RU2617347C2 - Способ одновременной оценки потенциала доннана в восьми электромембранных системах - Google Patents

Способ одновременной оценки потенциала доннана в восьми электромембранных системах Download PDF

Info

Publication number
RU2617347C2
RU2617347C2 RU2015143473A RU2015143473A RU2617347C2 RU 2617347 C2 RU2617347 C2 RU 2617347C2 RU 2015143473 A RU2015143473 A RU 2015143473A RU 2015143473 A RU2015143473 A RU 2015143473A RU 2617347 C2 RU2617347 C2 RU 2617347C2
Authority
RU
Russia
Prior art keywords
solution
membrane
membranes
potential
donnan
Prior art date
Application number
RU2015143473A
Other languages
English (en)
Other versions
RU2015143473A (ru
Inventor
Ольга Владимировна Бобрешова
Анна Валерьевна Паршина
Григорий Константинович Усков
Татьяна Сергеевна Денисова
Елена Александровна Рыжкова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ")
Priority to RU2015143473A priority Critical patent/RU2617347C2/ru
Publication of RU2015143473A publication Critical patent/RU2015143473A/ru
Application granted granted Critical
Publication of RU2617347C2 publication Critical patent/RU2617347C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4161Systems measuring the voltage and using a constant current supply, e.g. chronopotentiometry

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к области потенциометрических методов анализа и мембранных технологий и может быть использовано для совместного определения органических и неорганических ионов в многокомпонентных водных средах. Способ одновременной оценки потенциала Доннана в восьми электромембранных системах заключается в измерении ЭДС восьми электрохимических цепей с помощью девятисекционной ячейки из непроводящего материала, в которой каждая из восьми ионообменных мембран одним концом погружена в центральный корпус с исследуемым раствором, а другим концом - в одну из восьми секций с раствором сравнения, при этом измерение откликов восьми хлоридсеребряных электродов, погруженных в секции с раствором сравнения, осуществляют одновременно относительно хлоридсеребряного электрода, погруженного в корпус с исследуемым раствором, с помощью многоканального потенциометра, при этом каждая из восьми электрохимических цепей замыкается вдоль мембраны и диффузия в мембранах является бесконечно медленной относительно времени эксперимента. Технический результат: точная экспрессная оценка потенциала Доннана одновременно в восьми электромембранных системах. 5 ил., 2 пр.

Description

Изобретение относится к области потенциометрических методов анализа и мембранных технологий. Оно может быть использовано для одновременного экспресс-определения компонентов, совместно присутствующих в полиионных растворах, а также экспрессного исследования электрохимических свойств ионообменных мембран, в том числе вблизи межфазной границы мембрана/раствор.
Наиболее близким является способ определения потенциала Доннана (патент РФ №2364859, 2009 [1]). Способ заключается в измерении ЭДС двухэлектродной ячейки, в которой полоса ионообменной мембраны, подобно солевому мостику, погружена одним концом в раствор, концентрация которого близка к концентрации внутреннего раствора мембраны, а другим - в исследуемый раствор. Измерение производится с помощью двух электродов сравнения, контактирующих соответственно с исследуемым и концентрированным растворами, при этом электрохимическая цепь замыкается вдоль мембраны, а диффузия в фазе мембраны и примембранных слоях является бесконечно медленной относительно времени эксперимента. Данный способ позволяет выполнять оценку потенциала Доннана на границе ионообменная мембрана / раствор электролита только в одной электромембранной системе и не может быль использован для одновременного определения компонентов полиионных растворов или для экспрессной оценки электродноактивных свойств партии мембран.
Заявляемое изобретение заключается в разработке способа одновременной оценки потенциала Доннана в восьми электромембранных системах, предназначенного для совместного определения органических и неорганических ионов в многокомпонентных водных средах (пищевых, фармацевтических, медицинских и промышленных), содержащих аминокислоты, витамины, лекарственные вещества, меркаптаны и неорганические электролиты, а также для экспрессной оценки электродноактивных свойств ионообменных мембран в полиионных растворах.
Технический результат заключается в возможности реализации поставленной задачи.
Технический результат достигается тем, что электрохимическая ячейка включает следующие составные части: центральный корпус (d=4.5 см, h=4 см) для исследуемого раствора, второй корпус с одной секцией (d=5 см, h=3 см) для центрального корпуса и восьмью секциями (V=28 см3) для раствора сравнения, ионообменные мембраны (от 1 до 8 шт.), штатив для электродов, стеклянный рН-селективный электрод, хлоридсеребряные электроды сравнения (от 2 до 9 шт.) и электронный высокоомный многоканальный потенциометр с выходом на персональный компьютер. Корпуса для растворов выполнены из непроводящего материала. Оба корпуса имеют по восемь фиксаторов для мембран (8 шт. расположены на внутренней стороне центрального корпуса и по 1 шт. в каждой секции второго корпуса). Ионообменные мембраны выполнены из полимерного материала в форме пленок, трубок или стержней длиной 6-8 см. Каждая из восьми мембран одним концом погружена в центральный корпус с исследуемым раствором, а другим концом - в одну из восьми секций с раствором сравнения. Состав раствора в мембране (или в части мембраны, контактирующей с раствором сравнения) и состав раствора сравнения не должны отличаться. Хлоридсеребряный электрод, подключенный к входу многоканального потенциометра для электрода сравнения, погружен в центральный корпус, а хлоридсеребряные электроды, подключенные к измерительным входам, - в каждую из восьми секций. Стеклянный электрод погружен в центральный корпус и подключен к измерительному входу потенциометра. Измерение откликов хлоридсеребряных электродов (от 1 до 8 шт.), погруженных в секции с раствором сравнения, и стеклянного электрода осуществляется одновременно относительно хлоридсеребряного электрода, погруженного в корпус с исследуемым раствором, с помощью многоканального потенциометра. Реализация способа состоит в одновременном измерении электродвижущей силы (ЭДС) восьми электрохимических цепей вида (1) для восьми различных мембран и цепи вида (2).
Figure 00000001
Figure 00000002
Общая ЭДС цепи (1) складывается из скачков потенциала на отдельных границах:
Figure 00000003
где
Figure 00000004
- стандартные потенциалы электродов сравнения; и
Figure 00000005
и
Figure 00000006
- разности потенциалов на границе раствора сравнения и исследуемого раствора с насыщенным раствором КСl электродов сравнения;
Figure 00000007
и
Figure 00000008
- потенциалы Доннана на границе мембраны с раствором сравнения и исследуемым раствором соответственно;
Figure 00000009
- диффузионный потенциал в фазе мембраны.
В электрохимической ячейке используются хлоридсеребряные электроды с равными стандартными потенциалами (
Figure 00000010
), которые в цепи (1) направлены противоположно и компенсируют друг друга.
Потенциалы жидкостного соединения
Figure 00000011
и
Figure 00000012
, рассчитанные по уравнению Гендерсона для растворов сравнения НСl, NaCl, КСl, СаСl2 с концентрацией 1 М и исследуемых растворов тех же электролитов с минимальной концентрацией (1.0⋅10-4 М), составляют ~1.0 мВ и ~-5.4 мВ соответственно.
Нивелирование величины потенциала Доннана на границе мембраны с раствором сравнения (
Figure 00000013
) достигается близостью концентраций раствора сравнения и фиксированных ионообменных групп в мембране. Значение
Figure 00000014
на границе 1 М раствора 1,1-валентного электролита и ионообменной мембраны с сильнокислотными или сильноосновными группами при обменной емкости 1 ммоль/г составляет 2-10 мВ (учитывая, что при концентрации внешнего раствора 1 М снижается степень диссоциации фиксированных групп и электронейтральный раствор присутствует во всех порах с радиусом >1.5-1.8 нм).
Расстояние между границами ионообменной мембраны с исследуемым раствором и раствором сравнения соответствует длине мембраны. Время диффузии 1 моль электролита через 6 см мембраны с сечением (1.6-5)⋅10-2 см2 составляет 5.6⋅106 ч (с учетом среднего значения интегрального коэффициента проницаемости мембраны Р≈10-7 см2⋅с-1 [2]). Это на порядки превышает время установления квазиравновесия в электромембранной системе (≤15 мин). Благодаря этому квазиравновесия, формирующиеся на границах мембраны с исследуемым раствором и раствором сравнения, устойчивы во времени и независимы друг от друга, а ионный состав в объеме мембраны не изменяется. Поэтому
Figure 00000015
складывается из двух диффузионных потенциалов в фазе мембраны вблизи границ с исследуемым раствором и раствором сравнения. На границе мембрана / исследуемый раствор выравнивание концентраций противо- и коионов в растворе и мембране ограничивается ее селективностью, то есть потоки ионов через межфазную границу после установления квазиравновесия стремятся к нулю. На границе мембрана / раствор сравнения диффузионные потоки ионов нивелируются благодаря близости концентраций противо- и коионов в связанных порах вблизи межфазной границы и в объеме мембраны (состав растворов сравнения выбирается в зависимости от ионной формы мембраны: 1.0 М растворы XClz для пленок Хz+-формах, где Xz+ - неорганический или органический катион).
Таким образом, суммарный вклад скачков потенциала на всех межфазных границах электрохимической цепи (1), кроме потенциала Доннана на границе мембрана / исследуемый раствор, составляет от -3 мВ до 5 мВ. При этом для систем с мембранами обменной емкостью 1-3 ммоль/г и исследуемыми растворов электролитов концентрацией 1.0⋅10-4-1.0⋅10-1 М экспериментальные значения ЭДС цепи (1) варьируются в интервале 20-200 мВ. Таким образом, можно считать, что определяющий вклад в ЭДС цепи (1) вносит потенциал Доннана на границе мембрана / исследуемый раствор.
На фигуре 1 представлена схема электрохимической ячейки для одновременной оценки потенциала Доннана в шести электромембранных системах; на фигуре 2 - время установления квазиравновесия и дрейф потенциала Доннана в системах с гибридными мембранами и раствором 1,0⋅10-3 М NovHCl+1,0⋅10-3 M LidHCl; на фигуре 3 - значения коэффициентов градуировочных зависимостей потенциала Доннана от концентрации ионов NovH+, LidH+ и Н3O+ в растворах NovHCl+LidHCl для ряда гибридных мембран; на фигуре 4 - результаты совместного определения ионов ΝοvΗ+ и LidH+ в присутствии ионов Н3O+ в водных растворах с помощью пар гибридных мембран различного состава; на фигуре 5 - систематические и случайные ошибки определения катионов ΝοvΗ+ и LidH+ в водных растворах с использованием гибридных мембран различного состава.
Работа реализуется следующим образом. Корпус 1 заполняется исследуемым раствором объемом 15 см3. В корпусе 2 секции 3-10 заполняются раствором сравнения объемом 10 см3. Корпус 1 помещается в секцию 11 корпуса 2. Образцы мембран 12 (1-8 шт., длиной 6-8 см) в набухшем состоянии одним концом 13 закрепляются в фиксаторе корпуса 1, а другим концом 14 - в секциях 3-10. В корпус 1 погружаются хлоридсеребряный электрод 15, подключенный к входу 16 (вход для электрода сравнения) многоканального потенциометра 17, и стеклянный электрод 18, подключенный к измерительному входу 19. В секции 3-10 погружаются хлоридсеребряные электроды 20-27, подключенные к измерительным входам 28-35 потенциометра. Все электроды закреплены в держателе 36 штатива и их погружение в исследуемый раствор и раствор сравнения осуществляется одновременно. Измерение откликов электродов 18, 20-27 относительно электрода 15 осуществляется одновременно с помощью электронного высокоомного многоканального потенциометра 17 и автоматически выводятся на персональный компьютер.
Достоинствами способа являются низкие время и трудоемкость анализа, малый объем анализируемого раствора, снижение накопления ошибок за счет одновременного измерения ЭДС электрохимических цепей.
ПРИМЕР 1
Способ одновременной оценки потенциала Доннана в восьми электромембранных системах позволяет проводить экспрессное определение электродноактивных свойств ионообменных мембран в полиионных водных растворах.
Исследованы свойства гибридных материалов на основе перфторированных сульфокатионитных мембран МФ-4СК и Nafion. Методом экструзии с последующим in situ введением допанта были получены мембраны Nafion, содержащие наночастицы гидратированного диоксида циркония. Концентрация ZrO2 варьировалась от 2.0 до 2.8 масс. %. Методом отливки были получены мембраны МФ-4СК, содержащие наночастицы гидратированного диоксида кремния с поверхностью, функционализированной 3-аминопропил- (R1) и 3-(2-имидазолин-1-ил)пропил- (R2). Концентрация SiO2 составляла 3 масс. %, концентрации R1 - 5, 10 мол. %, R2 - 5 мол. % от количества SiO2. Во всех материалах лишь 1/2 длины пленки содержала допант. Конец этой части мембраны контактировал с исследуемым раствором в процессе эксперимента. Часть пленки, контактирующая с раствором сравнения, не была модифицирована. Отсутствие допанта в этой части было необходимо для обеспечения близости составов раствора внутри мембраны и раствора сравнения. Образцы гибридных мембран были предоставлены Лабораторией ионики функциональных материалов ИОНХ РАН (заведующий лабораторией - проф., д.х.н., член.-корр. РАН А.Б. Ярославцев). Синтез мембран и определение содержания в них допантов выполнен с. н.с. ИОНХ РАН к.х.н. Е.Ю. Сафроновой.
Электродноактивные свойства мембран исследовали в водных растворах, содержащих гидрохлориды новокаина (NovHCl) и лидокаина (LidHCl) с концентрациями от 1.0⋅10-4 до 1.0⋅10-2 М. Интервал рН растворов NovHCl+LidHCl составлял от 4.05±0.05 до 6.09±0.05. Ионный состав исследуемых растворов представлен ионами NovH+, LidH+, Н3O+ и Сl-.
Анализ проводили следующим образом. Для оценки времени установления квазиравновесия и дрейфа потенциала Доннана определяли одновременно ЭДС цепей вида (1) для восьми образцов мембран, погруженных модифицированными концами в исследуемый раствор (1,0⋅10-3 М NovHCl+l,0⋅10-3 M LidHCl), в течение 1-1.5 ч. Временем установления квазиравновесия считали время, за которое ЭДС цепи достигала постоянного значения (изменялось незначимо). Дрейф потенциала Доннана рассчитывали как изменение ЭДС цепи после установления квазиравновесия в единицу времени. Для оценки чувствительности потенциала Доннана к ионам NovH+, LidH+ и Н3O+, совместно присутствующим в водных растворах, определяли его величину одновременно для восьми образцов мембран и величину отклика стеклянного электрода в растворах NovHCl+LidHCl с различным соотношением концентраций компонентов. Время одного измерения составляло 12 мин (время установления квазиравновесия). Дублирование эксперимента составляло 6-8 раз. На основании полученных данных методом многомерной регрессии рассчитывали градуировочные зависимости потенциала Доннана от концентрации ионов NovH+, LidH+ и Н3О+ в водных растворах:
Figure 00000016
где ΔϕD (мВ) - потенциал Доннана на границе мембрана/исследуемый раствор; pNovH и pLidH - отрицательные логарифмы концентрации NovH+ и LidH+ в растворе; b0 (мВ) - свободный член градуировочного уравнения; b1 (мВ/рС), b2 (мВ/рС), b3 (мВ/рН) - коэффициенты чувствительности потенциала Доннана к ионам NovH+, LidH+ и Н3O+ соответственно.
Хронопотенциометрически определено, что время установления квазиравновесия и дрейф потенциала Доннана для экструзионных мембран ниже, чем для мембран, полученных отливкой (фигура 2). Кроме того, наблюдалось влияние размера и концентрации привитых групп на стабильность потенциала: среди мембран, полученных отливкой, наибольшая стабильность потенциала получена для образца МФ-4СК+3 мас. % SiO2 (10 мол. % R1) (фигура 2).
Согласно данным, представленным на фигуре 3, введение в мембраны допантов, обладающих протоноакцепторными свойствами, приводит к сохранению высокой чувствительности потенциала Доннана к ионам LidH+, NovH+ и понижению чувствительности к Н3О+. Наибольшая чувствительность потенциала Доннана к NovH+ и LidH+ по сравнению с таковой к Н3O+ получена для образцов Nafion+2.4 мас. % ZrO2, Nafion+2.8 мас. % ZrO2, МФ-4СК+3 мас. % SiO2 (5 мол. % R1), МФ-4СК+3 мас. % SiO2 (10 мол. % R1) (фигура 3). Для всех пленок, полученных экструзией, чувствительность потенциала Доннана к NovH+ выше, чем к LidH+, а для пленок, полученных отливкой - наоборот (фигура 3).
ПРИМЕР 2
Потенциал Доннана может быть аналитическим сигналом для определения ионов в водных растворах. При этом одновременная оценка потенциала Доннана для нескольких мембран, погруженных в многокомпонентый раствор, позволяет выполнять совместное определение ионов в нем подобно мультисенсорной системе.
На основании результатов исследования электродноактивных свойств гибридных мембран были выбраны три пары образцов, обеспечивающие высокую чувствительность к ионам NovH+ и LidH+, низкую чувствительность к мешающим их определению ионам Н3О+ и наименьшую корреляцию между величинами потенциала (корреляцию между значениями потенциала Доннана для пар мембран оценивали по r-критерию Пирсона):
1) Nafion+2.4 мас. % ZrO2 и Nafion+2.8 мас. % ZrO2;
2) МФ-4СК+3 мас. % SiO2 (5 мол. % R1) и МФ-4СК+3 мас. % SiO2 (10 мол. % R1);
3) Nafion+2.4 мас. % ZrO2 и МФ-4СК+3 мас. % SiO2 (10 мол. % R1).
Для каждой мембраны были получены градуировочные зависимости потенциала Доннана от концентрации ионов NovH+, LidH+ и Н3O+ в растворах NovHCl+LidHCl с концентрациями электролитов от 1.1⋅10-4 до 1.0⋅10-2 М (фигура 3):
Анализ проводили следующим образом. Определяли величину потенциала Доннана одновременно для шести выбранных образцов мембран и величину отклика стеклянного электрода в исследуемом растворе NovHCl+LidHCl с заданными концентрациями компонентов (Свв). Время одного измерения составляло 12 мин (время установления квазиравновесия). Дублирование эксперимента составляло 3-5 раз. На основании полученных данных с помощью систем градуировочных уравнений для каждой пары мембран рассчитывали концентрации компонентов
Figure 00000017
в исследуемом растворе (фигура 4). Правильность результатов характеризовали относительной погрешностью концентрации
Figure 00000018
, а воспроизводимость - относительным стандартным отклонением (sr) определения среднего значения концентрации (фигура 5).
Согласно данным, представленным на фигурах 4 и 5, наибольшая точность совместного определения NovH+ и LidH+ получена при использовании пары мембран Nafion+2.4 мас. % ZrO2 и МФ-4СК+3 мас. % SiO2 (10 мол. % R1).
Источники информации
1. Патент 2364859 РФ. Способ определения доннановского потенциала / Бобрешова О.В., Кулинцов П.И., Агупова М.В., Паршина А.В., заявитель и патентообладатель Ворон. гос. ун-т.- №2008115703; заявл. 21.04.08, опубл. 20.08.09; бюл. №23, 8 с.
2. Заболоцкий В.И. Перенос ионов в мембранах / В.И. Заболоцкий, В.В. Никоненко. - М.: Наука, 1996. - 395 с.

Claims (1)

  1. Способ одновременной оценки потенциала Доннана в восьми электромембранных системах, заключающийся в измерении ЭДС восьми электрохимических цепей с помощью девятисекционной ячейки из непроводящего материала, в которой каждая из восьми ионообменных мембран одним концом погружена в центральный корпус с исследуемым раствором, а другим концом - в одну из восьми секций с раствором сравнения, измерение откликов восьми хлоридсеребряных электродов, погруженных в секции с раствором сравнения, осуществляется одновременно относительно хлоридсеребряного электрода, погруженного в корпус с исследуемым раствором, с помощью многоканального потенциометра, при этом каждая из восьми электрохимических цепей замыкается вдоль мембраны и диффузия в мембранах является бесконечно медленной относительно времени эксперимента.
RU2015143473A 2015-10-12 2015-10-12 Способ одновременной оценки потенциала доннана в восьми электромембранных системах RU2617347C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015143473A RU2617347C2 (ru) 2015-10-12 2015-10-12 Способ одновременной оценки потенциала доннана в восьми электромембранных системах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015143473A RU2617347C2 (ru) 2015-10-12 2015-10-12 Способ одновременной оценки потенциала доннана в восьми электромембранных системах

Publications (2)

Publication Number Publication Date
RU2015143473A RU2015143473A (ru) 2017-04-17
RU2617347C2 true RU2617347C2 (ru) 2017-04-24

Family

ID=58641880

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015143473A RU2617347C2 (ru) 2015-10-12 2015-10-12 Способ одновременной оценки потенциала доннана в восьми электромембранных системах

Country Status (1)

Country Link
RU (1) RU2617347C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU206250U1 (ru) * 2021-03-04 2021-09-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Устройство для потенциометрического определения никотиновой кислоты в фармацевтических препаратах

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025426A1 (de) * 1990-08-10 1992-02-13 Fresenius Ag Verfahren zur messung von ionenkonzentrationen eiweisshaltiger koerperfluessigkeiten
RU2250456C1 (ru) * 2003-08-18 2005-04-20 Воронежский государственный университет Способ определения доннановского потенциала
RU2364859C1 (ru) * 2008-04-21 2009-08-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Способ определения доннановского потенциала
RU107590U1 (ru) * 2011-02-21 2011-08-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) Потенциометрический мультисенсорный измерительный комплекс для анализа лечебно-профилактических пищевых солевых смесей
RU109862U1 (ru) * 2011-02-25 2011-10-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) Потенциометрический мультисенсорный измерительный комплекс для совместного определения органических электролитов в водных растворах
RU134655U1 (ru) * 2013-03-19 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Потенциометрический перекрестно чувствительный к катионам и анаонам пд-сенсор на основе перфорированных сульфокатионообменных мембран

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025426A1 (de) * 1990-08-10 1992-02-13 Fresenius Ag Verfahren zur messung von ionenkonzentrationen eiweisshaltiger koerperfluessigkeiten
RU2250456C1 (ru) * 2003-08-18 2005-04-20 Воронежский государственный университет Способ определения доннановского потенциала
RU2364859C1 (ru) * 2008-04-21 2009-08-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" Способ определения доннановского потенциала
RU107590U1 (ru) * 2011-02-21 2011-08-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) Потенциометрический мультисенсорный измерительный комплекс для анализа лечебно-профилактических пищевых солевых смесей
RU109862U1 (ru) * 2011-02-25 2011-10-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) Потенциометрический мультисенсорный измерительный комплекс для совместного определения органических электролитов в водных растворах
RU134655U1 (ru) * 2013-03-19 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Потенциометрический перекрестно чувствительный к катионам и анаонам пд-сенсор на основе перфорированных сульфокатионообменных мембран

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU206250U1 (ru) * 2021-03-04 2021-09-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Устройство для потенциометрического определения никотиновой кислоты в фармацевтических препаратах

Also Published As

Publication number Publication date
RU2015143473A (ru) 2017-04-17

Similar Documents

Publication Publication Date Title
Lewenstam Routines and challenges in clinical application of electrochemical ion‐sensors
Sokalski et al. Large improvement of the lower detection limit of ion-selective polymer membrane electrodes
KR100926476B1 (ko) 다중이온용 가역형 전기화학 센서
Graham et al. Development of the glass electrode and the pH response
WO2015045606A1 (ja) イオン選択電極
Crespo et al. Thin layer coulometry based on ion-exchanger membranes for heparin detection in undiluted human blood
Damala et al. Unconditioned symmetric solid-contact electrodes for potentiometric sensing
Gemene et al. Direct sensing of total acidity by chronopotentiometric flash titrations at polymer membrane ion-selective electrodes
RU2690065C2 (ru) Способ определения диффузии
RU2617347C2 (ru) Способ одновременной оценки потенциала доннана в восьми электромембранных системах
Bobreshova et al. Determination of amino acids, vitamins, and drug substances in aqueous solutions using new potentiometric sensors with Donnan potential as analytical signal
Kim et al. Location-dependent sensing of nitric oxide and calcium ions in living rat kidney using an amperometric/potentiometric dual microsensor
Zou et al. Current pulse based reference electrodes without liquid junctions
RU2364859C1 (ru) Способ определения доннановского потенциала
Pu et al. Label-free detection of heparin, streptavidin, and other probes by pulsed streaming potentials in plastic microfluidic channels
Urbanowicz et al. The computational methods in the development of a novel multianalyte calibration technique for potentiometric integrated sensors systems
RU107590U1 (ru) Потенциометрический мультисенсорный измерительный комплекс для анализа лечебно-профилактических пищевых солевых смесей
Fabry et al. Chemical and Biological Microsensors: Applications in Fluid Media
Perera et al. Determination of unbiased selectivity coefficients using pulsed chronopotentiometric polymeric membrane ion sensors
Guagneli Novel design of a flow-through potentiometric sensing device
US8882988B2 (en) Potentiometric device and method selective for pioglitazone
KR100309223B1 (ko) 평면형 고체상 전극
Yokono et al. Local anesthetic-sensitive electrodes: preparation of coated-wire electrodes and their basic properties in vitro
Bobreshova et al. A potentiometric multisensor system for determining lysine in aqueous solutions containing potassium and sodium chloride
Parshina et al. PD-sensors based on perfluorinated membranes for simultaneous determination of vitamins B1, B6, and PP in aqueous solutions

Legal Events

Date Code Title Description
TC4A Altering the group of invention authors

Effective date: 20170802

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180116

Effective date: 20180116

MM4A The patent is invalid due to non-payment of fees

Effective date: 20181013

NF4A Reinstatement of patent

Effective date: 20191021