RU2619837C1 - Способ определения объема эмиссий газовых компонент в атмосфере - Google Patents

Способ определения объема эмиссий газовых компонент в атмосфере Download PDF

Info

Publication number
RU2619837C1
RU2619837C1 RU2016132406A RU2016132406A RU2619837C1 RU 2619837 C1 RU2619837 C1 RU 2619837C1 RU 2016132406 A RU2016132406 A RU 2016132406A RU 2016132406 A RU2016132406 A RU 2016132406A RU 2619837 C1 RU2619837 C1 RU 2619837C1
Authority
RU
Russia
Prior art keywords
atmosphere
volume
emissions
gas components
contours
Prior art date
Application number
RU2016132406A
Other languages
English (en)
Inventor
Валерий Григорьевич Бондур
Вячеслав Федорович Давыдов
Мария Владимировна Гапонова
Original Assignee
Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" filed Critical Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС"
Priority to RU2016132406A priority Critical patent/RU2619837C1/ru
Application granted granted Critical
Publication of RU2619837C1 publication Critical patent/RU2619837C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к дистанционным методам атмосферных исследований. Сущность: проводят синхронную съемку подстилающей поверхности, применяя следующие устройства, установленные на космическом носителе: видеокамеру ультрафиолетового диапазона, спектрозональную камеру видимого и ближнего инфракрасного диапазонов, гиперспектрометр с рабочим диапазоном 190-790 нм. При этом гиперспектрометр устанавливают на космическом носителе таким образом, чтобы его входная щель располагалась соосно центральному участку кадров видеоизображений. Привязывают кадры к географическим координатам, полученным с помощью системы “ГЛОНАСС”. Рассчитывают средневзвешенное смещение спектра, энергию затухания и количество поглощенных квантов солнечного потока относительно эталонного по Планку солнечного потока. Вычисляют эмиссию газовых компонент в объеме луча зондирования спектрометра. Строят калибровочную характеристику тракта зондирования. Формируют синтезированную матрицу изображения путем попиксельного сложения яркости пикселей видеокамер. Выделяют методом программного расчета градиента контуры загрязнений на поле синтезированной матрицы. Вычисляют площади контуров загрязнений и средней яркости их пикселей. С использованием полученных данных определяют объем эмиссий газовых компонент в атмосфере по всей исследуемой площади. Технический результат: количественное определение эмиссии газовых компонент в атмосфере. 5 ил.

Description

Изобретение относится к области экологии, в частности к дистанционным методам мониторинга природных сред, и может найти применение в системах санитарно-эпидемиологического контроля промышленных регионов и региональных Центрах МЧС.
Промышленный прогресс неизбежно связан с увеличением выбросов в атмосферу так называемых «парниковых газов», вызывающих положительный тренд средней температуры Земли.
Контроль загрязнения атмосферы является составной частью обязанностей государств по экологическому мониторингу природных сред, подписавших Парижские соглашения 2015 г.
Для решения объемных пространственных задач используют методы дистанционного зондирования Земли космическими средствами. Известен «Способ определения концентрации углекислого газа в атмосфере», Патент RU №2422807 от 27.06.2011 г. - аналог.
В способе аналога путем лабораторных наземных измерений выбирают равное количество смежных спектральных полос поглощения кислорода O2 и углекислого газа СО2 в ближнем инфракрасном диапазоне, осуществляют с космического носителя спектрометрические измерения на выбранных спектральных полосах светового потока, отраженного от подстилающей поверхности и дважды прошедшего атмосферу, рассчитывают энергию регистрируемых сигналов в полосе кислорода
Figure 00000001
и углекислого газа
Figure 00000002
вычисляют суммарные потери на затухание в полосах О2 и СО2 как разницу между энергией эталонного, по Планку, солнечного спектра в тех же полосах Wэтал2) и Wэтал(CО2) и энергией зарегистрированных сигналов:
ΔW(O2)=Wэтал2)-W(O2); ΔW(CO2)=Wэтал(CO2)-W(CO2),
а концентрацию углекислого газа в атмосфере по трассе полета носителя в каждом кадре спектрометрических измерений рассчитывают из соотношения:
Figure 00000003
где О2[%] - концентрация кислорода в атмосфере, равная 21%;
Ii(O2), Ii(CO2) - амплитуды регистрируемых сигналов каждого из газов;
λi - средняя длина волны спектральной линии;
n - количество спектральных линий в каждой полосе. Недостатками аналога являются:
- локальность получаемых результатов измерений, привязанная только к трассе узкого луча зондирования;
- однокомпонентная оценка загрязнения атмосферы углекислым газом, в то время как антропогенные выбросы содержат множество газовых компонент.
Ближайшим аналогом к заявляемому техническому решению является «Способ определения объема выбросов в атмосферу от природных пожаров» Патент RU №2578515, 2016 г. Способ ближайшего аналога включает синхронную съемку подстилающей поверхности цифровой видеокамерой и гиперспектрометром, установленными на космическом носителе, с положением входной щели спектрометра соосно центральному участку кадра видеоизображения, выделение методами пространственного дифференцирования функции яркости I(x, y), градиентного контура пожара на видеоизображении, расчет концентрации qΣ[мг/м3] вредных выбросов от пожара по измеренному гиперспектрометром эталонному затуханию светового луча, дважды прошедшего атмосферу в полосе поглощения кислорода 761…767 нм, концентрация которого в атмосфере считается известной, и его затуханию в видимом диапазоне, построение гистограммы яркости пикселей внутри контура и их калибровку в значениях измеренной концентрации для пикселей центрального участка кадра видеоизображения, определение объема выбросов V[тонн]=mΣ⋅S⋅A⋅H, где mΣ[мг/м3] - средняя концентрация суммарного загрязнения по всем прокалиброванным пикселам контура пожара, S[m2] - площадь контура пожара, А - метеорологический коэффициент высотной температурной стратификации атмосферы, Н[м] - высота источника пожара.
Недостатками ближайшего аналога следует считать:
- невозможность непосредственного использования из-за различия используемых средств зондирования и технологии обработки сигналов;
- ограниченность измерений видимым участком диапазона солнечного спектра.
Задачей, решаемой заявленным техническим решением, является количественное измерение объема эмиссии газовых компонент путем комплексирования спектрометрических и видеометрических измерений отраженного от подстилающей поверхности светового потока в диапазоне от ультрафиолетового до ближнего инфракрасного.
Способ определения эмиссии газовых компонент в атмосфере включает синхронную съемку подстилающей поверхности видеокамерой ультрафиолетового, спектрозональной камерой видимого и ближнего инфракрасного диапазонов и гиперспектрметром в диапазоне от 190 до 790 нм, установленными на космическом носителе, с положением входной щели спектрометра соосно центральному участку кадров видеоизображений, с привязкой кадров к географическим координатам от бортовой аппаратуры потребителей системы позиционирования «ГЛОНАСС» расчет средневзвешенного смещения спектра Δλ, энергии затухания ΔW(Δλ) и количества поглощенных квантов (N=ΔW(Δλ)/средняя энергия одного кванта) солнечного потока, относительно эталонного по Планку солнечного потока, вычисление эмиссии Qтонн газовых компонент в объеме луча зондирования спектрометра как количество молей n=N/A (А - число Авогадро), умноженных на средний молярный вес парниковых газов (50 г/моль), построение калибровочной характеристики тракта зондирования Q=Q(Δλ), формирование синтезированной матрицы изображения путем попиксельного сложения яркости пикселей видеокамер, выделение методом программного расчета градиента контуров загрязнений на поле синтезированной матрицы, вычисление площади контуров Si и средней яркости их пикселей Ii, определение объема эмиссий в атмосфере по всей исследуемой площади как
Figure 00000004
Изобретение поясняется чертежами, где:
фиг. 1 - метод измерений затухания светового потока, дважды прошедшего атмосферу;
фиг. 2 - эталонный, по Планку, солнечный спектр: а) одна из реализаций спектрограмм, б) нормированные относительно максимумов;
фиг. 3 - выделенные контуры интенсивности загрязнений атмосферы на поле синтезированной матрицы;
фиг. 4 - калибровочная характеристика тракта измерений объема эмиссий газовых компонент;
фиг. 5 - функциональная схема устройства, реализующего способ.
Техническая сущность изобретения состоит в следующем. Взаимодействие солнечного излучения с антропогенными частицами происходит на молекулярном уровне. При сталкивании фотонов светового потока с молекулами газов происходит передача квантов энергии (hυ) молекулам, которые переходят в возбужденное состояние. При всех видах возможного взаимодействия светового потока с молекулами смогов в атмосфере, как то: поглощение, рассеяние, флуоресцентное переизлучение - интегральный эффект состоит в смещении спектра видимого диапазона в его длинноволновую часть (красная область) [см., например, Р. Межерис. Лазерное дистанционное зондирование, перевод с англ., Мир, М., 1987 г., стр. 124, табл. 3.4 Волновые числа комбинационного сдвига на длине волны 337,1 нм] Ниже представлены некоторые извлечения из данной таблицы для некоторых «парниковых» молекул смогов.
Figure 00000005
В результате комбинационного рассеяния солнечного света происходит перераспределение энергии между спектральными составляющими видимого диапазона, а регистрируемое спектрозональное изображение антропогенно загрязненных участков приобретает преимущественно красноватый или темно-вишневый оттенок.
Интегральный эффект взаимодействия фотонов светового потока с молекулами смогов состоит в сдвиге спектра в длинноволновую (красную) область, как это иллюстрируется фиг. 2. Количественным параметром такого смещения служит средневзвешенная длина волны λср отраженного потока, исчисляемая как:
Figure 00000006
Средневзвешенное значение длины волны делит площадь под графиками фиг. 2 пополам. Для исчисления абсолютной величины затухания сигналов в спектральных полосах измерений необходим эталон для сравнения. В качестве эталона используют функцию солнечного спектра I(λ) по Планку. Эталонная (по Планку) функция солнечного спектра, нормированная по интенсивности, иллюстрируется графиком фиг. 2а, а одна из реализаций спектрограммы измерений, нормированная относительно максимума, иллюстрируется фиг. 2б. Для приведенных графиков фиг. 2 средневзвешенные значения λср составили соответственно 490 и 570 нм, сдвиг спектра Δλ=80 нм. Энергия одного фотона (по квантовой теории Планка) равна W=hυ, где h - постоянная Планка, равная 6,626⋅10-34 Дж⋅с, υ - круговая частота, равная 2πƒ. Поскольку длина волны солнечного спектра λ=с/ƒ, где с - скорость света, равная 3⋅108 м/с, то энергия фотона составит:
Figure 00000007
. Для средней длины волны солнечного спектра λi=500 нм средняя энергия фотона ≈0,214⋅10-17 Дж [см., например, Советский энциклопедический словарь под ред. A.M. Прохорова, изд. Сов. энц., М., 1989 г., стр. 1022, Планка постоянная]. Полную эталонную энергию светового потока вычисляют по соотношению Рэлея [см., например, Заездный В.М. «Основы расчетов по статистической радиотехнике», Связь-издат, М., 1964 г., стр. 93-94]:
Figure 00000008
где I(Δλ) - амплитуда эталонного сигнала на спектральной линии λi;
n - количество спектральных линий в полосе, на которых проводят измерения.
Энергию затухания светового потока за счет поглощения фотонов в объеме эмиссии газовых компонент рассчитывают из соотношения:
ΔW=Wэтал-Wизм,
где Wизм - энергия сигнала в тех же спектральных полосах.
Устойчивость результата испытаний, независимого от систематических ошибок (высота Солнца, азимута зондирования, коэффициента отражения), достигается использованием метода отношений измеряемых величин: ΔW/Wэтал.
Проведенные расчеты (графоаналитическим методом) показали, что относительное затухание сигнала [%] при смещениях отраженного спектра Δλ (нм) соответствуют следующему дискретному ряду:
Figure 00000009
В первом приближении можно считать, что каждый фотон однократно поглощается молекулами смогов. Тогда общее число молекул газовых компонент, в объеме луча зондирования спектрометра, взаимодействующих с фотонами, составит величину: N=ΔW/энергия одного фотона.
Полная энергия солнечного потока (Wэтал) у поверхности Земли определяется Солнечной постоянной, которая составляет 1373±20 Вт/м2 [см. Космонавтика, Энциклопедия, изд. Энцикл., М., 1985 г., стр. 314, Солнечная постоянная]. Количество фотонов в полном потоке составит: ≈1300 Вт/м2/0,214 10-17 Дж (средняя энергия фотона)=6,1⋅1020 [единиц]. Светосбор через щель спектрометра осуществляется с площади порядка 10×10 км, (108 м2), таким образом, количество фотонов в луче зондирования составляет ≈6,1⋅1028 [единиц]. Количество молей загрязнителей определится из соотношения: число фотонов/число Авогадро, 6,8⋅1023 молекул/моль.
Основными загрязнителями природных сред по ЮНЕП являются окислы углерода (СО, CO2), азота (NO2), серы (SO2), углеводороды типа метан (С2Н4), фториды. Средний молярный вес перечисленных загрязнителей принят равным 50 г/моль. Объем эмиссии газовых компонент в луче зондирования определится произведением: (коэффициент затухания х количество молей х молекулярный вес). На фиг. 4 представлена калибровочная характеристика зависимости объема эмиссии [тонн] от смещения спектра (Δλ). Количественные расчеты приведены ниже в примере реализации. Для определения объема эмиссии газовых компонент во всем объеме атмосферы над исследуемой территорией осуществляют построение гистограммы распределения яркости пикселей синтезированного изображения. Вычисляют калибровочный коэффициент относительной яркости для любой точки изображения в пропорции: чем меньше яркость, тем больше величина затухания сигнала в точке изображения
Figure 00000010
Объем эмиссии газовых компонент над всей исследуемой площадью вычисляют суммированием всех пикселей синтезированной матрицы с весовым коэффициентом ki.
Пример реализации способа
Заявленный способ может быть реализован по схеме фиг. 5. Функциональная схема устройства фиг. 5 содержит орбитальный комплекс наблюдения 1, типа космического аппарата (КА) «Ресурс» с установленными на его борту гиперспектрометром 2 (типа «Астрогон» и цифровыми видеокамерами 3 (типа «Фиалка-МВ-Космос ультрафиолетового диапазона) и спектрозональной камеры 4 (типа «MOMS-2P», Германия). Трассовую покадровую съемку запланированных районов осуществляют по командам от бортового комплекса управления (БКУ) 5 из Центра управления полетом (ЦУП) 8 по радиолинии командного управления 9. Результаты измерений записываются в буферное запоминающее устройство 6 с привязкой кадров по координатам от бортового устройства потребителей 7 системы позиционирования «ГЛОНАСС». В зонах радиовидимости КА с наземных пунктов, по командам БКУ, информацию измерений сбрасывают по мобильному каналу связи на наземные пункты приема информации (ППИ) 10. После предварительной обработки кадров по служебным признакам (номер витка, время съемки, координаты участка) на средствах 11 информацию передают в Центр тематической обработки 12, где через устройство ввода 13 она вводится в ПЭВМ 14 в стандартном наборе элементов: процессор 15, винчестер 16, оперативное запоминающее устройство (ОЗУ) 17, дисплей 18, принтер 19, клавиатура 20. Результаты измерений объема эмиссий по трассе полета КА выводятся на сервер 21 сети Интернет.
Гиперспектрометр «Астрогон» имеет 5 спектральных каналов от ультрафиолетового диапазона до ближнего инфракрасного (0,2…1,6 мкм). Угловое разрешение 1±0,5° с площадью обзора щели 10×10 км. В 100 линиях спектра, разрядностью квантования отсчетов 12 бит, число элементов в каждом канале 250000.
Ультрафиолетовая видеокамера «Фиалка-МВ-Космос» (используется на борту PC МКС) имеет поле зрения 10,5° область чувствительности 220…380 нм, со сменными фильтрами УФС с максимумами пропускания на длинах волн 260, 290 и 320 нм, разрешающая способность по центру изображения ≈40 линий на мм.
Спектрозональная камера «MOMS-2P» имеет четыре спектрозональные полосы b, g, r, i с максимумами чувствительности соответственно: 420, 520, 620 и 720 нм.
Таким образом, весь спектральный диапазон гиперспектрометра «Астрогон» перекрывается поддиапазонами покадровой съемки видеокамер «Фиалка-МВ-Космос» и «MOMS-2P».
Дистанционно регистрируемый уровень отраженной солнечной радиации является суммой отражений от подстилающей поверхности и атмосферной дымки. При замутненной атмосфере происходит «замывание» спектрально-энергетических и пространственных характеристик подстилающей поверхности. Существуют методы параметрического разделения эффектов подстилающей поверхности в результирующей яркости [см., например, «Итоговый отчет по исследованию параметров Атмосфера-Поверхность дистанционными методами», Эксперимент МКС-М-МКФ-6 на Станции Салют-7, 1983…1985 гг., М., ИКИ, АН СССР, стр. 23-31]. Одним из методов параметрического разделения является генерализация изображения, т.е. использование снимков различного пространственного разрешения. Коэффициент отражения светового потока зависит от длины волны. В ультрафиолетовом диапазоне он существенно выше, чем в видимом и ближнем ИК-диапазоне. Последнее позволяет обеспечить эффект «замывания» путем попиксельного сложения изображения ультрафиолетовой камеры и спектрозональной камеры при формировании синтезированной матрицы. Формирование синтезированной матрицы представляется стандартной операцией специализированного программного обеспечения [см., например, MATH CAD. 7.0 PLUS, ИЗДАНИЕ 3-е стереотипное, информационно-издательский дом «Филинъ», 1998 г., стр. 211, Векторизация элементов матрицы.] После этого осуществляют нормирование функции сигнала синтезированной матрицы в стандартной шкале 0…255 уровней квантования. Затем методами градиентного анализа выделяют контуры загрязнений на поле синтезированной матрицы. Выделение контуров на изображении с использованием масок различных операторов представляется стандартной математической операцией [см., например, П.А. Минько «Обработка графики Photoshop CS2», изд. Эксмо, 2007 г., стр. 47-56]. Результат выделения областей загрязнения иллюстрируется фиг. 3. После чего рассчитывают количественные значения объема эмиссий.
Как показано выше, количество молей загрязнений в луче зондирования спектрометра, при площади светосбора 10×10 км, определяется соотношением:
Figure 00000011
Итоговая калибровочная характеристика тракта зондирования в дискретных расчетных точках примет значения:
Figure 00000012
Параметры синтезированной матрицы:
минимальная яркость пикселя: I min=48;
максимальная яркость пикселя: I max=214;
средняя яркость пикселей в щели спектрометра 112 в шкале квантования 0…255 уровней.
Эмиссия газовых компонент в объеме луча зондирования спектрометра (для графика фиг. 2б Δλ=80 нм) Q=980 кг, при площади щели 10×10 км. Исследуемая площадь (45×40) км2. Суммарный объем эмиссии в атмосфере (по соотношению формулы изобретения) QΣ≈23 тонн.
Заявленный способ реализован на существующей технической базе.
Эффективность способа характеризуется глобальностью, документальностью, оперативностью измерений, а также непосредственностью измерений технического критерия.

Claims (1)

  1. Способ определения объема эмиссий газовых компонент в атмосфере, включающий синхронную съемку подстилающей поверхности видеокамерой ультрафиолетового диапазона, спектрозональной камерой видимого и ближнего инфракрасного диапазонов и гиперспектрометром в диапазоне от 190 до 790 нм, установленными на космическом носителе так, что положение входной щели спектрометра соосно центральному участку кадров видеоизображений, с привязкой кадров к географическим координатам от бортовой аппаратуры потребителей системы позиционирования “ГЛОНАСС”, расчет средневзвешенного смещения спектра Δλ, энергии затухания ΔW(Δλ) и количества поглощенных квантов (N=ΔW(Δλ)/средняя энергия одного кванта) солнечного потока относительно эталонного по Планку солнечного потока, вычисление эмиссии Qтонн газовых компонент в объеме луча зондирования спектрометра как количество молей n=N/A (А - число Авогадро), умноженных на средний молярный вес парниковых газов (50 г/моль), построение калибровочной характеристики тракта зондирования Q=Q(Δλ), формирование синтезированной матрицы изображения путем попиксельного сложения яркости пикселей видеокамер, выделение методом программного расчета градиента контуров загрязнений на поле синтезированной матрицы, вычисление площади контуров Si и средней яркости их пикселей Ii, определение объема эмиссий в атмосфере по всей исследуемой площади как
    Figure 00000013
    .
RU2016132406A 2016-08-05 2016-08-05 Способ определения объема эмиссий газовых компонент в атмосфере RU2619837C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016132406A RU2619837C1 (ru) 2016-08-05 2016-08-05 Способ определения объема эмиссий газовых компонент в атмосфере

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016132406A RU2619837C1 (ru) 2016-08-05 2016-08-05 Способ определения объема эмиссий газовых компонент в атмосфере

Publications (1)

Publication Number Publication Date
RU2619837C1 true RU2619837C1 (ru) 2017-05-18

Family

ID=58716180

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016132406A RU2619837C1 (ru) 2016-08-05 2016-08-05 Способ определения объема эмиссий газовых компонент в атмосфере

Country Status (1)

Country Link
RU (1) RU2619837C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114817825A (zh) * 2022-04-21 2022-07-29 中国科学技术大学 一种基于超光谱遥感的排放源co2快速成像方法
RU2819108C1 (ru) * 2023-12-28 2024-05-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ мониторинга атмосферы мегаполисов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2422807C1 (ru) * 2010-04-02 2011-06-27 Государственное учреждение "Научный центр проблем аэрокосмического мониторинга" (ЦПАМ "АЭРОКОСМОС") Способ определения концентрации углекислого газа в атмосфере
RU2460059C1 (ru) * 2011-06-09 2012-08-27 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" Способ определения загрязнения атмосферы мегаполисов вредными газами
RU2578515C2 (ru) * 2014-06-03 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет леса" (ФГБОУ ВПО МГУЛ) Способ определения объема выбросов в атмосферу от природных пожаров

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2422807C1 (ru) * 2010-04-02 2011-06-27 Государственное учреждение "Научный центр проблем аэрокосмического мониторинга" (ЦПАМ "АЭРОКОСМОС") Способ определения концентрации углекислого газа в атмосфере
RU2460059C1 (ru) * 2011-06-09 2012-08-27 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" Способ определения загрязнения атмосферы мегаполисов вредными газами
RU2578515C2 (ru) * 2014-06-03 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет леса" (ФГБОУ ВПО МГУЛ) Способ определения объема выбросов в атмосферу от природных пожаров

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114817825A (zh) * 2022-04-21 2022-07-29 中国科学技术大学 一种基于超光谱遥感的排放源co2快速成像方法
CN114817825B (zh) * 2022-04-21 2024-04-02 中国科学技术大学 一种基于超光谱遥感的排放源co2快速成像方法
RU2819108C1 (ru) * 2023-12-28 2024-05-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ мониторинга атмосферы мегаполисов

Similar Documents

Publication Publication Date Title
Guanter et al. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer
Valks et al. Operational total and tropospheric NO 2 column retrieval for GOME-2
Hains et al. Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX‐B validation campaigns
Shaiganfar et al. Estimation of NO x emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data
Goward et al. Empirical comparison of Landsat 7 and IKONOS multispectral measurements for selected Earth Observation System (EOS) validation sites
Bovensmann et al. A remote sensing technique for global monitoring of power plant CO 2 emissions from space and related applications
Hönninger et al. Multi axis differential optical absorption spectroscopy (MAX-DOAS)
Lamsal et al. High‐resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation
Seyler et al. Monitoring shipping emissions in the German Bight using MAX-DOAS measurements
Ortega et al. The CU 2-D-MAX-DOAS instrument–Part 1: Retrieval of 3-D distributions of NO 2 and azimuth-dependent OVOC ratios
Cinzano et al. Night sky brightness at sites from DMSP‐OLS satellite measurements
Oetjen et al. Airborne MAX‐DOAS measurements over California: Testing the NASA OMI tropospheric NO2 product
RU2422859C1 (ru) Способ определения загрязнения атмосферы мегаполисов
Chen et al. First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: Algorithm development and application for surface particulate matter estimates
Tenjo et al. Design of a generic 3-D scene generator for passive optical missions and its implementation for the ESA’s FLEX/Sentinel-3 tandem mission
Barentine Night sky brightness measurement, quality assessment and monitoring
de Graaf et al. Aerosol direct radiative effect over clouds from a synergy of Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances
RU2460059C1 (ru) Способ определения загрязнения атмосферы мегаполисов вредными газами
RU2619837C1 (ru) Способ определения объема эмиссий газовых компонент в атмосфере
RU2586939C1 (ru) Способ определения индекса состояния атмосферы для антропогенных источников загрязнения
Scholl et al. Path length distributions for solar photons under cloudy skies: Comparison of measured first and second moments with predictions from classical and anomalous diffusion theories
RU2117286C1 (ru) Способ оценки загрязнения атмосферы
RU2695086C1 (ru) Способ измерений содержания парниковых газов в атмосфере
Lee et al. First-time remote sensing of NO2 vertical distributions in an urban street canyon using Topographic Target Light scattering Differential Optical Absorption Spectroscopy (ToTaL-DOAS)
RU2422807C1 (ru) Способ определения концентрации углекислого газа в атмосфере