затем используют эти поля под кукурузу на силос или другие клубеньковые растения.
Решение проблемы эффективного освоения засоленных сереземно-луговых земель путем оптимизации использования двухъярусного внесения в пахотный и подпахотный горизонты толщиной в 50…60 см сделано на основе экспериментальных материалов, в частности, использования, затем посев однолетних культур, затем заменой люцерны в течение трех лет ее роста, а затем уже под кукурузу на силос или другие клубеньковые растения. Основанием послужило то, что значительная часть сероземных почв используется в орошаемом земледелии и является основным земельным фондом для выращивания хлопчатника и зерновых культур.
Сероземные почвы, имея небольшой запас гумуса и питательных элементов, по своему потенциальному плодородию уступают другим типам полупустынной зоны. Запас гумуса в слое 0-20 см не превышает 30…65 т/га, гидролизуемого азота 100…150 мг/кг, усвояемого фосфора 5…40 мг/кг и обменного калия 200…400 мг/кг.
Лугово-сероземные почвы формируются в условиях повышенного грунтового увлажнения при близком залегании грунтовых вод (2,5…3,0 м).
Характерным для лугово-сероземных почв является ржаво-охристые пятна в горизонте В-ВС. Реакция почвенного раствора нейтральная или же резкощелочная. Величина pH изменяется в пределах от 7,2…8,2. Описываемые почвы являются тяжело-глинистыми и глинистыми и относятся к почвам высокого бонитета. Кроме того, встречаются массивы, характеризующиеся разным грануметрическим составом: от средне-суглинистого до тяжелого глинистого, прослойками супеси и песка.
Поля, использующиеся под сельскохозяйственные культуры, ежегодно пашутся на одинаковую глубину (25…30 см). Через определенное время (10…15 лет) при таком режиме использования земель наблюдается уплотнение подпахотного горизонта почв. Это связано с тем, что только в течение одного года на пашне сельскохозяйственные машины, имеющие достаточно тяжелый вес, делают в среднем 25…30 ходов, в результате чего происходит постепенное уплотнение подпахотного горизонта почвогрунтов. Мощность уплотнения в зависимости от свойств почв может достигать до 1,0…1,5 м и более глубины.
Если в новоосвоенных землях объемная масса почвогрунтов составляет 1,2…1,3, то после уплотнения он достигает 1,5…1,6 г/см3.
По степени засоления почвы подразделяются в зависимости от количества солей и глубины залегания соленосных горизонтов. Принято считать, что если в почвенном горизонте содержится меньше 0,25% легкорастворимых солей, он является незасоленным; 0,25…0,50% - слабозасоленным; 0,50…1,00% среднезасоленным; 1,00…2,00% сильно засоленным; 2,00…3,00% очень сильнозасоленным и больше 3,00% - это уже солончак.
Поэтому при рассмотрении осуществлялись со ссылками изменения засоления почв с учетом вышеуказанной градации.
В результате исследования установлено, что при уплотненных почвах урожайность сельскохозяйственных культур снижается до 20…40%. Это объясняется тем, что корневая масса растений не может проникать в уплотненные слои и распространяется в верхнем 25…30 см слое, и в короткий срок происходит исчезновение запасов питательных веществ. Кроме того, в уплотненных горизонтах число полезных микроорганизмов уменьшается, а других болезотворных, наоборот увеличивается, т.к. полностью нарушается водно-воздушный режим почв.
Следовательно, необходимы новые разработки, позволяющие решать проблему экологически чистыми методами в формировании урожая.
Отсюда следует, что требуется глубокая вспашка до 60 см, не менее чем через пять лет, рыхление и необходимое применение севооборота, использование органических и минеральных удобрений в пахотном и подпахотном горизонтах, когда однолетние культуры, такие как хлопчатник или зерновые, в обязательном порядке должны быть заменены люцерной на три года, и только затем эти поля используют под кукурузу на силос и другие клубеньковые растения.
Такая смешанная культурными растениями система земледелия особенно в Центральной части Азербайджана в течение трех-четырех лет создает в почвогоризонте мощный высокоплодородный слой толщиной не менее в 50…60 см.
В целом такой слой обеспечит не только нормальное развитие очередной основной сельхозкультуры, но и уничтожит семена сорной растительности и вредных микроорганизмов.
Таким образом, режим орошения сельхозкультур зависит от степени засоленности почв, и оросительная вода подается в соответствии с потребностью каждого растения в воде, что позволяет свести до минимума непроизводительные потери воды на фильтрацию.
С целью изучения прогноза водно-солевого режима на мелиорируемых землях в течение 1992-2012 годов проводились исследования на опытных участках, где представлены три горизонта почв Кура-Аразской низменности, различающиеся между собой по грануметрическому составу и фильтрационной способности. Три наиболее контрастные группы характеризуются следующими данными: 1 группа - почвы легкого грануметрического состава с высокой фильтрацией, кф=10-12 м/сут, активная пористость mак=0,35 - содержание частиц менее 0,01 мм составляет 22…25%. Опыты проводились на участке, расположенном на территории Саатлинского района. II группа - почвы глинистые неоднородного грануметрического состава с пониженной фильтрацией, кф=3-6 м/сут, m=0,37 - содержание частиц менее 0,01 мм составляет 42…48%. Опыты проводились на участке, расположенном на территории Сальянского района. III - группа - почвы глинистые, слитые с особо низкой фильтрацией, кф=1,0-2,0 м/сут, m=0,40 - содержание частиц менее 0,01 мм, составляет более 60…70%. Опыты проводились на участке, расположенном на территории Имишинского района.
На опытных участках определяли водно-физические свойства почвогрунтов и основные элементы водно-солевого баланса, в том числе динамику рассоления и засоления почв на каждом опытном участке, предварительно было выбраны 10 ключевых площадок: пять из них наиболее опасные в отношении вторичного засоления, где почвогрунты содержат около 0,6% солей, пять - практически пресные с содержанием около 0,3% по плотному остатку. На ключевых площадках проведены солевые съемки, почвенные образцы, при съемке брались из трехметровой толщи до и после каждого вегетационного полива и в конце сентября. В таблице 1 показаны солеудержание в толще 0-100 см почвогрунтов ключевых участков (где С0 - до поливов, С1 - после поливов), дренажный сток и испарение поверхности грунтовых вод. Опыты показывают, что под воздействием каждого вегетационного полива солесодержание в метровой толще почвогрунтов уменьшается, а в межполивные периоды увеличиваются до проведения второго полива, затем увеличение солесодержания в межполивной период настолько мало (0,003…0,005%), что им можно пренебречь.
Динамика соотношения транспирации и испарения с поверхности почвы показано в таблице 2. В начале вегетации хлопчатника (люцерна и др. поливные культуры) слабо затеняют почву, большая часть ресурсов (75…80%) тепла расходуется на нагревание почвы и воздуха, происходит непродуктивное испарение. В этот период суммарное испарение составляет 28…35% м3/га в день. Определенная часть этой влаги испаряется с поверхности грунтовых вод, то есть идет процесс засоления. По мере развития растений доля непродуктивного испарения уменьшается, значительная часть влаги расходуется через растения (транспирация около 50%) и суммарное испарение в этот период (цветение) составляет 45…50 м3/га в день. При сомкнутом покрове ресурсы тепла полностью поглощаются растениями, и величина суммарного испарения достигает 80…90 м3/га в день. Транспирация влаги растениями при сомкнутом покрове абсолютно преобладает над испарением влаги почвой и может составлять 80…90 и более от суммарного испарения. Поскольку вторичное засоление определяется объемом влаги, испарившейся непосредственно с поверхности грунтовых вод, то большой интерес представляет определение значений испарения с поверхности грунтовых вод при различных глубинах залегания их уровня для почв, имеющих разные водно-физические свойства.
Figure 00000001
Исследования по изучению испарения с поверхности грунтовых вод проводились в июле - (в самом жарком месяце), после второго вегетационного полива.
Figure 00000002
Необходимо отметить, что уровень грунтовых вод в период исследований колебался в пределах от 0,5 до 3,0 м от поверхности земли. Испарение с поверхности грунтовых вод определялось по методу водного баланса, а также лизиметрических определений по известным источникам.
Из таблицы 3 видно, что между испарением грунтовых вод и глубиной залегания их уровня имеется тесная связь, выражающаяся уравнением:
Figure 00000003
, где Ес - испаряемость, м; H - глубина залегания уровня грунтовых вод; НВПС водоподъемная способность почвогрунтов, м (значение НВПС для I, II и III групп почв составляет соответственно: 1,5; 2,5 и 3,0). Обобщение и анализ представленных материалов дали возможность разработать новые простые математические модели, позволяющие построить прогноз водно-солевого режима почвогрунтов в эксплуатационный период. В межполивной период:
Figure 00000004
, а за время полива:
Figure 00000005
.
где C1 и C0 - солесодержания в почвогрунте после полива и перед поливом, %;
E - испарение с поверхности грунтовых вод, м; M - минерализация грунтовых вод, г/м3; X - мощность слоя почвогрунтов, в котором идет накопление солей, м; W - объемный вес почвогрунтов, т/м3; D - часть поливной воды, поступающей в дрену, то есть израсходованной на промывку солей в почвогрунте, м; Mn - минерализация полученная в результате растворения всех солей, имеющихся в расчетном слое почвы, в поливной воде, т/м3.
Проведенные многочисленные расчеты показывают, что результаты, полученные по формуле (1) и (2), полностью совпадают с результатами, полученными в практике. Второй член правой части формулы (2) характеризует соли, поднявшиеся в верхние слои почв при испарении соли, в основном, накапливаются в верхнем метровом слое, тогда можно принять X - 1 м, то есть:
Figure 00000006
(далее раскрытие математических формул не показано).
Figure 00000007
Таким образом, все это свидетельствует о том, что глубина залегания уровня грунтовых вод равновесного солевого баланса для I, II и III группы почвы равна соответственно 1,27; 1,58 и 1,45 м от поверхности земли.
Объем грунтовых вод, увеличивающийся при испарении первоначального содержания в почве, составил около 1,0% и составило 65…70 м3/га, а критическая глубина 1,78; 2,32 от поверхности земли.
В результате многолетних исследований прогнозные расчеты, проводимые с применением математических методов, показывают, что для коренного улучшения мелиоративного состояния дренированных земель необходимы следующие мероприятия:
планировка поверхностей полей должна составляет не более чем 5 см;
для уплотненных грунтов, а также тяжелых грунтов необходимо проведение глубокого рыхления почв;
необходимо применение вышеуказанного севооборота сельскохозяйственных культур;
после уборки зерновых необходимо поля засевать с коротким вегетационным периодом (например, кукуруза на силос, горох, рапс, сорго и др.).
Кроме вышеуказанного, большое внимание должно уделяться режиму орошения сельхозкультур с учетом степени засоленности почв:
в почвогрунтах, содержащих солей выше чем 0,6% по плотному остатку, необходимо проведение промывки нормами, соответствующими типу, степени засоления и водно-физическим свойствам почв;
в почвогрунтах, содержащих солей в пределах 0,4…0,6% по плотному остатку, необходимо проведение влагозарядковых поливов с большими нормами (2000…3000 м3/га) и вегетационных поливов 20%-ным промывным режимом. Если будет наблюдаться дефицит воды, тогда после 15 июля эта дополнительная часть оросительной воды, которая создает промывной режим на поле, не подается;
в почвогрунтах, содержащих солей в пределах 0,25…0,40% по плотному остатку, необходимо проведение влагозарядовых поливов с небольшими нормами (1500…2000 м3/га) и вегетационных поливов 10%-ным промывным режимом до 15…20 июля. Затем продолжаются поливы с обычными нормами (в соответствии к водопотреблению культуры) - 800…1000 м3/га;
в почвогрунтах, содержащих солей в пределах 0,20…0,25% по плотному остатку, необходимо проведение влагозарядковых поливов с нормами 1200…1500 м3/га и вегетационных поливов с обычными нормами;
в почвогрунтах, опресных на большую глубину (солей содержание в 3…5 м глубине меньше, чем 0,5% по плотному остатку), необходимо проведение влагозарядковых поливов малыми нормами (1000…1200 м3/га) и вегетационных поливов обычными нормами - 800…900 м3/га;
если почвогрунты на большой глубине (3…5 м) сильно опреснены и имеют признаки осолонцевания, сухом состоянии плохо обрабатываются, после вспашки при бороновании не разрыхляются, при смачивании, набухая, через себя воду не пропускают и др.), то необходимо внесение удобрений почвогрунтов, содержащих кальций и химмелиорантов с нормами, соответствующих степени осолонцевания.
Изложенный материал по проблеме засоленности земель позволяет считать, что полученные результаты исследований водно-солевых показателей за многие годы на опытных участках наиболее актуальными и менее решенными, а если решается, то с большими и затратами. Отсюда можно заключить, что предложенное изобретение даст новый подход, позволяющий решить эту проблему на основе агромелиоративных мероприятий по улучшению мелиоративного состояния земель Центральной части Азербайджана. Это дает в свою очередь не только улучшить мелиоративное состояние земель, но и получить дополнительный урожай, т.е. не оставлять поля открытыми (производить выращивание культур), при этом чем больше в почве минеральных и органических коллоидных частиц, тем выше ее поглотительная способность. У глинистых и суглинистых почв емкость поглощения больше, чем у песчаных и супесчаных. Величина емкости также зависит от содержания в почве гумуса. Гумусовые вещества обладают гораздо более высокой поглотительной способностью, чем глинистые минералы. Таким образом, органическое вещество играет важную роль в обменном поглощении катионов в почвах. Отсюда практическую значимость имеет расчет коэффициента регрессии почв в зависимости от их грануметрического состава и гумусом и илистыми фракциями.
Для того чтобы предотвратить процесс вторичного засоления почв, уровень минерализованных грунтовых вод в междренном пространстве не должен быть выше критической глубины. Следовательно, в заявленном способе удаление из почвы количества солей, поднявшихся в верхние слои почвы в процессе испарения грунтовых вод, будет равно количеству солей, удаленных из почвы под влиянием вегетационных поливов в условиях мелиоративного предложенного севооборота, а это удастся рассолением почвы путем двухъярусного внесения в пахотный и подпахотный горизонты в 50…60 см соответственно с внесением органических и минеральных удобрений с использованием различных видов культур. Дальнейший севооборот можно производить по существующим технологиям клубеньковых растений, например, после использования люцерны в течение трех лет с чередованием кукурузы на силос или других клубеньковых растений.
Применение предлагаемого изобретения - способа освоения засоленных земель данного типа - позволяет по сравнению с существующими способами успешно применять его в зонах с климатическими условиями, сравнимыми с районами Центральной части Азербайджана.

Claims (1)

  1. Способ освоения засоленных сероземно-луговых земель Центральной части Азербайджана, включающий удаление солей из почвы путем высевания на ней однолетних растений с последующей их уборкой, использование в дальнейшем кормовых культур, отличающийся тем, что проводят двухъярусное внесение в пахотный и подпахотный горизонты толщиной в 50-60 см соответственно органических и минеральных удобрений, затем используют посев однолетних культур в виде хлопчатника или зерновых в чистом виде, затем осуществляют полную замену посевом люцерны в течение трех лет, а затем используют эти поля под кукурузу на силос или другие клубеньковые растения.
RU2016118894A 2016-05-16 2016-05-16 Способ освоения засоленных сероземно-луговых земель центральной части азербайджана RU2621551C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016118894A RU2621551C1 (ru) 2016-05-16 2016-05-16 Способ освоения засоленных сероземно-луговых земель центральной части азербайджана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016118894A RU2621551C1 (ru) 2016-05-16 2016-05-16 Способ освоения засоленных сероземно-луговых земель центральной части азербайджана

Publications (1)

Publication Number Publication Date
RU2621551C1 true RU2621551C1 (ru) 2017-06-06

Family

ID=59032084

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016118894A RU2621551C1 (ru) 2016-05-16 2016-05-16 Способ освоения засоленных сероземно-луговых земель центральной части азербайджана

Country Status (1)

Country Link
RU (1) RU2621551C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738457A (zh) * 2018-06-20 2018-11-06 安徽省农业科学院土壤肥料研究所 一种适用于内陆极干旱地区盐碱地的综合改良方法
CN109392347A (zh) * 2018-11-09 2019-03-01 上海园林绿化建设有限公司 一种生态环保型土壤改良方法
CN115136765A (zh) * 2022-05-17 2022-10-04 山东农业大学 一种改良滨海盐碱土的方法
CN115918463A (zh) * 2022-12-22 2023-04-07 中国科学院遗传与发育生物学研究所农业资源研究中心 一种种植甜高粱改良滨海重盐碱地的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1611242A1 (ru) * 1988-07-18 1990-12-07 Всесоюзный научно-исследовательский институт гидротехники и мелиорации им.А.Н.Костякова Способ рассолени почвы
RU2034900C1 (ru) * 1992-12-09 1995-05-10 Всероссийский научно-исследовательский институт гидротехники и мелиорации им.А.Н.Костякова Способ освоения засоленных среднесуглинистых земель
RU2239966C1 (ru) * 2003-04-11 2004-11-20 Государственное научное учреждение Прикаспийский научно-исследовательский институт аридного земледелия Российской академии сельскохозяйственных наук Способ возделывания многолетних бобовых трав на орошаемых землях аридной зоны

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1611242A1 (ru) * 1988-07-18 1990-12-07 Всесоюзный научно-исследовательский институт гидротехники и мелиорации им.А.Н.Костякова Способ рассолени почвы
RU2034900C1 (ru) * 1992-12-09 1995-05-10 Всероссийский научно-исследовательский институт гидротехники и мелиорации им.А.Н.Костякова Способ освоения засоленных среднесуглинистых земель
RU2239966C1 (ru) * 2003-04-11 2004-11-20 Государственное научное учреждение Прикаспийский научно-исследовательский институт аридного земледелия Российской академии сельскохозяйственных наук Способ возделывания многолетних бобовых трав на орошаемых землях аридной зоны

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUNCIMAN H.V. Forage production from salt affected wasteland in Australia // Reclamat. Revegetat. Res, Т. 5, N 1-3, 1986, р. 17-29. *
ЕШМУРАТОВ Т., ЖИЕНБЕКОВ С. Влияние различных доз и соотношений минеральных удобрений на урожайность хлопчатника //Тр. Каракалпакского НИИ земледелия, Т. 8, N 1, 1988, с. 126-130. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738457A (zh) * 2018-06-20 2018-11-06 安徽省农业科学院土壤肥料研究所 一种适用于内陆极干旱地区盐碱地的综合改良方法
CN109392347A (zh) * 2018-11-09 2019-03-01 上海园林绿化建设有限公司 一种生态环保型土壤改良方法
CN115136765A (zh) * 2022-05-17 2022-10-04 山东农业大学 一种改良滨海盐碱土的方法
CN115918463A (zh) * 2022-12-22 2023-04-07 中国科学院遗传与发育生物学研究所农业资源研究中心 一种种植甜高粱改良滨海重盐碱地的方法

Similar Documents

Publication Publication Date Title
Zhao et al. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils
Wesström et al. Controlled drainage and subirrigation–A water management option to reduce non-point source pollution from agricultural land
Ulén et al. Soil tillage methods to control phosphorus loss and potential side‐effects: A Scandinavian review
Sawadogo Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso
Mason Sustainable agriculture
Buttar et al. Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape (Brassica napus L.)
Du Preez et al. Threats to soil and water resources in South Africa
Zougmoré et al. Effect of combined water and nutrient management on runoff and sorghum yield in semiarid Burkina Faso
RU2621551C1 (ru) Способ освоения засоленных сероземно-луговых земель центральной части азербайджана
Balehegn et al. Ecosystem-based adaptation in Tigray, Northern Ethiopia: a systematic review of interventions, impacts, and challenges
Ghosh et al. Effects of grass vegetation strips on soil conservation and crop yield under rainfed conditions in the I ndian sub‐H imalayas
Mojid et al. Growth, yield and water use efficiency of wheat in silt loam-amended loamy sand
Osman et al. Problem soils and their management
Akol et al. Effect of irrigation methods and tillage system, seed level on water use efficiency and wheat (Triticum aestivum L.) growth
RU2244393C1 (ru) Способ рекультивации песчаных земель
Singh Crops and cropping sequences for harnessing productivity potential of sodic soils
Yurina et al. Protection and Rational Use of Land Resources When Using Local Natural Fertilizers of Sapropel
Emara et al. Effect of reservoir tillage system and organic fertilization on soil water erosion resistance under rainfed conditions
Xojamuratova et al. Study of changes in soil-reclamation characteristics during collector-water irrigation
Jibrin SOIL AND WATER CONSERVATION PRACTICES IN NIGERIA
Palaniappan et al. Sustainable management of natural resources for food security and environmental quality: case studies from India–a review
Orndorff et al. Effects of prime farmland soil reconstruction methods on post-mining productivity of mineral sands mine soils in Virginia
Singh et al. Frequency of Deep Tillage and Residual Sodium Carbonate Neutralization of Sodic Water on Soil Properties, Yield and Quality of Clusterbean and Wheat Grown in a Sequence
Tanwar et al. Soil Conservation and Water Harvesting for Sustainable Agriculture in Arid Regions
Abou El Hassan et al. Effect of subsurface drainage on rice cultivation and soil salinity in the Nile Delta

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180517