RU2619866C2 - Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями - Google Patents

Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями Download PDF

Info

Publication number
RU2619866C2
RU2619866C2 RU2015140488A RU2015140488A RU2619866C2 RU 2619866 C2 RU2619866 C2 RU 2619866C2 RU 2015140488 A RU2015140488 A RU 2015140488A RU 2015140488 A RU2015140488 A RU 2015140488A RU 2619866 C2 RU2619866 C2 RU 2619866C2
Authority
RU
Russia
Prior art keywords
tensile stress
filaments
polypropylene
value
carbon
Prior art date
Application number
RU2015140488A
Other languages
English (en)
Other versions
RU2015140488A (ru
Inventor
Анна Сергеевна Степашкина
Авинир Геннадьевич Макаров
Павел Павлович Рымкевич
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна"
Анна Сергеевна Степашкина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна", Анна Сергеевна Степашкина filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна"
Priority to RU2015140488A priority Critical patent/RU2619866C2/ru
Publication of RU2015140488A publication Critical patent/RU2015140488A/ru
Application granted granted Critical
Publication of RU2619866C2 publication Critical patent/RU2619866C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles

Landscapes

  • Artificial Filaments (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение касается способа оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями в процессе эксплуатации. Сущность способа заключается в том, что проводят поминутное растяжение с постоянной скоростью образцов синтетических нитей с одновременным воздействием электрическим током. Далее проводят поминутное измерение значений растягивающих напряжений и значения электрического сопротивления с одновременным вычислением значений удельного электрического сопротивления по формуле
Figure 00000016
, где R - электрическое сопротивление нити, L≤2 мм - расстояние между контактами, b - толщина нити, d - ширина образца; причем полипропиленовую нить с углеродными наполнителями растягивают до достижения значения удельного электрического сопротивления ρ=109 Ом⋅м. По полученному значению максимального растягивающего напряжения с учетом усреднения по формуле:
Figure 00000017
где σi - значение максимально допустимого растягивающего напряжения в каждом случае, судят о сохранении антистатических свойств полипропиленовых нитей с углеродными наполнителями. Использование способа позволяет спрогнозировать сохранение антистатических свойств материалов в процессе многократного растяжения полипропиленовых нитей с углеродными наполнителями 6 табл., 1 ил.

Description

Изобретение относится к методам неразрушающего контроля синтетических нитей и материалов и может быть использовано для прогнозирования способности материалов на основе полипропиленовой матриц и углеродных наполнителей, используемых в текстильной и легкой промышленностях, рассеивать статическое электричество, что обеспечивает антистатические свойства материалам.
В известном уровне техники исследуются свойства материалов, например затвердевание, прочность сборки, путем измерения удельного электрического сопротивления.
Известен способ и система анализа химически активного материала, например бетона. Способ включает в себя непрерывное измерение удельного электрического сопротивления для получения временной зависимости. Временная зависимость используется для определения времени начала схватывания и времени окончания схватывания материала. Время начала схватывания определено как время наступления наиболее быстрого подъема удельного сопротивления и время окончания схватывания определено как время локального максимума удельного сопротивления. Временная зависимость может быть использована для выявления перехода между рабочим состоянием материала и нерабочим состоянием материала (патент RU №2535239, МПК G01N 27/04, опубликовано 27.10.2011).
Известен способ контроля качества сборки и надежности сборочной единицы, заключающийся в том, что возбуждают резонансные механические колебания ультразвуковым излучателем в заданном частотном интервале, содержащем основные гармоники, выделяют резонансные пики в заданном частотном интервале, сравнивают их с эталонными значениями, при этом за эталонное значение дополнительно принимают заданное нормируемое сопротивление электрической цепи, возбуждение резонансных механических колебаний производят в процессе изготовления сборочной единицы, при осуществлении контроля электрического сопротивления цепи сборочной единицы, при этом излучатель ультразвуковых механических колебаний располагают на контрольном элементе сборочной единицы, а контроль проводят по одному резонансному пику, о качестве сборки сборочной единицы и наличию дефектов судят по величине расхождения частот резонансного пика и эталонного и по сравнению сопротивления электрической цепи сборочной единицы с эталонным, о надежности работы сборочной единицы судят по расхождению частот резонансного пика и эталонного при отсутствии контроля сопротивления электрической цепи сборочной единицы (патент RU №2387987, МПК G01N 29/12, G01N 27/02, опубликовано 27.04.2010).
Наиболее близким к заявленному решению является способ оценки деформационных свойств швейных лавсановых нитей с различной степенью крутки в процессе эксплуатации. Техническим результатом изобретения является возможность подбора таких рабочих напряжений на нить, при которых влияние крутки на ее деформационные свойства исключается, то есть целесообразно выбирать нить с низкой степенью крутки, производство которой гораздо экономичнее, чем нити с высокой степенью крутки. Сущность способа заключается в получении зависимости минутной деформации образцов швейных лавсановых нитей с различной степенью крутки при постоянном растягивающем напряжении, одинаковом для всех испытываемых образцов (патент RU №2295724, МПК G01N 33/36, опубликовано 20.03.2007).
Техническим результатом изобретения является прогнозирование сохранения антистатических свойств материалов в процессе многократного растяжения полипропиленовых нитей с углеродными наполнителями за счет установления максимального значения растягивающих напряжений, отвечающих максимально допустимому значению удельного электрического сопротивления ρ=109 Ом⋅м.
Поставленная задача достигается тем, что в способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями включается поминутное растяжение каждой из n нитей с одновременным воздействием электрического тока, измерение значений растягивающих напряжений и значений электрического сопротивления с одновременным вычислением значения удельного электрического сопротивления по формуле
Figure 00000001
, где R - электрическое сопротивление нити, L≤2 мм - расстояние между контактами, b - толщин нити (диаметр), d - ширина образца; причем полипропиленовую нить с углеродными наполнителями растягивают до достижения значения удельного электрического сопротивления ρ=109 Ом⋅м; по полученному значению максимального растягивающего напряжения с учетом усреднения по формуле:
Figure 00000002
где σi - значение максимально допустимого растягивающего напряжения в каждом случае,
судят о сохранении антистатических свойств полипропиленовых нитей с углеродными наполнителями.
Известно, что материал, удельное электрическое сопротивление которого находится в интервале 106÷109 Ом⋅м без механических воздействий, в том числе растяжения, имеет способность рассевать электрический заряд, т.е. обладает антистатическим свойством (Василенок Ю.И. Предупреждение статической электризации полимеров. - Изд. 2-е. - Л.: Химия, 1981. - 195 с.). Однако сохранение антистатических свойств при использовании материалов, в том числе полипропиленовых нитей с углеродными наполнителями, в процессе нагрузки, в том числе растяжении, авторами в известном уровне техники не обнаружено.
Для лучшего понимания сущности изобретения представлен пример 1 осуществления способа оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями. Рассматривают полипропиленовые нити с содержанием технического углерода 20%, которые применяют при изготовлении тканей, обладающих антистатическим свойством, для рабочей одежды, используемой в производстве микроэлектронного оборудования.
Исследуемую полипропиленовую нить с углеродными наполнителями, удельное электрическое сопротивление которой в отсутствие механических воздействий не ниже, чем ρ=106 Ом⋅м, подвергают растяжению с одновременным измерением электрических сопротивлений и вычислением удельного электрического сопротивления по формуле:
Figure 00000003
где R - электрическое сопротивление, L - расстояние между контактами, b - толщина нити (диаметр), d - ширина образца.
Для этого нить 3 с помощью зажимов 1 и 2 закрепляют на Устройстве для испытания волокнистых материалов на растяжение (патент RU №2251094, МПК G01N 3/08, опубликовано 27.04.2005), изображенном на чертеже. С помощью углеродной пасты на нить 3 закрепляют электроды: электрод 5, идущий от источника постоянного напряжения 4, и электрод 6, идущий к пикоамперметру 7. Расстояние между электродами - не более 2 мм. Каждую минуту при непрерывном растяжении нити снимают значения растягивающего напряжения σ и электрического сопротивления R, вычисляют значения удельного электрического сопротивления ρ по формуле 1. Результаты измерений приведены в таблице 1.
Figure 00000004
С увеличением растягивающих напряжений σ получают увеличение значения удельного электрического сопротивления ρ, что говорит о том, что нить теряет способность к стеканию электрических зарядов, поэтому антистатические свойства полипропиленовых нитей с содержанием технического углерода 20% ухудшаются.
Измерения ведут до получения значения удельного электрического сопротивления, не превышающего ρ=109 Ом⋅м. Далее определяют максимально допустимое значение растягивающего напряжения: σmах=221 МПа.
Затем последовательно проводят испытания таких же полипропиленовых нитей с содержанием технического углерода 20% не менее 5 раз. Результаты измерений приведены в таблице 2.
Определяют среднее значение максимально допустимого растягивающего напряжения по формуле (2):
Figure 00000005
где σi - значение максимально допустимого растягивающего напряжения в каждом случае.
Figure 00000006
Определяют величину среднеквадратичного отклонения по формуле (3):
Figure 00000007
где σi - значение максимально допустимого растягивающего напряжения в каждом случае, σср - среднее значение максимально допустимого растягивающего напряжения.
Согласно ГОСТ Р 8.563-96 с доверительной вероятностью 95% значение максимального растягивающего напряжения попадает в интервал σ=σср±Δσ=221±3 МПа.
Пример 2
Рассматривают полипропиленовые нити с содержанием технического углерода 20%. Нить 3 с помощью зажимов 1 и 2 закрепляют на Устройстве для испытания волокнистых материалов на растяжение (патент RU №2251094, МПК G01N 3/08, опубликовано 27.04.2005), изображенном на чертеже. С помощью углеродной пасты на нить 3 закрепляют электроды: электрод 5, идущий от источника постоянного напряжения 4, и электрод 6, идущий к пикоамперметру 7. Расстояние между электродами - не более 2 мм. Каждую минуту при непрерывном растяжении нити снимают значения растягивающего напряжения σ и электрического сопротивления R, вычисляют значения удельного электрического сопротивления ρ по формуле 1. Значение удельного электрического сопротивления для нитей не ниже чем ρ=106 Ом⋅м, исследуемые нити обладают электростатическими свойствами. Затем нить растягивают до значения растягивающего напряжения: σmах=221 МПа. Измеряют значение электрического сопротивления R. По формуле 1 вычисляют значение удельного электрического сопротивления ρ. Результаты измерений и вычислений представлены в таблице 3. Полученные значения удельного электрического сопротивления ρ не превышают значения ρ=109 Ом⋅м.
Figure 00000008
Полипропиленовые нити с содержанием технического углерода 20% могут быть использованы для изготовления тканей, обладающих антистатическим свойством, для рабочей одежды, используемой в производстве микроэлектронного оборудования при значениях растягивающих напряжений, не превышающих σmах=221±3 МПа.
Пример 3.
Аналогично проводят эксперименты с другими нитями. Рассматривают полипропиленовую нить с содержанием углеродных нановолокон 3%.
Исследуемую полипропиленовую нить с углеродными наполнителями, удельное электрическое сопротивление которой в отсутствие механических воздействий не ниже, чем ρ=106 Ом⋅м, подвергают растяжению с одновременным измерением электрического сопротивления R и вычислением удельного электрического сопротивления ρ по формуле (1).
Для этого нить 3 с помощью зажимов 1 и 2 закрепляют на Устройстве для испытания волокнистых материалов на растяжение (патент RU №2251094, МПК G01N 3/08, опубликовано 27.04.2005), изображенном на чертеже. С помощью углеродной пасты на нить 3 закрепляют электроды: электрод 5, идущий от источника постоянного напряжения 4, и электрод 6, идущий к пикоамперметру 7. Расстояние между электродами - не более 2 мм. Каждую минуту при непрерывном растяжении нити снимают значения растягивающего напряжения σ и электрического сопротивления R, вычисляют значения удельного электрического сопротивления ρ по формуле 1. Результаты измерений приведены в таблице 4.
Figure 00000009
С увеличением растягивающих напряжений σ получают увеличение значения удельного электрического сопротивления ρ, что говорит о том, что нить теряет способность к стеканию электрических зарядов, поэтому антистатические свойства полипропиленовых нитей с содержанием углеродных нановолокон 3% ухудшаются.
Измерения ведут до получения значения удельного электрического сопротивления, не превышающего ρ=109 Ом⋅м. Далее определяют максимально допустимое значение растягивающего напряжения: σmах=351 МПа.
Затем последовательно проводят испытания таких же полипропиленовых нитей с содержанием углеродных нановолокон 3% не менее 5 раз. Результаты измерений приведены в таблице 5. Определяют среднее значение максимально допустимого растягивающего напряжения по формуле (2).
Figure 00000010
Определяют величину допустимого отклонения от среднего значения по формуле (3):
Figure 00000011
,
где σi - значение максимально допустимого растягивающего напряжения в каждом случае, σср - среднее значение максимально допустимого растягивающего напряжения.
Согласно ГОСТ Р 8.563-96 с доверительной вероятностью 95% значение максимального растягивающего напряжения попадает в интервал σ=σср±Δσ=351±2 МПа.
Рассматривают полипропиленовые нити с содержанием углеродных нановолокон 3%. Результаты измерений приведены в таблице 6. Нить 3 с помощью зажимов 1 и 2 закрепляют на Устройстве для испытания волокнистых материалов на растяжение (патент RU №2251094, МПК G01N 3/08, опубликовано 27.04.2005), изображенном на чертеже. С помощью углеродной пасты на нить 3 закрепляют электроды: электрод 27, идущий от источника постоянного напряжения 26, и электрод 28, идущий к пикоамперметру 29. Измеряют значение электрического сопротивления нити ρ в нерастянутом состоянии. Вычисляют значение удельного электрического сопротивления ρ по формуле 1. Значение удельного электрического сопротивления ρ для обеих нитей не ниже, чем ρ=106 Ом⋅м, исследуемые нити обладают электростатическими свойствами. Затем нить растягивают до значения растягивающего напряжения: σmах=351 МПа. Измеряют значение электрического сопротивления R. По формуле 1 вычисляют значение удельного электрического сопротивления ρ. Результаты измерений и вычислений представлены в таблице 6. Полученные значения удельного электрического сопротивления ρ не превышают значения ρ=109 Ом⋅м.
Figure 00000012
Figure 00000013
Полипропиленовые нити с содержанием углеродных нановолокон 3% могут быть использованы для изготовления тканей, обладающих антистатическим свойством, для рабочей одежды, используемой в производстве микроэлектронного оборудования при значениях растягивающих напряжений, не превышающих σmах=351±2 МПа.

Claims (4)

  1. Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями в процессе эксплуатации, включающий растяжение с постоянной скоростью образцов синтетических нитей, поминутное измерение растягивающих напряжений, их анализ и подбор значений растягивающих напряжений, влияющих на качество материала, отличающийся тем, что при поминутном растяжении на каждую из n полипропиленовых нитей с углеродными наполнителями воздействуют электрическим током, измеряют значения растягивающих напряжений и значения электрического сопротивления, одновременно вычисляют значение удельного электрического сопротивления по формуле
    Figure 00000014
    , где R - электрическое сопротивление нити, L≤2 мм - расстояние между контактами, b - толщина нити, d - ширина образца; причем полипропиленовую нить с углеродными наполнителями растягивают до достижения значения удельного электрического сопротивления ρ=109 Ом⋅м; по полученному значению максимального растягивающего напряжения с учетом усреднения по формуле:
  2. Figure 00000015
  3. где σi - значение максимально допустимого растягивающего напряжения в каждом случае,
  4. судят о сохранении антистатических свойств полипропиленовых нитей с углеродными наполнителями.
RU2015140488A 2015-09-22 2015-09-22 Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями RU2619866C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015140488A RU2619866C2 (ru) 2015-09-22 2015-09-22 Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015140488A RU2619866C2 (ru) 2015-09-22 2015-09-22 Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями

Publications (2)

Publication Number Publication Date
RU2015140488A RU2015140488A (ru) 2017-03-28
RU2619866C2 true RU2619866C2 (ru) 2017-05-18

Family

ID=58505176

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015140488A RU2619866C2 (ru) 2015-09-22 2015-09-22 Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями

Country Status (1)

Country Link
RU (1) RU2619866C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2295724C2 (ru) * 2005-05-05 2007-03-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" Способ оценки деформационных свойств швейных лавсановых нитей с различной степенью крутки в процессе эксплуатации
RU2455639C1 (ru) * 2010-12-30 2012-07-10 Олег Фёдорович Меньших Способ регистрации обрыва ферромагнитной нити в локализованном сверхсильном магнитном поле
RU2457485C1 (ru) * 2011-04-29 2012-07-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" Способ определения деформационных свойств трикотажного материала
RU2538725C2 (ru) * 2012-03-07 2015-01-10 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТУРИЗМА И СЕРВИСА" (ФГБОУ ВПО "РГУТиС") Способ определения механических характеристик швейных материалов и установка для его реализации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2295724C2 (ru) * 2005-05-05 2007-03-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" Способ оценки деформационных свойств швейных лавсановых нитей с различной степенью крутки в процессе эксплуатации
RU2455639C1 (ru) * 2010-12-30 2012-07-10 Олег Фёдорович Меньших Способ регистрации обрыва ферромагнитной нити в локализованном сверхсильном магнитном поле
RU2457485C1 (ru) * 2011-04-29 2012-07-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" Способ определения деформационных свойств трикотажного материала
RU2538725C2 (ru) * 2012-03-07 2015-01-10 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТУРИЗМА И СЕРВИСА" (ФГБОУ ВПО "РГУТиС") Способ определения механических характеристик швейных материалов и установка для его реализации

Also Published As

Publication number Publication date
RU2015140488A (ru) 2017-03-28

Similar Documents

Publication Publication Date Title
US10100463B2 (en) Method for non-destructive testing of synthetic ropes and rope suitable for use therein
Hengstermann et al. Development of a method for characterization of the fibre length of long staple carbon fibres based on image analysis
RU2619866C2 (ru) Способ оценки деформационных свойств полипропиленовых нитей с углеродными наполнителями
Sengupta et al. Electrical resistance of jute fabrics
JP2013164307A (ja) 導電糸を含む布帛の引張試験方法
RU2491562C1 (ru) Способ контроля изоляции кабельного изделия
Headrick et al. Electrical and acoustic vibroscopic measurements for determining carbon nanotube fiber linear density
RU2672190C2 (ru) Способ бесконтактного измерения площади поперечного сечения нетокопроводящих жгутов волокон микропластика полимерных материалов
US3477286A (en) Peak load detectors
CN108225694A (zh) 弹力物弹性性能测量方法、装置、介质和计算机设备
Del Casale et al. Investigation of temperature effect on an epoxy resin: Aging due to partial discharges
CN109235008B (zh) 一种导电织物的织造方式及导电纱线类型的判定装置及其判断方法
US11181505B2 (en) Quality testing of additive manufactured product using electrical measurements
RU80552U1 (ru) Устройство бесконтактного измерения площади поперечного сечения нетокопроводящего нитевидного образца
SU1698721A1 (ru) Способ контрол полиакрилонитрильного сырь дл получени углеродных волокон
RU2787708C1 (ru) Способ оценки неоднородности разрывных характеристик лубяных волокон
KR200453032Y1 (ko) 도전성 합연사의 단사감지장치
Pinto et al. A new system for direct measurement of yarn mass with 1mm accuracy
EP3663751A1 (en) Method and apparatus for assessing physical properties of a para- or diamagnetic structure such as a carbon fiber
Sawatdimongkol et al. Frequency Domain Spectroscopy Analysis of the Water Tree XLPE Cable
RU2190831C2 (ru) Способ изготовления датчиков для контроля циклических деформаций
SU1310620A1 (ru) Емкостное устройство дл измерени параметров поперечного сечени
KR100489994B1 (ko) 반도체 소자의 불량 검출 방법
JPH02298854A (ja) 繊維強化複合材料の欠陥検査方法
Mancero Automation of a Universal Testing Machine for Measuring Mechanical Properties in Textile Fibers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200923