RU2620298C1 - Способ получения биоудобрения из птичьего помета - Google Patents

Способ получения биоудобрения из птичьего помета Download PDF

Info

Publication number
RU2620298C1
RU2620298C1 RU2016129342A RU2016129342A RU2620298C1 RU 2620298 C1 RU2620298 C1 RU 2620298C1 RU 2016129342 A RU2016129342 A RU 2016129342A RU 2016129342 A RU2016129342 A RU 2016129342A RU 2620298 C1 RU2620298 C1 RU 2620298C1
Authority
RU
Russia
Prior art keywords
mass
biofertilizer
carried out
aqueous solution
anaerobic fermentation
Prior art date
Application number
RU2016129342A
Other languages
English (en)
Inventor
Александр Семенович Мандельштам
Олег Николаевич Трофимов
Владимир Михайлович Шуверов
Original Assignee
Александр Семенович Мандельштам
Олег Николаевич Трофимов
Владимир Михайлович Шуверов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Семенович Мандельштам, Олег Николаевич Трофимов, Владимир Михайлович Шуверов filed Critical Александр Семенович Мандельштам
Priority to RU2016129342A priority Critical patent/RU2620298C1/ru
Application granted granted Critical
Publication of RU2620298C1 publication Critical patent/RU2620298C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • C05F3/06Apparatus for the manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Abstract

Способ получения биоудобрения из птичьего помета включает предварительную гомогенизацию птичьего помета с последующим проведением стадии гидролиза в присутствии щелочного раствора и стадии анаэробной ферментации в интервале температур 37-38°C в мезофильном режиме. Стадию гидролиза проводят в интервале температур 36-38°C, влажности 88-89% масс. Стадию анаэробной ферментации проводят при влажности 90-92% масс. Далее проводят сепарацию полученной после стадии анаэробной ферментации взвеси с отделением целевого продукта с влажностью 74-77% масс. и водного раствора, содержащего 3,0-4,0 грамм/литр растворенного аммиака. Отделенный водный раствор используют на стадии гидролиза в качестве щелочного раствора. Изобретение обеспечивает получение биоудобрения с более высоким содержанием ценных гуминовых кислот и упрощение технологического процесса. 3 з.п. ф-лы, 1 табл., 9 пр.

Description

Изобретение относится к сельскому хозяйству и может быть использовано при переработке помета птицы, получаемого на птицефабриках, на органическое удобрение.
Птичий помет, являющийся отходом при производстве мяса птицы и яиц, производится в Российской Федерации в объемах, составляющих десятки млн тонн в год, и поэтому рациональное его использование является актуальным.
Средний химический состав помета птицы по данным обобщенным Всесоюзным научно-исследовательским, конструкторским и проектно-технологическим институтом органических удобрений и торфа (ВНИИ ТИОУ) представлен в таблице 1.
Figure 00000001
При периодичности уборки и транспортировке помет частично теряет влажность до 60-63% масс. Однако сырой помет обладает рядом неприятных свойств: имеет сильный зловонный запах, содержит большое количество семян сорняков, яиц гельминтов и мух, множество микроорганизмов, а также обладает повышенной липкостью, поэтому требует предварительной обработки.
Как вариант переработки используется термическое высушивание. При этом помет высушивается до влажности 20% и избавляется от вышеперечисленных недостатков (по данным ВИУА, В.Ф. Ефремов, Н.А. Слизовская, 1976 г.)
Однако это очень энергоемкий процесс.
В Нормах технологического проектирования систем удаления и подготовки к использованию навоза и помета НТП17-99 Министерства сельского хозяйства Российской Федерации (Москва, 2001 г.) указаны основные способы переработки птичьего помета.
В разделе 7 данных Норм описаны способы переработки компостированием помета.
К недостаткам компостирования следует отнести:
- необходимость разбавления помета наполнителями (торфом, сапропелем, соломой, опилками и т.д.);
- периодичность процесса;
- занятие больших площадей земли под компостные бурты;
- сложность осуществления процесса при отрицательных температурах наружного воздуха, а также высокую норму внесения полученного органического удобрения по сравнению с сухим пометом, (Приложение Б Норм), например, овощи - 6-8 т/га - для сухого помета, 40-70 т/га - для компоста.
В разделе 8 Норм описаны способы анаэробной обработки помета. Пунктом 8.5 указано, что для анаэробного сбраживания помета следует применять два режима - термофильный с диапазоном температур 53-55°C и мезофильный с диапазоном температур 33-38°C. Термофильный режим сбраживания птичьего помета характеризуется высоким выходом биогаза, однако низким содержанием гуминовых кислот в готовом удобрении (1,3-1,5% масс. на сухое вещество), а также незначительным содержанием анаэробных микроорганизмов, активных в базовой почве при условиях использования удобрения.
Мезофильный режим анаэробного сбраживания характеризуется умеренным выходом биогаза, но позволяет получить органическое удобрение с повышенным содержанием гуминовых кислот по сравнению как с термофильнм методом, так и с исходным пометом птицы.
Биогаз - газ, выделяющийся в процессе анаэробного сбраживания навоза и помета, содержит до 65-70% метана и используется в качестве топлива для получения электроэнергии. В ряде стран с высокой стоимостью природного газа в розничной сети термофильное сбраживание является рентабельным благодаря высоким выходам биогаза.
Важными органическими веществами, присутствующими в биоудобрениях, являются гуминовые кислоты. Они повышают сопротивляемость растений неблагоприятным условиям внешней среды: засухе, высоким и низким температурам. Гуминовые кислоты способствуют ускорению роста и развития растений, сокращению вегетационного периода, более раннему созреванию и повышению урожайности сельскохозяйственных культур.
Известен способ обработки куриного помета (патент РФ №2228319, 10.05.2004).
Способ включает анаэробное термофильное сбраживание и последующее разделение сброженной массы на твердую и жидкую фракции центрифугированием. Перед анаэробным термофильным сбраживанием в куриный помет вводят нагретый до температуры +75-+95°C рассол природного минерала бишофита сульфатного типа формулы MgCl2 6H2O. Плотность рассола 1,1-1,5 т/м3. Норма расхода: 100-300 кг на 1 тонну навоза-сырца. Полученную массу гомогенизируют. В нее вводят ил перепревшего свиного навоза из отстойников свиноферм. Массовое соотношение помета и свиного навоза по сухому веществу 1:(2-4). Ингредиенты органического удобрения непрерывно перемешивают в течение 5-10 минут. После мезофильного сбраживания полученный продукт делят на два потока: 20-30% массы полуфабриката направляют на сбраживание свежего куриного помета, 70-80% оставшейся пульпы охлаждают до температуры окружающей среды без доступа атмосферного воздуха. Центрифугированием разделяют эту массу на твердый осадок и жидкую фракцию. В твердый осадок добавляют отходы первичной подработки лакричного сырья в виде измельченных нестандартных корней, минерального сора, растительных примесей, стержни надземных побегов и карбаша. Их перемешивают, частично подсушивают. Массу прессуют в гранулы с размерами 15-25 мм. Удобрения фасуют. Жидкую фракцию рециркулируют. Изобретение позволяет снизить себестоимость и повысить качество органического удобрения.
К недостаткам данного способа переработки куриного помета относится:
1) сложность при его реализации - большинство птицефабрик расположено на значительном расстоянии от месторождений бишофита сульфатного типа и свинокомплексов, и транспортировка ингредиентов, включая перевозку, хранение и логистику будет очень затратна;
2) низкая доля перерабатываемого помета птицы в сумме исходных ингредиентов, т.к. производят первичное разбавление рассолом природного минерала бишофита 100-300 кг на тонну помета-сырца, вторичное разбавление перепревшим илом свиного навоза в соотношении по сухому веществу 1:(2-4), третичное разбавление отходами первичной переработки лакричного сырья. При этом доля птичьего помета составит только 15-25% в смеси компонентов, что, учитывая масштабы образования птичьего помета на современных птицефабриках, создает значительные проблемы.
Наиболее близким к заявляемому способу является способ получения биоудобрения (патент РФ №2539781, 27.01.2015 г.).
По данному способу измельчают куриный помет и торф, взятые в соотношении 50:50, до гранулометрического состава не более 10 мм. Перемешивают измельченные компоненты и ощелачивают 0,5%-ным водным раствором едкого калия в количестве 1,5 л на 1 кг смеси при 20-22°C в течение 24 часов. Вводят в полученное первичное биоудобрение пшеничные отруби в количестве 3% масс. и перемешивают. Проводят первую стадию биоконверсии смеси при 36-39°C в течение 96 часов. Затем проводят вторую стадию биоконверсии при 55-60°C в течение 24 часов. При этом через каждые 24 часа смесь продувают воздухом в продольном и поперечном направлениях в течение 30 минут.
В способе указывается, что отщелачивание проводится в целях гидролиза высокомолекулярных соединений (стр. 5, абзац 2, стр. 6 абзац 2).
В результате было получено биоудобрение с содержанием гуминовых кислот 3,94% на сухое вещество, а доля птичьего помета в исходной смеси составила 50%.
Недостатком данного способа является сложность технологического процесса, относительно небольшая доля (50% в исходной смеси) птичьего помета, невысокое содержание ценных гуминовых кислот.
Задачей изобретения является разработка способа получения биоудобрения с увеличенным содержанием гуминовых кислот, с максимально увеличенной долей птичьего помета в исходной смеси и упрощение технологического процесса.
Поставленная задача решается способом получения биоудобрения из птичьего помета, который включает предварительную гомогенизацию птичьего помета с последующим проведением стадии гидролиза в присутствии щелочного раствора и стадии анаэробной ферментации в интервале температур 37-38°C в мезофильном режиме.
Способ отличается тем, что стадию гидролиза проводят в интервале температур 36-38°C, влажности 88-89% масс., стадию анаэробной ферментации проводят при влажности 90-92% масс.
Далее проводят сепарацию полученной после стадии анаэробной ферментации взвеси с отделением биоудобрения с влажностью 74-77% масс. и водного раствора, содержащего 3,0-4,0 грамм/литр растворенного аммиака. Отделенный водный раствор используют на стадии гидролиза в качестве щелочного раствора.
Пополнение системы водой, необходимой по балансу процесса, производят на входе в стадию анаэробной ферментации.
На предварительную гомогенизацию можно дополнительно подавать древесный уголь, или уголь, полученный пиролизом кокосовой скорлупы, или технический углерод, измельченный и просеянный через сито с ячейкой до 0,5 мм, в количестве 0,5-2,5% масс. на сухое вещество птичьего помета.
Также возможен вывод из системы в качестве жидкого биоудобрения части отделенного сепарацией водного раствора в количестве не более 20% в пересчете на массу птичьего помета.
Опыты проводили на опытно-промышленной установке по мезофильной анаэробной переработке куриного помета, состоящей из гомогенизатора с мешалкой емкостью 5 м3, гидролизера с направленным перемешивающим устройством и отводом газов емкостью 10 м3, двух ферментаторов анаэробного мезофильного сбраживания с направленным перемешивающим устройством емкостью 15 м3 каждый, сепаратора по сгущению полученного продукта до влажности 74-77% масс. и рецикла отделенного водного раствора, узла сбора биогаза, насосов и средств измерения.
При испытаниях использовался куриный помет с влажностью 61-63%, содержанием гуминовых кислот 1,2-1,3% масс. на сухое вещество.
Куриный помет поступал в гомогенизатор порциями по 160 литров, где усреднялся и разбавлялся рециркулирующим водным раствором, отделенным сепарацией, до влажности 80% масс., затем эта смесь порционно подавалась в гидролизер, где разбавлялась рециркулирующим водным раствором, отделенным сепарацией, до влажности 88-89% масс. и где за счет внешнего обогрева теплофикационной водой поддерживалась температура в интервале 36-38°C. В гидролизере проходил процесс разложения высокомолекулярных соединений. Затем полученная смесь направлялась в ферментаторы. Температура в ферментаторах поддерживалась в интервале 37-38°C. При этом проводилось дополнительное разбавление водой до влажности 90-92% масс. Продукт продвигался перемешивающим устройством от входа к выходу. Биогаз выводился через гидрозатвор.
Порционно выводимая из ферментатора взвесь на сепараторе разделялась на твердую фазу - биоудобрение с влажностью 74-77% масс. - и жидкую фракцию - водный раствор, содержащий 3,0-4,0 грамма на литр растворенного аммиака, который без охлаждения рециркулировал в гомогенизатор и гидролизер. Твердая фаза – биоудобрение - охлаждалось до 20-25°C и фасовалось.
Учитывая, что порционность вводимого свежего помета 160 литров составляла от общего объема системы 45000 литров крайне незначительную величину, процесс можно считать практически непрерывным.
При продолжительности процесса 12 дней удавалось получить биоудобрение с влажностью 74,5% масс., содержанием гуминовых кислот до 7,8% масс. на сухое вещество и естественной сыпучести.
Снижение времени процесса до 7,5 дней снизило содержание гуминовых кислот до 4,8% на сухое вещество. Проведение процесса в течение 10 дней позволило получить биоудобрение с содержанием гуминовых кислот 6,8% масс. на сухое вещество.
Было выдвинуто предположение, что создание развитой поверхности внутри смеси в процессе гидролиза и ферментации может ускорить процесс биоконверсии и улучшить результат.
Для этих целей был использован уголь древесный, полученный пиролизом древесины в аппаратах промышленного типа по ГОСТ 7657-84. Уголь размололи и просеяли через сито с ячейкой 0,5 мм. При подаче 1,5% масс. размолотого древесного угля в гомогенизатор на весь его объем в пересчете на сухое вещество куриного помета и последующую поставку в каждую подаваемую в процесс порцию куриного помета при 12-дневном процессе гидролиза и ферментации было получено биоудобрение с содержанием гуминовых кислот 8, 4% масс. на сухое вещество.
Снижение времени процесса до 7,5 дней с подачей размолотого древесного угля в количестве 2,5% масс. на сухое вещество куриного помета позволило получить биоудобрение с содержанием гуминовых кислот 7,2% масс. на сухое вещество при влажности 74,5% масс. Снижение добавки древесного угля до 0,5% масс. на сухое вещество куриного помета понизило содержание гуминовых кислот до 5,9% масс. на сухое вещество.
Опыты были продолжены с другими углеродсодержащими материалами, имеющими развитую поверхность. Был проведен опыт с углем, полученным сухим пиролизом кокосовой скорлупы. Уголь был также размолот и просеян через сито с ячейкой 0,5 мм. При времени проведения процесса 7,5 дня и добавке угля в количестве 2,0% масс. на сухое вещество куриного помета было получено биоудобрение при влажности 74% с содержанием гуминовых кислот 7,2% масс. на сухое вещество.
Был испытан технический углерод (сажа) марки ПМ-33, также размолотый и просеянный через сито с ячейкой 0,5 мм. При времени биопроцесса 7,5 дня и вводе 2,0% масс. сажи в пересчете на сухое вещество куриного помета было получено биоудобрение с содержанием гуминовых кислот 6,8% масс. на сухое вещество.
Проведенные опыты позволяют утверждать, что древесные угли с большей поверхностью (м2/г), такие как БАУ и сорбционные, позволят получить лучший результат, чем использованный в опытах древесный уголь, но они более дороги, то же самое можно утверждать и касательно технического углерода (сажи).
Также была исследована возможность вывода из системы в качестве жидкого биоудобрения части водного раствора, полученного при сепарации, и проанализированы его свойства.
Анализы показали, что при выводе из системы водного раствора в количестве до 20% масс. от массы птичьего помета в растворе содержится, % масс.: азота - 0,8, фосфора в пересчете на P2O5 - 0,4, калия - 0,6, гуминовых кислот - 3,8, следовательно, данный раствор может быть использован в качестве биоудобрения для жидкой подкормки растений.
Полученные данные могут быть применены и к переработке других видов птичьего помета в силу близости кормовой базы и физиологии птиц.
Сущность предлагаемого способа иллюстрируется следующими примерами.
Пример 1.
На установку через смеситель подавали один раз в 4 часа 160 литров куриного помета с влажностью 61-62% масс. В гомогенизаторе помет разбавляли рециркулирующим водным раствором, отделенным сепарацией до влажности 80% масс. Температура смеси составляла 27°C за счет температуры рециркулирующего водного раствора.
Далее смесь поступала в гидролизер, где далее разбавлялась рециркулирующим водным раствором, отделенным сепарацией, и нагревалась внешним обогревом. Стадию гидролиза проводили при влажности 88-89% масс. в интервале температур 36-38°C.
Затем смесь поступала в ферментатор, где дополнительно разбавлялась водой.
Стадию анаэробной ферментации проводили при влажности 90-92% масс. в интервале температур 37-38°C.
Полученная после стадии анаэробной ферментации взвесь периодически поступала в накопитель и дальше на сепаратор для отделения биоудобрения и жидкой фазы - водного раствора, содержащего 3,0-4,0 г/л растворенного аммиака, pH раствора - 8,3-8,5.
Показатели полученного биоудобрения - влажность 74% масс., содержание гуминовых кислот - 6,8% масс. на сухое вещество.
Таким образом, в день установка перерабатывала 960 кг свежего куриного помета с влажностью 61-62% масс. Расчетное время пребывания птичьего помета в зоне биоконверсии (стадии гидролиза и анаэробной ферментации) с учетом разбавления рециркулирующим водным раствором и свежей водой составило 10 дней. При устоявшемся режиме ежедневно проводились замеры и качество потоков.
Из гидролизера среднесуточный выход газа составил 14,7 м3 в день. Газ имел следующий состав, % об.: CH4 - 45,0; CO2 - 54,7; NH3 - 0,1; H2S - 0,2.
Из ферментатора среднесуточный выход газа составлял 39,2 м3 в день. Газ имел следующий состав: CH4 - 70,2% об.; CO2 - 29,7% об.; H2S - 800 ррм.
Высокое содержание CO2 и H2S в газе, выходящем из гидролизера, отличное от газа, выходящего из ферментатора, наглядно показывает на процесс гидролиза на первой стадии.
Пример 2.
Опыт проводили в условиях примера 1 за исключением того, что подача свежего помета осуществлялась порционно 160 литров раз в 5 часов. Это соответствовало времени нахождения помета в зоне биоконверсии 12 дней. При этом на стадию гидролиза приходилось 4 дня, на стадию анаэробной ферментации - 8 дней.
Было получено биоудобрение с влажностью - 74,5% масс., содержанием гуминовых кислот - 7,8% масс. на сухое вещество.
Пример 3.
Опыт проводили в условиях примера 1 за исключением того, что подача свежего помета осуществлялась порционно 160 литров раз в 3 часа. Это соответствовало времени биоконверсии 7,5 дня, в том числе: на стадии гидролиза - 2,5 дня, на стадии анаэробной ферментации - 5 дней.
Было получено биоудобрение с влажностью 77% масс., содержанием гуминовых кислот 4,8% масс. на сухое вещество.
Пример 4.
В условиях примера 2 в гомогенизатор разово загружали 15 кг измельченного и просеянного через сито с ячейкой 0,5 мм древесного угля с исходной насыпной плотностью 255 кг/м3 (2,55 кг на 10-литровый пакет) по ГОСТ 7657-84 и затем в каждую порцию свежего помета подмешивалось 900 грамм измельченного и просеянного угля, что составляло 1,5% на сухое вещество куриного помета.
Было получено биоудобрение с влажностью 74,0% масс., содержанием гуминовых кислот 8,4% масс.
Пример 5.
Процесс осуществляли в условиях примера 4, при этом время биоконверсии составляло 7,5 дней, подача свежего помета составляла 160 литров 1 раз в 3 часа, а количество измельченного древесного угля - 1500 грамм на каждую порцию помета, что соответствовало 2,5% на сухое вещество куриного помета.
Был получено биоудобрение с влажностью 74,5% масс., содержанием гуминовых кислот 7,2% масс. на сухое вещество.
Пример 6.
Процесс осуществляли в соответствии с примером 5, однако подача измельченного древесного угля была снижена до 300 грамм на порцию (160 литров) помета или 0,5% на сухое вещество куриного помета.
Было получено биоудобрение с влажностью 77% масс., содержанием гуминовых кислот 5,9% масс. на сухое вещество.
Пример 7.
Процесс осуществляли в условиях примера 5 за исключением того, что вместо древесного угля использовали измельченный и просеянный через сито с ячейкой 0,5 мм уголь, полученный пиролизом кокосовой скорлупы в количестве 1200 грамм на порцию 160 литров помета, или 2% масс. на сухое вещество куриного помета.
Было получено биоудобрение с влажностью 74,1% масс., содержанием гуминовых кислот 7,2% масс. на сухое вещество.
Пример 8.
Процесс осуществляли в условиях примера 7 за исключением того, что вместо угля, полученного пиролизом кокосовой скорлупы, использовали технический углерод (сажу) ПМ-3, также размолотый и просеянный через сито с ячейкой 0,5 мм, в количестве 1200 грамм на порцию помета (160 литров) или 2,0% масс. на сухое вещество куриного помета.
Было получено биоудобрение с влажностью 76% масс., содержанием гуминовых кислот 6,8% масс. на сухое вещество.
Пример 9.
Процесс осуществляли в условиях примера 1 за исключением того, что из системы ежедневно выводили в качестве жидкого биоудобрения часть водного раствора, отделенного сепарацией, в количестве 200 кг, что составляло 20,8% в пересчете на массу птичьего помета при подаче 960 кг в день птичьего помета.
При этом проводили анализы водного раствора, отделенного сепарацией, рециркулирующего и используемого на стадии гидролиза, на содержание растворенного аммиака, а также более подробный анализ выводимого в качестве жидкого биоудобрения водного раствора.
По прошествии 11 дней произошло падение содержания растворенного аммиака в рециркулирующем водном растворе с 3,0-4,0 грамм на литр до 3,0-3,2 грамм на литр.
Содержание гуминовых кислот в биоудобрении снизилось с 6,8% масс. до 6,6% масс. на сухое вещество, и наступило новое равновесие системы.
Выводимый из системы в качестве жидкого биоудобрения водный раствор содержал, % масс.: азота - 0,8, фосфора - 0,4 (в пересчете на P2O5), калия - 0,6, гуминовых кислот - 3,8.
Анализы проб биоудобрения во всех примерах показали отсутствие яиц гельминтов и болезнетворных микроорганизмов, а состав газов и содержание растворенного аммиака в рециркулирующем водном растворе были близки.
Таким образом, приведенные примеры показывают, что предлагаемый способ позволяет получить биоудобрение из птичьего помета со значительно более высоким содержанием ценных гуминовых кислот 4,8-8,4% на сухое вещество вместо 3,94 в биоудобрении по прототипу. Также предлагаемый способ значительно проще за счет того, что нет необходимости вводить в состав смеси для биоконверсии торф, отделенный в процессе сепарации водный раствор рециркулирует и заменяет раствор едкого калия в процессе гидролиза и нет необходимости в продольной и поперечной продувке воздухом.

Claims (4)

1. Способ получения биоудобрения из птичьего помета, включающий предварительную гомогенизацию птичьего помета с последующим проведением стадии гидролиза в присутствии щелочного раствора и стадии анаэробной ферментации в интервале температур 37-38°C в мезофильном режиме, отличающийся тем, что стадию гидролиза проводят в интервале температур 36-38°C, влажности 88-89% масс., стадию анаэробной ферментации проводят при влажности 90-92% масс., далее проводят сепарацию полученной после стадии анаэробной ферментации взвеси с отделением биоудобрения с влажностью 74-77% масс. и водного раствора, содержащего 3,0-4,0 грамм/литр растворенного аммиака, с последующим использованием отделенного водного раствора на стадии гидролиза в качестве щелочного раствора.
2. Способ по п. 1, отличающийся тем, что пополнение системы водой, необходимой по балансу процесса, производят на входе в стадию анаэробной ферментации.
3. Способ по п. 1, отличающийся тем, что на предварительную гомогенизацию дополнительно подают древесный уголь, или уголь, полученный пиролизом кокосовой скорлупы, или технический углерод, измельченный и просеянный через сито с ячейкой до 0,5 мм, в количестве 0,5-2,5% масс. на сухое вещество птичьего помета.
4. Способ по п. 1, отличающийся тем, что часть отделенного сепарацией водного раствора в количестве не более 20% в пересчете на массу птичьего помета выводят из системы в качестве жидкого биоудобрения.
RU2016129342A 2016-07-19 2016-07-19 Способ получения биоудобрения из птичьего помета RU2620298C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129342A RU2620298C1 (ru) 2016-07-19 2016-07-19 Способ получения биоудобрения из птичьего помета

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129342A RU2620298C1 (ru) 2016-07-19 2016-07-19 Способ получения биоудобрения из птичьего помета

Publications (1)

Publication Number Publication Date
RU2620298C1 true RU2620298C1 (ru) 2017-05-24

Family

ID=58882643

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129342A RU2620298C1 (ru) 2016-07-19 2016-07-19 Способ получения биоудобрения из птичьего помета

Country Status (1)

Country Link
RU (1) RU2620298C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687452C1 (ru) * 2018-09-28 2019-05-13 Общество с ограниченной ответственностью "Плаза-Сити" (ООО "Плаза-Сити") Способ получения раствора биологически активных веществ из птичьего помета
RU2792772C1 (ru) * 2022-07-11 2023-03-24 Общество с ограниченной ответственностью "МЕЩЕРСКИЙ НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР" Способ повышения плодородия почвы для озимой пшеницы

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1733432A1 (ru) * 1990-02-20 1992-05-15 Московский гидромелиоративный институт Способ переработки органических отходов на удобрение и биогаз
RU2048722C1 (ru) * 1993-02-02 1995-11-27 Конструкторское бюро "Салют" Способ переработки отходов животноводства в удобрение и установка для его осуществления
RU2214989C1 (ru) * 2002-04-01 2003-10-27 Полянинов Леонид Яковлевич Способ обработки куриного помета
RU2539781C1 (ru) * 2013-07-30 2015-01-27 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт мелиорированных земель"(ФГБНУ ВНИИМЗ) Способ получения биоудобрения
CN104402536A (zh) * 2014-11-02 2015-03-11 贵州柳江畜禽有限公司 一种用鸡粪便生产活性生态有机肥料的方法
US20150259259A1 (en) * 2014-02-17 2015-09-17 Envirokure, Incorporated Process for manufacturing liquid and solid organic fertilizer from animal waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1733432A1 (ru) * 1990-02-20 1992-05-15 Московский гидромелиоративный институт Способ переработки органических отходов на удобрение и биогаз
RU2048722C1 (ru) * 1993-02-02 1995-11-27 Конструкторское бюро "Салют" Способ переработки отходов животноводства в удобрение и установка для его осуществления
RU2214989C1 (ru) * 2002-04-01 2003-10-27 Полянинов Леонид Яковлевич Способ обработки куриного помета
RU2539781C1 (ru) * 2013-07-30 2015-01-27 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт мелиорированных земель"(ФГБНУ ВНИИМЗ) Способ получения биоудобрения
US20150259259A1 (en) * 2014-02-17 2015-09-17 Envirokure, Incorporated Process for manufacturing liquid and solid organic fertilizer from animal waste
CN104402536A (zh) * 2014-11-02 2015-03-11 贵州柳江畜禽有限公司 一种用鸡粪便生产活性生态有机肥料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687452C1 (ru) * 2018-09-28 2019-05-13 Общество с ограниченной ответственностью "Плаза-Сити" (ООО "Плаза-Сити") Способ получения раствора биологически активных веществ из птичьего помета
RU2792772C1 (ru) * 2022-07-11 2023-03-24 Общество с ограниченной ответственностью "МЕЩЕРСКИЙ НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР" Способ повышения плодородия почвы для озимой пшеницы

Similar Documents

Publication Publication Date Title
Tambone et al. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties
Wiśniewski et al. The pyrolysis and gasification of digestate from agricultural biogas plant
US10900013B2 (en) Systems and methods of producing compositions from the nutrients recovered from waste streams
CN102173507A (zh) 一种规模化畜禽养殖场粪便污水和农田作物秸秆资源化综合利用方法
Liu et al. Humic acid and phosphorus fractions transformation regulated by carbon-based materials in composting steered its potential for phosphorus mobilization in soil
Czekała et al. Sustainable management and recycling of anaerobic digestate solid fraction by composting: A review
CN105272472A (zh) 一种猪粪尿原液发酵的沼液配方肥及其制备方法
US20210198700A1 (en) Biogas production from excrement
Ozdemir et al. Composting of sewage sludge with mole cricket: stability, maturity and sanitation aspects
CN109836211A (zh) 一种有机肥及其制备方法
CN103073120A (zh) 一种沼液净化技术
RU2620298C1 (ru) Способ получения биоудобрения из птичьего помета
US20210114950A1 (en) Systems and methods of producing compositions from the nutrients recovered from waste streams
Salam et al. Biogas from anaerobic digestion of fish waste
Manohar et al. Vermicompost preparation from plant debris, cattle dung and paper waste by using three varieties of earthworms in green fields Institute of Agriculture, Research and Training, Vijayawada (AP), India
Sheela et al. Vermicompost to save our agricultural land
Lorin et al. Stabilization of confined beef cattle manure: characteristics of produced fertilizers
Zhu et al. Continuous production of high-value products, biodiesel and biogas from microalgae cultivated with livestock waste compost: A feasible study
Agori et al. Utilization of digestate from anaerobic co-digestion of water hyacinth and poultry waste as a sustainable source of organic fertilizer
RU2214989C1 (ru) Способ обработки куриного помета
Khalib et al. Utilization of rice straw ash during composting of food waste at different initial C/N ratios for compost quality
CN110776354A (zh) 一种利用圈养系统鱼粪堆制有机肥料的方法
Rath et al. Preparation Of Vermicompost By Using Agro-Industrial Waste
RU2621978C1 (ru) Способ получения органического удобрения
RU2780463C1 (ru) Способ переработки целлюлозосодержащих отходов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200720