RU2619820C1 - Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли - Google Patents

Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли Download PDF

Info

Publication number
RU2619820C1
RU2619820C1 RU2016117131A RU2016117131A RU2619820C1 RU 2619820 C1 RU2619820 C1 RU 2619820C1 RU 2016117131 A RU2016117131 A RU 2016117131A RU 2016117131 A RU2016117131 A RU 2016117131A RU 2619820 C1 RU2619820 C1 RU 2619820C1
Authority
RU
Russia
Prior art keywords
images
image
filter
transferring function
compensating
Prior art date
Application number
RU2016117131A
Other languages
English (en)
Inventor
Николай Анатольевич Егошкин
Виктор Владимирович Еремеев
Александр Алексеевич Макаренков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (ФГБОУ ВО "РГРТУ", РГРТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (ФГБОУ ВО "РГРТУ", РГРТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (ФГБОУ ВО "РГРТУ", РГРТУ)
Priority to RU2016117131A priority Critical patent/RU2619820C1/ru
Application granted granted Critical
Publication of RU2619820C1 publication Critical patent/RU2619820C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Image Processing (AREA)

Abstract

Изобретение относится к области приборостроения и может найти применение в системах дистанционного зондирования Земли (ДЗЗ), например в системах наземной обработки нескольких перекрывающихся по полосе обзора и спектральному диапазону изображений, которые сформированы в результате одновременной съемки несколькими оптико-электронными приборами (ОЭП), установленными на спутнике. Технический результат – расширение функциональных возможностей за счет компенсации функции передачи модуляции (ФПМ) изображений одной и той же сцены, но отличающихся по четкости ее отображения, т.е. приведение всех изображений к единой ФПМ, которая наиболее близка к ФПМ оптико-электронного прибора с лучшим пространственным разрешением. Для этого способ компенсации ФПМ основан на применении корректирующего фильтра, который оценивается исходя из сопоставления информации, полученной различными ОЭП с отличающимися и неизвестными ФПМ. Оцененный таким образом фильтр учитывает конкретные искажения изображающего тракта. При это предлагаемый способ не требует знания фактической ФПМ, определение которой является сложной задачей. 3 ил.

Description

Изобретение относится к области дистанционного зондирования Земли (ДЗЗ); более конкретно к системам наземной обработки нескольких перекрывающихся по полосе обзора и спектральному диапазону изображений, которые сформированы в результате одновременной съемки несколькими оптико-электронными приборами (ОЭП), установленными на спутнике. В частности, изобретение относится к способу компенсации функции передачи модуляции (ФПМ) изображений одной и той же сцены, но отличающихся по четкости ее отображения, т.е. приведению всех изображений к единой ФПМ, которая наиболее близка к ФПМ оптико-электронного прибора с лучшим пространственным разрешением.
В практике ДЗЗ в последние годы с целью повышения технических характеристик материалов съемки (полосы обзора съемочной системы, расширения спектрального диапазона) используется несколько оптико-электронных приборов (ОЭП), осуществляющих съемку одного и того же участка земной поверхности. Наиболее распространены 3 варианта построения подобных систем.
Вариант 1. В различных отечественных и зарубежных системах ДЗЗ для расширения полосы обзора съемки используется несколько идентичных оптико-электронных приборов, имеющих небольшое перекрытие полей обзора. Эти приборы одновременно осуществляют съемку Земли в нескольких одинаковых спектральных диапазонах. Так что в зонах перекрытия снимков должны формироваться идентичные изображения.
Вариант 2. В ряде отечественных и зарубежных систем ДЗЗ для стереосъемки земной поверхности устанавливается несколько идентичных приборов, осуществляющих наблюдение одного и того же участка земной поверхности под различными углами. В результате в заданных спектральных диапазонах формируются стереоизображения одной и той же местности, используемые для построения цифровых моделей рельефа.
Вариант 3. В последние годы интенсивно внедряются системы гиперспектральной съемки Земли. Такая аппаратура позволяет получить для заданного района местности сотни изображений, зафиксированных в очень узких соприкасающихся спектральных диапазонах. Для расширения общего спектрального диапазона наблюдения Земли гиперспектрометр обычно строится из нескольких ОЭП, осуществляющих съемку одного и того же участка Земли, но в различных достаточно широких частично перекрывающихся спектральных диапазонах. В зонах перекрытия спектральных диапазонов формируется серия пар изображений одной и той же местности, сформированных в одном и том же достаточно узком спектральном диапазоне.
Из-за несовершенства технологии производства оптических узлов и ряда технических особенностей во всех приведенных вариантах построения спутниковых съемочных систем различные ОЭП регистрируют информацию с отличающейся детальностью (пространственным разрешением). Такие различия могут достигать 30% и более.
Стоит задача объединения видеоданных от нескольких ОЭП в единое изображение (однозональное, многозональное, гиперспектральное), которое имеет единую ФПМ, наиболее близкую к ФПМ оптико-электронного прибора с лучшим пространственным разрешением. Эту задачу решает предлагаемое изобретение.
Не снижая общности, рассмотрим два изображения: А=А(х,у) и В=В(х,у),
Figure 00000001
,
Figure 00000002
, где x и у - номера пикселей по строке и столбцу, X и Y - размеры
изображений. Эти изображения получены в одном и том же спектральном диапазоне и отображают один и тот же участок земной поверхности. Для определенности будем считать, что А - изображения с лучшим пространственным разрешением, а В имеет худшее разрешение.
Предлагается способ компенсации ФПМ с целью максимального приближения разрешения изображения В к разрешению изображения А. В качестве показателя разрешающей способности используется ФПМ.
Известны способы компенсации ФПМ, основанные на знании реальной ФПМ некоторого устройства. Например, известен способ компенсации ФПМ устройств формирования или воспроизведения цифровых изображений (см. патент US 6728003 В1). Способ основан на линейной фильтрации изображения. При известной ФПМ устройства определяется функция рассеяния точки в виде функции Гаусса. Параметры функции Гаусса находятся исходя из того, чтобы соответствующая ей ФПМ максимально приближалась к известной ФПМ устройства. Таким образом, этот способ базируется на точном знании ФПМ устройства. Другой способ компенсации ФПМ (см. патент US 5696850) заключается в применении КИХ-фильтров. Для построения КИХ-фильтра также необходимо знание ФПМ устройства.
Эти способы являются наиболее близкими к предлагаемому.
Известны и другие решения по компенсации ФПМ:
- Способ (см. патент US 4517607), основанный на применении оператора Лапласа с подбором степени фильтрации в зависимости от отношения сигнал/шум в обрабатываемом участке изображения.
- Способ (см. патент US 4817181), основанный на подчеркивании границ объектов путем суммирования изображения и результата его линейной фильтрации дифференцирующим оператором с окном 3×3.
- Rafael С.Gonzalez and Richard E. Woods, Digital Image Processing, Addison -Wesley Publishing Company, Reading, Mass., 1993, pp. 270 - 272. Здесь описано применение фильтра Винера для решения поставленной задачи. При синтезе корректирующего инверсного фильтра используется информация о функции рассеяния точки изображающего тракта, а также информация о спектральной плотности изображения и шума.
Представленные выше известные способы компенсации ФПМ изображения:
- либо требуют знания точной формы ФПМ съемочного или воспроизводящего устройства;
- либо решают поставленную задачу путем «подчеркивания» границ объектов с помощью дифференцирующих фильтров.
Обычно достоверная информация о ФПМ устройства отсутствует, по этой причине подходы, требующие знания ФПМ, имеют ограниченное применение. ФПМ устройства может значительно изменятся в ходе его эксплуатации. В то же время определение ФПМ устройства с необходимой для ее компенсации точностью крайне сложно, так как это требует съемки специализированных аттестованных полигонов. Это является основным недостатком такого подхода.
Недостатком подходов, основанных на компенсации ФПМ путем «подчеркивания» границ объектов, является зависимость решений от формы ФПМ и эти подходы применимы только при небольшой симметричной «расфокусировке» изображения.
Для преодоления указанных недостатков известных подходов предлагаемый способ компенсации ФПМ основывается на применении корректирующего фильтра, который оценивается исходя из сопоставления информации, полученной различными ОЭП с отличающимися и неизвестными ФПМ. В этом случае выбирается ОЭП, формирующий наиболее детальное изображение (с лучшим пространственным разрешением). Изображение с лучшим разрешением принимается в качестве эталона.
Предлагаемый способ заключается в поиске корректирующего фильтра на основе сопоставления изображений А (с наилучшим разрешением) и В с последующей фильтрацией В с целью максимального приближения пространственного разрешения изображения В к разрешению изображения А.
В общем виде модель изображений А и В может быть представлена как
A=S⊗HA+NA, B=S⊗HB+NB,
где S - истинное (неискаженное) изображение наблюдаемой сцены; НА, НB - функции рассеяния точки; NA, NB - независимый случайный шум с нулевым средним; ⊗ - операция свертки.
Компенсация ФПМ заключается в поиске параметров корректирующего фильтра F такого, что изображение В максимально приближается по разрешению к А, т.е.:
(S⊗HB+NB) ⊗F=S⊗HA+NA. (1)
Если известны НА и Нв, то из выражения (1) можно найти F. Однако определение НА и НB с достаточной точностью является гораздо более трудной задачей, чем нахождение F. В предлагаемом способе процедура поиска F не требует знания НА, НB и S. В этом и состоит его отличительная особенность.
В общем случае А и В могут отличаться по средней яркости и контрасту (среднеквадратическому отклонению яркости), что приводит к ошибочному определению фильтра F. Для решения этой проблемы в предлагаемом способе перед оценкой фильтра выполняется приведение средней яркости изображения В к средней яркости А:
Figure 00000003
где
Figure 00000004
и
Figure 00000005
- средние яркости изображений А и В, а σΑ и σΒ - среднеквадратические отклонения яркости. В результате формируется новое изображение В**(х, у), совпадающее по средней яркости и СКО с изображением А.
В предлагаемом способе F представляет собой дискретный оконный фильтр в виде матрицы его отсчетов F=[F(m,n)], где
Figure 00000006
, M - размер носителя фильтра (М - нечетно). Коэффициенты фильтра F (m, n) оцениваются исходя из критерия:
Figure 00000007
который в развернутом виде может быть представлен как
Figure 00000008
Из выражения (3) по методу наименьших квадратов находятся неизвестные коэффициенты фильтра F (m, n). Поскольку размеры фильтра существенно меньше размеров изображения, т.е. M⋅M<<X⋅Y, то полученный фильтр F в малой степени зависит от шума на изображении.
Для того чтобы найденный фильтр F не искажал среднюю яркость, требуется выполнение условия:
Figure 00000009
, поэтому в предлагаемом способе выполняется нормировка коэффициентов фильтра:
Figure 00000010
Предлагаемый способ апробирован на натурной информации, полученной от отечественных и зарубежных систем ДЗЗ. На фиг. 1 представлен фрагмент спутникового снимка поверхности Земли (слева с лучшей ФПМ, справа с худшей). На фиг. 2 приведен результат компенсации ФПМ, детальность изображения приближается к детальности изображения, представленного на фиг. 1 (слева). На фиг. 3 приведена ФПМ лучшего изображения (сплошной линия), худшего изображения (штриховая линия) и результата обработки (пунктирная линия). Из фиг. 3 видно существенное сближение ФПМ результата обработки и наилучшей ФПМ.
Таким образом, в изобретении предложен способ компенсации ФПМ от систем наблюдения Земли, формирующих пространственно и спектрально перекрывающиеся видеоданные, отличающийся от известных решений тем, что корректирующий линейный фильтр оценивается на основе сопоставления информации, полученной от различных ОЭП на одну и ту же территорию и в одинаковом спектральном диапазоне, но с отличающимися ФПМ. Оцененный по предложенному способу фильтр учитывает конкретные искажения изображающего тракта, поэтому более эффективно решает задачу компенсации ФПМ по сравнению с подходами, применяющими традиционные дифференцирующие линейные операторы, не зависящие от конкретной формы искажений. Важным элементом предлагаемого способа является то, что он не требует знания фактической ФПМ, определение которой является крайне трудной задачей.

Claims (1)

  1. Способ компенсации функции передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования Земли, с целью выравнивания пространственного разрешения этих изображений, включающий линейную фильтрацию информации от различных оптико-электронных приборов, отличающийся тем, что выравнивают средние яркости и среднеквадратические отклонения яркости изображений, рассчитывают корректирующий фильтр исходя из максимального среднеквадратического сходства скорректированного изображения и наилучшего по детальности изображения, нормируют фильтр таким образом, чтобы сумма его коэффициентов была равна единице, после чего полученный фильтр используют для приближения пространственного разрешения корректируемых изображений к наилучшему.
RU2016117131A 2016-04-29 2016-04-29 Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли RU2619820C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016117131A RU2619820C1 (ru) 2016-04-29 2016-04-29 Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016117131A RU2619820C1 (ru) 2016-04-29 2016-04-29 Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли

Publications (1)

Publication Number Publication Date
RU2619820C1 true RU2619820C1 (ru) 2017-05-18

Family

ID=58716183

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016117131A RU2619820C1 (ru) 2016-04-29 2016-04-29 Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли

Country Status (1)

Country Link
RU (1) RU2619820C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517607A (en) * 1981-11-09 1985-05-14 Ricoh Company, Ltd. Method of and apparatus for compensating image in image reproduction system
US4817181A (en) * 1985-04-12 1989-03-28 Ricoh Company, Ltd. Image data processing system for image input device
SU1793190A1 (ru) * 1990-11-30 1993-02-07 Vladimir G Arutyunov Cпocoб пobepkи mhoгokomahдhыx пpибopob aktиbhoгo kohtpoля
RU2293960C1 (ru) * 2005-07-25 2007-02-20 Николай Иванович Сазонов Способ автоматизированной оценки разрешающей способности авиационных оптико-электронных систем дистанционного зондирования в видимом и инфракрасном диапазонах волн и универсальная пассивная мира для его реализации
RU2460137C1 (ru) * 2011-06-02 2012-08-27 Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") Способ определения пространственного сдвига изображений

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517607A (en) * 1981-11-09 1985-05-14 Ricoh Company, Ltd. Method of and apparatus for compensating image in image reproduction system
US4817181A (en) * 1985-04-12 1989-03-28 Ricoh Company, Ltd. Image data processing system for image input device
SU1793190A1 (ru) * 1990-11-30 1993-02-07 Vladimir G Arutyunov Cпocoб пobepkи mhoгokomahдhыx пpибopob aktиbhoгo kohtpoля
RU2293960C1 (ru) * 2005-07-25 2007-02-20 Николай Иванович Сазонов Способ автоматизированной оценки разрешающей способности авиационных оптико-электронных систем дистанционного зондирования в видимом и инфракрасном диапазонах волн и универсальная пассивная мира для его реализации
RU2460137C1 (ru) * 2011-06-02 2012-08-27 Открытое акционерное общество "Научно-исследовательский институт оптико-электронного приборостроения" (ОАО "НИИ ОЭП") Способ определения пространственного сдвига изображений

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Rafael С.Gonzalez and Richard E. Woods, Digital Image Processing, Addison -Wesley Publishing Company, Reading, Mass., 1993, pp. 270 - 272. *
Rafael С.Gonzalez and Richard E. Woods, Digital Image Processing, Addison -Wesley Publishing Company, Reading, Mass., 1993, pp. 270 - 272. Ботуз С.П. Инструментальное обеспечение процесса графо-аналитической обработки и визуализации измерительной информации// Научная сессия МИФИ-2004. Сб. науч. тр. В 14 томах. Т 1. Автоматика. Микроэлектроника. Электроника. Электронные измерительные системы. - М.: МИФИ, 2004. С.228-229. *
Ботуз С.П. Инструментальное обеспечение процесса графо-аналитической обработки и визуализации измерительной информации// Научная сессия МИФИ-2004. Сб. науч. тр. В 14 томах. Т 1. Автоматика. Микроэлектроника. Электроника. Электронные измерительные системы. - М.: МИФИ, 2004. С.228-229. *

Similar Documents

Publication Publication Date Title
Lei et al. New crack detection method for bridge inspection using UAV incorporating image processing
US10013764B2 (en) Local adaptive histogram equalization
CN107146200B (zh) 一种基于图像拼接质量评价的无人机遥感图像拼接方法
Moriondo et al. Use of digital images to disclose canopy architecture in olive tree
CN108154479A (zh) 一种对遥感图像进行图像校正的方法
Kuthirummal et al. Priors for large photo collections and what they reveal about cameras
RU2363018C1 (ru) Способ селекции объектов на удаленном фоне
CN110532853B (zh) 遥感超时相数据的分类方法及装置
Pal et al. Noise reduction and destriping using local spatial statistics and quadratic regression from Hyperion images
KR102315319B1 (ko) 항공초분광영상을 이용한 생태교란종 모니터링 방법
RU2619820C1 (ru) Способ компенсации функций передачи модуляции пространственно и спектрально перекрывающихся изображений, одновременно формируемых системой дистанционного зондирования земли
Mojidra et al. Vision-based fatigue crack detection using global motion compensation and video feature tracking
O'Connor Impact of image quality on SfM Photogrammetry: colour, compression and noise
Acito et al. Robust technique for anomalous change detection in airborne hyperspectral imagery based on automatic and adaptive band selection
Aminova et al. Overview of digital forensics algorithms in DSLR cameras
Gašparović et al. Testing of image quality parameters of digital cameras for photogrammetric surveying with unmanned aircrafts
CN113203664A (zh) 使用光学显微镜和多像素偏振滤光器进行颗粒分析
Zenin et al. ALGORITHMS FOR RELATIVE RADIOMETRIC CORRECTION IN EARTH OBSERVING SYSTEMS “RESOURCE-P” AND “CANOPUS-V”
KR20200145379A (ko) 해상도가 다른 영상을 정합하는 장치 및 방법
Gustafsson et al. Spectral cube reconstruction for a high resolution hyperspectral camera based on a linear variable filter
Kirichuk et al. Algorithm of image reconstruction in the problem of object detection during circular microscanning
Zhang et al. Guided feature matching for multi-epoch historical image blocks pose estimation
Gupta et al. Object recognition based on template matching and correlation method in hyperspectral images
Jöchl et al. Content Bias in Deep Learning Age Approximation: A new Approach Towards more Explainability
Ryadi et al. Bi-temporal Radiometric Normalization of Landsat 8 Images Using Pseudo-Invariant Features