RU2618161C1 - Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата - Google Patents

Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата Download PDF

Info

Publication number
RU2618161C1
RU2618161C1 RU2016109318A RU2016109318A RU2618161C1 RU 2618161 C1 RU2618161 C1 RU 2618161C1 RU 2016109318 A RU2016109318 A RU 2016109318A RU 2016109318 A RU2016109318 A RU 2016109318A RU 2618161 C1 RU2618161 C1 RU 2618161C1
Authority
RU
Russia
Prior art keywords
hyperventilation
response
parameters
power
electroencephalogram
Prior art date
Application number
RU2016109318A
Other languages
English (en)
Inventor
Роман Александрович Зорин
Владимир Алексеевич Жаднов
Михаил Михайлович Лапкин
Original Assignee
Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации filed Critical Государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации
Priority to RU2016109318A priority Critical patent/RU2618161C1/ru
Application granted granted Critical
Publication of RU2618161C1 publication Critical patent/RU2618161C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Изобретение относится к области медицины, а именно к физиологии и гигиене труда, клинической медицине. Регистрируют показатели электроэнцефалограммы (ЭЭГ), F-ответа с мышц возвышения большого пальца при стимуляции правого срединного нерва; показатели статистического и спектрального анализа вариабельности динамического ряда кардиринтервалов (ВСР). Рассчитывают показатели: мощность тета-колебаний ЭЭГ в отведении O2, среднюю частоту тета-колебаний ЭЭГ в отведении Р3, мощность альфа-колебаний ЭЭГ в отведении Р4, мощность альфа-колебаний ЭЭГ в отведении Т4, мощность максимального F-ответа, индекс напряжения по данным анализа ВСР, среднее квадратичное отклонение динамического ряда R-R интервалов, мощность низкочастотной составляющей спектра ВСР. Полученные показатели анализируют с помощью искусственной нейронной сети, представляющей собой многослойный персептрон с 8 нейронами входного слоя, 4 нейронами промежуточного слоя и 1 выходным нейроном, предварительно обученной прогнозированию динамики уровня углекислоты в выдыхаемом воздухе у испытуемых на гипервентиляционную нагрузку. Способ позволяет повысить достоверность прогноза, что достигается за счет учета комплекса исследуемых нейрофизиологических показателей. 3 табл.

Description

Изобретение относится к области медицины, а именно к физиологии и гигиене труда; клинической медицине (пульмонологии, неврологии).
Гипервентиляция является проявлением комплексной психофизиологической реакции на стрессовые раздражители [10, 13, 20]; а в качестве специфического феномена может сопровождать некоторые виды профессиональной деятельности (авиакосмическая сфера, водолазные работы) [6]. В тоже время гипервентиляция является одним из ключевых звеньев патогенеза ряда патологических процессов, в том числе психовегетативного синдрома (панических атак), бронхиальной астмы [7, 18]. Основным механизмом, реализующим переход от гипервентиляции как физиологического феномена к патологической реакции, является изменение газового гомеостаза и, в первую очередь, уровня углекислого газа крови [5, 10, 17].
В связи с этим особое значение приобретает оценка реакции индивидуума на гипервентиляцию с учетом изменений показателей газового гомеостаза [2]. Следует отметить, что прямое измерение уровня углекислоты крови или выдыхаемого воздуха сопряжено как с техническими трудностями, так и имеет сильную зависимость от текущего функционального состояния человека [2, 3, 11].
В реализации различных паттернов дыхания, в том числе гипервентиляции, особую роль играют психофизиологические корреляты степени активации нервной системы [1, 9, 12], деятельность моторных эфферентных структур [4, 14, 15]; а также стресс-реализующих структур [16]. В связи с этим важную роль при прогнозировании реакции на гипервентиляционную нагрузку приобретают характеристики деятельности субсистем, участвующих в реализации данного паттерна дыхания.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ дифференциальной диагностики гипервентиляционных нарушений при бронхиальной астме (прототип) [8], в котором на основе регистрации коротколатентных вызванных стволовых потенциалов на акустическую стимуляцию и вызванный кожный симпатический потенциала на стимуляцию срединного нерва на основе изменений латентности вызванных потенциалов диагностируют функциональную или произвольную гипервентиляцию.
К причинам, препятствующим достижению результата при использовании известного способа, принятого за прототип, относится специфический характер группы исследуемых с определенной нозологической формой (бронхиальная астма), использование набора показателей, характеризующих функциональное состояния стволовых структур и супрасегментарных вегетативных центров, а также ограниченный характер решаемой задачи, то есть выявление произвольного или функционального характера гипервентиляции у больных бронхиальной астмой.
Целью изобретения является прогнозирование реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе специфического набора показателей электроэнцефалограммы (ЭЭГ), характеризующих активирующие и деактивирующие структуры головного мозга; показателей вариабельности сердечного ритма (ВСР), описывающих уровень активности симпатического и парасимпатического отделов автономной нервной системы и стресс-реализующих структур, а также показателей активности сегментарного мотонейронного аппарата с использованием технологии искусственных нейронных сетей (ИНС).
Цель достигается тем, что на основе показателей уровня углекислоты в выдыхаемом воздухе при произвольной 5-минутной гипервентиляционной нагрузке методом кластерного анализа группа практически здоровых лиц разделяется на подгруппы, различающиеся по уровню углекислоты в исходном состоянии, во время и после гипервентиляции. На основе данных спектрального анализа ЭЭГ, показателей стимуляционной электронейромиографии (СЭНМГ) с регистрацией F-ответа с мышц возвышения большого пальца при стимуляции правого срединного нерва, а также характеристик ВСР программным путем при помощи пакета программ Statistica 10.0 [19] создается ИНС, реализующая решение задачи распределения испытуемых на соответствующие кластеры.
Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц осуществляется следующим образом. На входные нейроны созданной и обученной ИНС подается определенный комплекс показателей ЭЭГ, СЭНМГ с регистрацией F-ответа и характеристик ВСР исследуемого; реализуется запуск работы нейронной сети для данного случая, в результате чего с выходного нейрона получаются данные о номере подгруппы, к которой относится исследуемый.
Экспериментальное обоснование предлагаемого способа проведено на 54 практически здоровых лицах, средний возраст составил 33,1 года, из них 39 мужчин и 15 женщин. Исследуемые при помощи метода кластерного анализа разделены на 2 группы по показателям уровня углекислоты, регистрируемой при помощи ультразвукового капнографа «Еламед КП-01» компании «Еламед» в течение 5 минут в исходном (фоновом) состоянии, в течение 5 минут гипервентиляционной нагрузки (глубокое дыхание с частотой 20 дыхательных движений, контролируемое по индикатору прибора и корригируемое за счет словесной инструкции о длительности вдоха и выдоха пациенту) и в течение 5 минут после гипервентиляции. В первую подгруппу вошло 26 человек, во вторую - 28 человек; подгруппы достоверно различались по уровню углекислоты во время и после гипервентиляционной нагрузки (таблица 1, представлены различия по непараметрическому критерию Манна-Уитни, р<0,05), при этом подгруппа 2 характеризуется более низким уровнем углекислого газа в выдыхаемом воздухе во время и после гипервентиляции, то есть в этой подгруппе имеется тенденция к более выраженной гипокапнии при функциональной нагрузке.
Регистрировались ЭЭГ показатели по 16-каналам при монополярной схеме с референтными электродами на ушах при помощи прибора «Нейрон-Спектр-3» ООО «Нейрософт», показатели СЭНМГ с регистрацией F-ответа с мышц возвышения большого пальца при стимуляции правого срединного нерва при помощи компьютерного электромиографа «Нейро-МВП» ООО «Нейрософт», а также показатели ВСР при помощи прибора «Варикард» и программы «ИСКИМ 6.0» фирмы «Рамена» в фоновом состоянии (предшествующем гипервентиляционной нагрузке). В качестве показателей, используемых для прогноза, использовались данные спектрального анализа ЭЭГ, в том числе средняя мощность, средняя частота колебаний в основных частотных диапазонах (тета, альфа, бета1 и бета2), характеристики амплитуды, мощности и латентности максимального F-ответа, а также показатели вариабельности динамического ряда кардиоинтервалов (среднее квадратичное отклонение, индекс напряжения), данные спектрального анализа ВСР.
Для создания, обучения и тестирования нейронных сетей нами использовалась программа Statistica 10.0. Реализовывался автоматический расширенный алгоритм создания и обучения ИНС в режиме для решения задач классификации. Первичные переменные, включенные в анализ, представляли собой непрерывные числовые данные. В качестве возможных типов нейронных сетей были выбраны сети, основанные на радиальных базисных функциях, многослойные персептроны. Оптимальными характеристиками обладала обученная нейронная сеть, представляющая собой многослойный персептрон с 8 входным нейронами, 4 нейронами в промежуточном слое и 1 выходным нейроном, которая характеризуется специфической архитектурой и набором синаптических весов ее элементов.
Физиологические показатели, используемые нейронной сетью в качестве входных и ранжированные в порядке убывания их значимости, представлены в таблице 2.
В таблице 3 представлены результаты работы нейронной сети на обучающей и тестирующей выборке. При решении задачи распределения пациентов по подгруппам в обучающей выборке ошибок допущено не было; допущено по 1 ошибке в обеих подгруппах тестовой выборки (6,7% решений в подгруппе 1 и 6,3% решений в подгруппе 2), то есть нейронная сеть продемонстрировало удовлетворительную классификационную значимость.
Предложенный способ позволяет прогнозировать реакцию на гипервентиляционную нагрузку, что имеет значение для физиологии и гигиены труда и в клинической медицине.
Figure 00000001
Figure 00000002
Figure 00000003
Источники информации
1. Бурых Э.А. Взаимоотношение гипокапнии, гипоксии, мозгового кровотока и электрической активности мозга при произвольной гипервентиляции у человека / Э.А. Бурых // Российский физиологический журнал им. И.М. Сеченова. - 2007. - Т. 93, №9. - С. 982 - 1000.
2. Бяловский Ю.Ю. Капнография в общеврачебной практике / Ю.Ю. Бяловский, В.Н. Абросимов. - Saarbruken: LAP LAMBERT academic publishing, 2014. - 136 c.
3. Гришин O.B. Капнографические параметры паттерна дыхания в норме и при психогенной одышке / О.В. Гришин, В.Г. Гришин, Д.Ю. Урюмцев // Физиология человека. - 2012. - Т. 38, №4. - С. 59.
4. Зимина С.В. Тревожные состояния с позиции теории Н.А. Бернштейна: хронобиологический подход / С.В. Зимина // Психиатрия. - 2015. - Т. 66, №2. - с. 22-28.
5. Малкин В.Б. Гипервентиляция / В.Б. Малкин, Е.П. Гора. - М.: Наука, 1990. - 178 с.
6. Мясников А.П. Профессиональная патология специалистов военно-морского флота / А.А. Мясников / Патофизиология / под ред. В.Ю. Шанина. - СПб.: ЭЛБИ-СПб, 2005. – С. 588-610.
7. Соловьева А.В. Особенности легочного газообмена при метаболическом синдроме / А.В. Соловьева, Ю.Ю. Бяловский, Д.Р. Ракита // Доктор.ру. - 2013. - №1 (79). - С. 90-94.
8. Прототип. Способ дифференциальной диагностики гипервентиляционных нарушений при бронхиальной астме: пат. 94009027/14; заявл. 16.03.1994, опубл. 20.11.1998.
9. Под общ. редакцией А.И. Яроцкого, И.А. Криволапчука. Эмоции человека в нормальных и стрессорных условиях. - Гродно: ГрГУ, 2001. - 494 с.
10. Под ред. A.M. Вейна. Вегетативные расстройства: клиника, диагностика, лечение. - М.: Мед. информ. агентство. - 2010. - 637 с.
11. Терехов В.А. Сравнительная характеристика принципов измерения концентрации углекислого газа в капнографии / В.А. Терехов // Ползуновский вестник. - 2013. - №2. – С. 274-277.
12. Функциональная активность коры головного мозга при капнографической тренировке с биологической обратной связью у спортсменов / Л.В. Капилевич и др. // Теория и практика физической культуры. - 2011. - №10. – С. 16-20.
13. Черкасова Е.С. Объективизация психолого-психофизиологического состояния в диагностике профессионального стресса у сотрудников следственного комитета РФ / Е.С.Черкасова // Бюллетень физиологии и патологии дыхания. - 2014. - №51. - С.79-85.
14. Bell H.J. Respiratory control at exercise onset: an integrated systems perspective / H.J. Bell // Respiratory physiology and neurobiology. - 2006. -Vol.152, №l. - p. 1-15.
15. Gariepy J.F. The interactions between locomotion and respiration / J.F. Gariepy, K. Missaghi, R. Dubuc // Progress in Brain Research. - 2010. - Vol.187. - p.173-188.
16. Heart rate and heart rate variability in panic, social anxiety, obsessive-compulsive, and generalized anxiety disorders at baseline and in response to relaxation and hyperventilation / A. Pittiq et al. / International journal of psychophysiology. - 2013. - Vol.87, №1. - p. 19-27.
17. Hypocapnia induced by involuntary hyperventilation during mental arithmetic reduces cerebral blood flow velocity / R. Debreczeni et al. // The Tohoku journal of experimental medicine. - 2009. - Vol.217, №2. - p. 147-154.
18. Meuret A.E. Hyperventilation in panic disorder and asthma: empirical evidence and clinical strategies / A.E. Meuret, T. Ritz // International journal of psychophysiology. - 2010. - Vol.78, №1. - p. 68-79.
19. Moein S. Medical diagnosis using artificial neural networks / S. Moein. -Hershey: Medical Information Science Reference, 2014. - 310 p.
20. Ristiniemi H. Hyperventilation and exhaustion syndrome / H. Ristiniemi // Scandinavian Journal Caring Science. - 2014. - Vol.28, №4. - p. 657-664.

Claims (1)

  1. Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата, отличающийся тем, что регистрируют электроэнцефалограмму, F-ответ с мышц возвышения большого пальца при стимуляции правого срединного нерва; электрокардиограмму, выделяют комплекс спектральных характеристик основных частотных диапазонов электроэнцефалограммы, показателей статистического и спектрального анализа динамического ряда кардиоинтервалов, параметров мощности максимального F-ответа при стимуляции правого срединного нерва и на основе выделенного специфического комплекса электрофизиологических показателей при помощи обученной искусственной нейронной сети с уникальным набором синаптических весов распределяют исследуемых на подгруппы с известным уровнем углекислоты в выдыхаемом воздухе во время гипервентиляционной нагрузки.
RU2016109318A 2016-03-15 2016-03-15 Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата RU2618161C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016109318A RU2618161C1 (ru) 2016-03-15 2016-03-15 Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016109318A RU2618161C1 (ru) 2016-03-15 2016-03-15 Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата

Publications (1)

Publication Number Publication Date
RU2618161C1 true RU2618161C1 (ru) 2017-05-02

Family

ID=58697805

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016109318A RU2618161C1 (ru) 2016-03-15 2016-03-15 Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата

Country Status (1)

Country Link
RU (1) RU2618161C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111714339A (zh) * 2020-07-15 2020-09-29 西安交通大学 人体下肢运动的脑-肌电融合小世界神经网络预测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2121809C1 (ru) * 1994-03-16 1998-11-20 Институт иммунологии МЗ РФ Способ дифференциальной диагностики гипервентиляционных нарушений при бронхиальной астме
EP1816784A1 (en) * 2002-01-28 2007-08-08 Kabushiki Kaisha Toshiba Key generating method, contents providing method, ciphered-contents deciphering method, pirate identifying method, contents providing system, user system, trace system, ciphering apparatus, deciphering apparatus, and computer program
US20090069642A1 (en) * 2007-09-11 2009-03-12 Aid Networks, Llc Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device
RU2457788C1 (ru) * 2011-02-01 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Иркутский государственный институт усовершенствования врачей Федерального агентства по здравоохранению и социальному развитию" Способ диагностики симптоматической артериальной гипертензии у больных с инциденталомами надпочечников
RU2536379C2 (ru) * 2008-11-26 2014-12-20 Калгари Сайентифик Инк. Способ и система для обеспечения удаленного доступа к состоянию прикладной программы
RU2567606C1 (ru) * 2014-11-05 2015-11-10 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт кардиологии" Способ определения диагностического показателя жесткости сосудистой стенки у больных артериальной гипертонией с абдоминальным ожирением

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2121809C1 (ru) * 1994-03-16 1998-11-20 Институт иммунологии МЗ РФ Способ дифференциальной диагностики гипервентиляционных нарушений при бронхиальной астме
EP1816784A1 (en) * 2002-01-28 2007-08-08 Kabushiki Kaisha Toshiba Key generating method, contents providing method, ciphered-contents deciphering method, pirate identifying method, contents providing system, user system, trace system, ciphering apparatus, deciphering apparatus, and computer program
US20090069642A1 (en) * 2007-09-11 2009-03-12 Aid Networks, Llc Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device
RU2536379C2 (ru) * 2008-11-26 2014-12-20 Калгари Сайентифик Инк. Способ и система для обеспечения удаленного доступа к состоянию прикладной программы
RU2457788C1 (ru) * 2011-02-01 2012-08-10 Государственное образовательное учреждение высшего профессионального образования "Иркутский государственный институт усовершенствования врачей Федерального агентства по здравоохранению и социальному развитию" Способ диагностики симптоматической артериальной гипертензии у больных с инциденталомами надпочечников
RU2567606C1 (ru) * 2014-11-05 2015-11-10 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт кардиологии" Способ определения диагностического показателя жесткости сосудистой стенки у больных артериальной гипертонией с абдоминальным ожирением

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PALUMBO B. et al. To what extent can artificial neural network support nuclear medicine? Hell J Nucl Med. 2012 Sep-Dec;15(3):180-3. *
RU 2536379 С1, 2012.2014. ЗОРИН Р.А. и др. Прогнозирование течения эпилепсии при помощи технологии нейронных сетей. Материалы ежегодной конференции университета. Рязань 2012, с.6-9. *
ЗОРИН Р.А. и др. Прогнозирование течения эпилепсии при помощи технологии нейронных сетей. Материалы ежегодной конференции университета. Рязань 2012, с.6-9. PALUMBO B. et al. To what extent can artificial neural network support nuclear medicine? Hell J Nucl Med. 2012 Sep-Dec;15(3):180-3. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111714339A (zh) * 2020-07-15 2020-09-29 西安交通大学 人体下肢运动的脑-肌电融合小世界神经网络预测方法

Similar Documents

Publication Publication Date Title
Wu et al. Quantitative assessment for self-tracking of acute stress based on triangulation principle in a wearable sensor system
Grassmann et al. Respiratory changes in response to cognitive load: A systematic review
Xing et al. A multicomponent and neurophysiological intervention for the emotional and mental states of high-altitude construction workers
Fennell et al. A single session of meditation reduces of physiological indices of anger in both experienced and novice meditators
DK2047392T3 (en) Real-time monitoring and management of physical and arousal status of individual organisms.
Martens et al. Self-esteem and autonomic physiology: Self-esteem levels predict cardiac vagal tone
Gribble et al. Changes in postural control during a 48-hr. sleep deprivation period
Paradiso et al. Wearable monitoring systems for psychological and physiological state assessment in a naturalistic environment
Banfi et al. Effects of sleep deprivation on surgeons dexterity
Crockett et al. Integrating non-technological and technological peripheral biofeedback in counseling
Gregor et al. Anxiety sensitivity and perceived control over anxiety-related events: Evaluating the singular and interactive effects in the prediction of anxious and fearful responding to bodily sensations
Parnandi et al. Partial reinforcement in game biofeedback for relaxation training
Aristizabal et al. Use of heart rate variability biofeedback to reduce the psychological burden of frontline healthcare professionals against COVID-19
Bălan et al. A machine learning approach to automatic phobia therapy with virtual reality
Tosti et al. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: a narrative review
Ritz et al. Airway constriction in asthma during sustained emotional stimulation with films
Annen et al. Mapping the functional brain state of a world champion freediver in static dry apnea
Stevens et al. Determining the structure of acute pain responses in vulnerable neonates
RU2618161C1 (ru) Способ прогнозирования реакции на гипервентиляционную нагрузку у практически здоровых лиц на основе показателей электроэнцефалограммы, характеристик вариабельности сердечного ритма и активности сегментарного мотонейронного аппарата
Khajuria et al. Reducing Stress with Yoga: A Systematic Review Based on Multimodal Biosignals
Dykman et al. Autonomic responses in psychiatric patients
Malhotra et al. Effect of slow, deep breathing on brain waves in regular yoga practitioners
Lazarou et al. Eliciting brain waves of people with cognitive impairment during meditation exercises using portable electroencephalography in a smart-home environment: a pilot study
Dhadse et al. Effect of anulom vilom pranayam on visual reaction time in young adults of Indian population
Ngamsomphornpong et al. Development of Hybrid EEG-fEMG-based Stress Levels Classification and Biofeedback Training System