RU2617804C2 - Способ определения концентрации манганитов редкоземельных элементов - Google Patents
Способ определения концентрации манганитов редкоземельных элементов Download PDFInfo
- Publication number
- RU2617804C2 RU2617804C2 RU2015137518A RU2015137518A RU2617804C2 RU 2617804 C2 RU2617804 C2 RU 2617804C2 RU 2015137518 A RU2015137518 A RU 2015137518A RU 2015137518 A RU2015137518 A RU 2015137518A RU 2617804 C2 RU2617804 C2 RU 2617804C2
- Authority
- RU
- Russia
- Prior art keywords
- concentration
- wavelength
- determining
- mno
- lanthanum manganite
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Изобретение относится к методам определения состава и количества компонентов, входящих как в природные минералы, так и соединения, полученные в различных химических реакциях, при действии температуры и давления. Способ определения концентрации манганита лантана в смеси синтезированного порошка системы La(1-x)SrxMnO3,, полученного смешиванием исходных составляющих в виде порошков La2O3, MnCO3 и SrCO3 и их последующим синтезом, включает определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм. Значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы La(1-x)SrxMnO3 по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм. Техническим результатом является определение концентрации манганита лантана для порошков, полученных в различных условиях. 4 ил., 1 табл., 7 пр.
Description
При высокотемпературном синтезе твердых растворов из смесей нескольких порошков их концентрация - концентрация основной фазы (ОФ) - будет определяться технологическими условиями: температурой и временем прогрева, типом и концентрацией составляющих смесей. Для определения концентрации ОФ, образованных новых соединений и не прореагировавших исходных составляющих смесей существует несколько способов, основанных на различных физических процессах. Наиболее распространенным является рентгенофазовый анализ (РФА), осуществляемый с помощью рентгеновских дифрактометров. При таком способе концентрацию соединений, находящихся в синтезируемом порошке, определяют по интенсивности рентгеновских лучей, отраженных от различных узлов кристаллических решеток ОФ и составляющих [1, 2].
Известен и широко применяется спектрофотометрический способ определения концентрации соединений в твердой фазе. Он заключается в помещении в жидкость данного соединения, измерении спектров пропускания как самой жидкости, так и раствора с этим соединением. По полученным значениям коэффициента пропускания на определенных длинах волн рассчитывается оптическая плотность, строится графическая зависимость оптической плотности от концентрации соединения. Затем по этой зависимости для конкретного вещества определяется значение концентрации по результатам измерения оптической плотности [1, 2].
Если синтезированное или природное соединение содержит несколько составляющих - смесь компонентов, то для определения концентрации каждой составляющей данным способом градуировку необходимо проводить по каждой составляющей на определенном спектральном участке или при определенной длине волны излучения. И затем, сопоставляя градуировки для каждой составляющей, определить их концентрацию.
В спектрах диффузного отражения манганитов редкоземельных элементов (МРЭ) в солнечном диапазоне (02-2,5 мкм) в области 0,5-0,6 мкм регистрируется "провал" в значениях коэффициента отражения. Величина провала зависит от типа замещающего элемента и его концентрации. Например, в соединениях La(1-x)CaxMnO3 (фиг. 1) провал зарегистрирован в области 0,2-1,2 мкм, минимальное значение коэффициента отражения соответствует 0,65 мкм. При увеличении концентрации ионов кальция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения как во всей области провала 0,2-1,2 мкм, так и в точке минимального значения увеличивается от 0,18 до 0,22 и 0,24 соответственно [3].
По величине провала в спектрах диффузного отражения можно определять концентрацию дефектов в порошках, характеризующих технологию их получения или последующей обработки. Например, в спектрах диффузного отражения порошков диоксида циркония регистрировали "провал" в ультрафиолетовой области вблизи края основного поглощения. Было установлено [4, 5], что он определяется ионами Zr3+, концентрация которых изменяется в зависимости от условий получения порошков ZrO2, от режимов их прессования (фиг. 2) или при облучении.
В соединениях La(1-x)SrxMnO3 (фиг. 3) провал зарегистрирован в области 0,35-0,85 мкм, минимальное значение коэффициента отражения соответствует области спектра 0,52-0,6 мкм. При увеличении концентрации ионов стронция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения во всей области "провала" уменьшается. В области минимального значения он уменьшается от 0,18 до 0,17 и 0,15, соответственно. Значение длины волны с наименьшей величиной коэффициента отражения не определено [6].
Регистрируемый "провал" в значениях коэффициента отражения характеризует свойства образованных соединений при синтезе и может служить мерой определения концентрации ОФ. Данный способ выбран в качестве прототипа.
В отличие от прототипа, в предлагаемом способе производится сопоставление минимального значения коэффициента отражения в области провала соединений La(1-x)SrxMnO3, соответствующего длине волны 546 нм, для каждого порошка, синтезированного в различных режимах. Для определения концентрации МРЭ используются данные рентгенофазового анализа (РФА) и спектров диффузного отражения. Изменением условий синтеза соединений в виде порошков достигаются различные значения концентрации La(1-x)SrxMnO3, которые определяются методом РФА. Для каждого типа синтезированного порошка определяется коэффициент отражения на длине волны 546 нм. Затем производится сопоставление полученных значений концентрации La(1-x)SrxMnO3 со значениями коэффициента отражения на длине волны 546 нм для порошков, синтезированных в различных условиях. Полученная графическая зависимость является градуировочной для определения концентрации основной фазы - соединений La(1-)SrxMnO3.
Для получения зависимости концентрации La(1-x)SrxMnO3 от коэффициента отражения и построения градуировочной зависимости проводили экспериментальные исследования, в которых в различных режимах синтеза получали различную концентрацию ОФ и определяли коэффициент отражения на длине волны 546 нм.
Пример 1. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы. Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 800°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 19,6 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,8%.
Пример 2. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 900°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 35,1 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,5%.
Пример 3. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1000°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 59,6 мас. %, в остальной состав входят новое соединение Mn3O4, и часть не прореагировавшего исходного соединения La2O3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 18,8%.
Пример 4. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1100°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 79,8 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,9%.
Пример 5. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 84,4 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,3%.
Пример 6. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1250°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 88,5 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,9%.
Пример 7. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 6 часов при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 92,1 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,5%.
Полученные значения концентрации ОФ и коэффициента отражения на длине волны 546 нм для указанных режимов прогрева смесей порошков сведены в таблицу.
Построенный по данным таблицы график (фиг. 4) показывает, что экспериментальные результаты удовлетворительно укладываются на одну прямую, которая и является градуировочной зависимостью. По ней, зная коэффициент отражения на длине волны 546 нм, можно определить концентрацию манганитов лантана.
Список использованных источников
1. Физические методы исследования неорганических веществ. / Под ред. А.Б. Никольского. М.: Академия, 2006, 444 с.
2. Михайлов М.М. Радиационное и космическое материаловедение. Изд-во Томского университета, Томск, 2008, 440 с.
3. G. Tang, Y. Yu, Y. Cao, W. Chen, The thermochromic properties of La1-xSrxMnO3 compounds, Solar Energy Materials & Solar Cells, vol. 92, pp. 1298-1301, 2008.
4. Михайлов M.M., Рябчикова Л.Е., Кузнецов Н.Я. Способ отборочных испытаний порошков двуокиси циркония. // АС №1152358 от 22 декабря 1984 г.
5. Михайлов М.М., Кузнецов Н.Я. Образование центров окраски в порошках ZrO2 при прессовании и последующем облучении. // Неорганические материалы, 1988, т. 24, №5, с. 785-789.
6. K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo, A. Nakamura. Optical Reflectivity Spectra Measured on Cleaved Surfaces of La1-xSrxMnO3: Evidence against Extremely Small Drude Weight, Journal of the Physical Society of Japan, vol. 68, pp. 1828-1831, 1999.
Claims (1)
- Способ определения концентрации манганита лантана в смеси синтезированного порошка системы La(1-x)SrxMnO3,, полученного смешиванием исходных составляющих в виде порошков La2O3, MnCO3 и SrCO3 с последующим их синтезом, включающий определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм, отличающийся тем, что значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы La(1-x)SrxMnO3 по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015137518A RU2617804C2 (ru) | 2015-09-02 | 2015-09-02 | Способ определения концентрации манганитов редкоземельных элементов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015137518A RU2617804C2 (ru) | 2015-09-02 | 2015-09-02 | Способ определения концентрации манганитов редкоземельных элементов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015137518A RU2015137518A (ru) | 2017-03-09 |
RU2617804C2 true RU2617804C2 (ru) | 2017-04-26 |
Family
ID=58454077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015137518A RU2617804C2 (ru) | 2015-09-02 | 2015-09-02 | Способ определения концентрации манганитов редкоземельных элементов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2617804C2 (ru) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166521A1 (en) * | 2012-05-04 | 2013-11-07 | The Regents Of The University Of California | Spectrally selective coatings for optical surfaces |
WO2014123488A1 (en) * | 2013-02-06 | 2014-08-14 | Agency For Science, Technology And Research | Electro-optic ceramic materials |
-
2015
- 2015-09-02 RU RU2015137518A patent/RU2617804C2/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166521A1 (en) * | 2012-05-04 | 2013-11-07 | The Regents Of The University Of California | Spectrally selective coatings for optical surfaces |
WO2014123488A1 (en) * | 2013-02-06 | 2014-08-14 | Agency For Science, Technology And Research | Electro-optic ceramic materials |
Non-Patent Citations (1)
Title |
---|
TAKENADA K. Optical spectra measured on cleaved surfaces of double-exchange ferromagnet La 1-x Sr x MnO 3 // Pfysica status solidi. September, 1999, Volume 215, Issue 1, pages 637-641. * |
Also Published As
Publication number | Publication date |
---|---|
RU2015137518A (ru) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications | |
Mahata et al. | Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method | |
Boffelli et al. | Oxygen hole states in zirconia lattices: quantitative aspects of their cathodoluminescence emission | |
Jisha et al. | Structural refinement, band-gap analysis and optical properties of GdAlO3 nanophosphors influenced by Dy3+ ion concentrations for white light emitting device applications | |
Monico et al. | Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light | |
Pues et al. | Luminescence and up-conversion of single crystalline Lu3Al5O12: Pr3+ | |
Feng et al. | Down/Upconversion Luminescence Behaviors and Temperature-Sensing Properties of Highly Transparent (Er1–x Yb x) 2O3 Ceramics | |
Ueda et al. | Highly thermal stable broadband near-infrared luminescence in Ni2+-doped LaAlO3 with charge compensator | |
Tuomisto et al. | Observation of Zn vacancies in ZnO grown by chemical vapor transport | |
RU2617804C2 (ru) | Способ определения концентрации манганитов редкоземельных элементов | |
Tsai et al. | Hidden hexavalent chromium ions with subtle structural evolution in near-infrared phosphors | |
Zhao et al. | Single phased Sr 3 La (PO 4) 3: Eu 2+/Mn 2+ phosphors: solid state synthesis, tunable luminescence and potential applications in white light LEDs | |
Honcová et al. | Kinetic study of dehydration of calcium oxalate trihydrate | |
US9981878B2 (en) | Multi-functioning material compositions, structures incorporating the same and methods for detecting ageing in luminescent material compositions | |
JP2011046542A (ja) | 透光性セラミック | |
Nonaka et al. | Green upconversion luminescence and temperature sensitivity of LaOF: Yb, Ho phosphors | |
Slimi et al. | Studies on structural, dielectric and optical properties of (Ba 0.95 Ca 0.05) 1− x (Ti 0.8 Sn 0.2) 1− x Na x Nb x O 3 lead-free ceramics | |
Schröder et al. | On the concentration dependence of the up-conversion process of Pr3+ doped Li2CaSiO4 | |
Voronov et al. | Hybrid organic–inorganic crystals based on ammonium dihydrogen phosphate and ammonium salicylate | |
David’yan et al. | Structure of aqueous solutions of group IIIA metals perchlorates by near infrared spectroscopy | |
Roopa et al. | Optical properties of zirconium doped sodium-boro-zinc fluoride glasses | |
Butorac et al. | Effect of temperature on UV spectra of concentrated NaNO3 aqueous solutions | |
Jakeš et al. | Thin films of ErNbO 4 and YbNbO 4 prepared by sol–gel | |
Ina et al. | Relationship between local structure and oxide ionic diffusion of Nd2NiO4+ δ with K2NiF4 structure | |
James et al. | Gd Doping-Induced Luminescence Red-Shift in the CaZrO3 Perovskite for Optoelectronics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180903 |