RU2616669C1 - СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98 - Google Patents

СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98 Download PDF

Info

Publication number
RU2616669C1
RU2616669C1 RU2015154281A RU2015154281A RU2616669C1 RU 2616669 C1 RU2616669 C1 RU 2616669C1 RU 2015154281 A RU2015154281 A RU 2015154281A RU 2015154281 A RU2015154281 A RU 2015154281A RU 2616669 C1 RU2616669 C1 RU 2616669C1
Authority
RU
Russia
Prior art keywords
molybdenum
technetium
column
alumina
chromatographic
Prior art date
Application number
RU2015154281A
Other languages
English (en)
Inventor
Виктор Сергеевич Скуридин
Елена Сергеевна Стасюк
Евгения Александрович Нестеров
Александр Сергеевич Рогов
Людмила Александровна Ларионова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2015154281A priority Critical patent/RU2616669C1/ru
Application granted granted Critical
Publication of RU2616669C1 publication Critical patent/RU2616669C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к области радиохимии, в частности к способу получения технеция-99m для медицины. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 включает обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с оксидом алюминия, внесение навески подготовленного оксида алюминия в хроматографическую колонку и нанесение на него раствора молибдена, при этом подачу раствора молибдена в колонку производят в направлении снизу вверх в противоток последующему элюированию технеция-99m. Изобретение обеспечивает высокий элюационный выход технеция-99m в объеме элюента. 4 ил.

Description

Изобретение относится к области радиохимии, в частности к способам получения технеция-99m для медицины.
Короткоживущий радионуклид технеций-99m является дочерним продуктом β-распада изотопа 99Мо. Для его быстрого отделения от 99Мо и последующего медицинского применения чаще всего используются малогабаритные устройства - хроматографические генераторы технеция [например, Патент RU №2171512, опубл. 27.07.2001]. Они представляют собой небольшую хроматографическую колонку, заполненную сорбентом (оксид алюминия Al2O3), на которую наносят молибден-99. Все это вместе с подводящими и отводящими иглами-коммуникациями помещается в защитный контейнер и транспортируется в медицинские учреждения, где выделение (элюирование) технеция-99 м из генератора в виде готового препарата для внутривенного введения - натрия пертехнетата, 99Тс осуществляют путем прокачки через хроматографическую колонку изотонического 0,9% раствора натрия хлорида (физраствор).
В мировой практике, в том числе и в России, для «зарядки» хроматографических генераторов используется 99Мо с высокой удельной активностью, который выделяют из продуктов деления урана-235. При таком способе его наработки образуется большое количество сопутствующих радиоактивных долгоживущих отходов, представляющих высокую экологическую опасность и требующих последующей переработки и утилизации. Альтернативный и, практически, безотходный способ получения 99Мо состоит в облучении нейтронами реактора молибденовых мишеней природного состава или обогащенных по молибдену-98, реакция 98Мо(n,γ)99Мо. При среднем потоке тепловых нейтронов 1⋅1014 н/см2⋅с из обогащенных мишеней может быть получена удельная активность 99Мо 6-8 Ки/г, что, в принципе, достаточно для производства хроматографических генераторов.
Подобная технология в России впервые была реализована на реакторе ИРТ-Т Томского политехнического университета, где для наработки 99Мо использовались каналы реактора с высоким содержанием в нейтронном спектре резонансных нейтронов [Ryabchikov A.I, Skuridin V.S., Nesterov E.A., Chibisov E.V., Golovkov V.M.. Obtaining Molybdenum-99 in Research Reactor IR-T With Using Resonance Neutrons // Nuclear Instruments and Methods in Phys. Res., 2004, В 213, p. 364-368].
В облученных молибденовых мишенях на каждый образовавшийся нуклид 99Мо приходится примерно 104-10-5 атомов стабильного молибдена-98 - носителя. Поэтому для изготовления из такого сырья генератора с высокой активностью выделяемого 99mTc - 0,5 Ки (18,5 ГБк) и более, на колонку генератора необходимо адсорбировать большую массу молибдена порядка 200 мг.
Количество молибдена, которое может быть нанесено на колонку генератора, определяется произведением сорбционной емкости оксида по молибдену W на его массу mOX. Увеличение массы оксида в колонке, а следовательно, и ее габаритов, крайне не желательно, поскольку это приводит к увеличению ширины элюационного профиля генератора и, в конечном итоге, к снижению объемной активности препарата технеция-99m.
Кроме того, увеличение колонки требует соответствующего увеличения габаритов защитного контейнера генератора и, как следствие, его массы, что тоже снижает потребительские характеристики изделия.
В этой связи, на практике задача повышения адсорбированной массы молибдена чаще решается за счет подбора подходящего сорбента и его подготовки к адсорбции. Как правило, такая подготовка состоит в кислотной обработке оксидов Al2O3, в результате чего происходит активация их поверхности с образованием активных центров адсорбции, на которых в зависимости от рН среды создаются гетерокомплексы с различным количеством атомов молибдена. В известных способах оксиды закисляют в достаточно широких диапазонах рН: от 6 до 1. Например, в способе [Генератор радиоактивных изотопов и способ их получения. // патент US 3833509, МПК G21G 4/08, опубл. 03.09.1974] для активации сорбента через колонку пропускают соляную или азотную кислоту с рН 1,6-1,7, а после - «фиксирующий» раствор уксусной кислоты или ацетата с рН в пределах 2,8-7,0.
По способу, предложенному в работе [Abrashkin S., Heller-Grossman L., Schafferman A., Davis M.A. 99mTc Generators: the Influence of the Radiation Dose on the Elution Yield. // Int. J. Appl. Radiat. Isot. - 1978. - No 29. - P. 395], нейтральный оксид алюминия (фирмы Fluka 507С) промывают 1М и 0,1М растворами соляной кислоты до рН=4. Известен также способ изготовления хроматографического генератора технеция-99m из (n,γ)99Мо авторов настоящей заявки [Патент РФ №2276102, опубл. 10.05.2006. Бюл. №13, 2006], в котором оксид алюминия перед его загрузкой в колонки и проведением адсорбции молибдена обрабатывают раствором соляной кислоты и отмывают водой до рН=3 промывных вод. Недостаток способа, также как и всех, приведенных выше аналогов, состоит в том, что он не гарантирует надежного связывания молибдена на сорбенте в силу неопределенности конечного состояния оксида после его обработки кислотой. Задача кислотной подготовки оксида алюминия, обеспечивающей его максимальную сорбционную емкость по молибдену, решается в способе изготовления хроматографического генератора технеция-99m из (n,γ)99Мо авторов настоящей заявки, выбранный в качестве прототипа [Патент РФ №2403640, опубл. 10.11.2010, Бюл. №31, 2010], в котором всю партию оксида алюминия перед его загрузкой в колонки обрабатывают предельным количеством кислоты, необходимым для полного прекращения ее взаимодействия с оксидом алюминия. Большим преимуществом подготовленного таким способом оксида является то, что он обеспечивает устойчивую адсорбцию молибдена, препятствующую его «проскоку» в готовый препарат. В тоже время, к недостатку такого оксида следует отнести то, что в случае неполного заполнения молибденом при процессе зарядки всех активных центров оксида, оставшиеся в нем вакантные центры, оказывают «тормозящее» действие на процесс вымывания технеция-99м из генератора. Это, в конечном итоге, приводит к снижению выхода технеция-99м в заданном объеме пропущенного через колонку элюента и к уменьшению объемной активности получаемого препарата, что нежелательно.
Для предотвращения такого эффекта в способе изготовления хроматографического генератора технеция-99m из (n,γ)99Мо авторов настоящей заявки [Патент РФ N 2403641, опубл. 10.11.2010, Бюл. 31, 2010] для повышения элюационного выхода 99mТс предварительно из калибровочной зависимости определяют массу адсорбированного молибдена, обеспечивающую максимальную величину выхода, а затем наносят эту массу на колонку с оксидом алюминия. При этом используется завышенное по массе и по активности количество молибдена, превышающее требуемые расчетные значения для изготовления генератора с заданным номиналом по выделяемому технецию-99m, что не экономично, особенно при изготовлении генераторов с низким номиналом. Следует отметить, что в соответствии с действующими потребительскими стандартами в России производятся генераторы с номиналами: 5,5; 7,4; 11,1 и 18,5 ГБк на установленную дату поставки. Расчетная масса активированного молибдена-99 m, требуемого для их изготовления, может быть найдена из соотношения:
АТс=0,867L⋅mMo;
где ATc - активность получаемого технеция-99m (номинал);
L - удельная активность используемого (n,γ)99Мо, Ки/г;
0,867 - ядерно-физический выход технеция-99m при реакции β-распада молибдена-99.
Таким образом, до настоящего времени остается нерешенной задача получения максимально высокой объемной активности препарата технеция-99м, выделяемого из генераторной колонки с заданной расчетной массой адсорбированного (n,γ)99Мо.
Технический результат от предполагаемого изобретения состоит в разработке оптимальной методики проведения зарядки генератора раствором молибдена-99, обеспечивающей высокий элюационный выход технеция-99m в заданном объеме элюента.
Поставленная техническая задача решается следующим образом. В способе изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98, так же, как и в прототипе, проводят обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с оксидом алюминия, навеску подготовленного оксида алюминия вносят в хроматографическую колонку и затем наносят на него раствор молибдена. В отличие от прототипа, подачу раствора молибдена в колонку производят в направлении снизу вверх, в противоток последующему элюированию технеция-99m.
Изобретение поясняется чертежами, на которых представлено:
схемы проведения зарядки генераторных колонок с оксидом алюминия раствором молибдена: фиг. 1 - сверху вниз, фиг. 2 - снизу вверх;
фиг. 3 - распределение молибдена в генераторных колонках при прохождении раствора полимолибдата через колонку в направлении сверху вниз (кривая 1) и в направлении снизу-вверх (кривая 2);
фиг. 4 - элюационные кривые генераторов с массой адсорбированного молибдена 0,085 г, заряженных в направлении сверху вниз (кривая 3) и снизу-вверх (кривая 4).
Осуществление заявленного способа рассмотрим на конкретном примере. Навеска хроматографического оксида Al2O3 для колоночной хроматографии (0,063-0,200 мм) фирмы «Мерк» массой 20 г была напрямую обработана в отдельном стакане на 250 мл 0,055 М раствором HCl из расчета 4⋅10-4 моль на 1 г оксида Al2O3. Объем раствора составил 144 мл. Контроль за ходом реакции взаимодействия кислоты с оксидом Al2O3 от ее начала до полного прекращения осуществляли с помощью рН-метра до достижения величины рН раствора над оксидом Al2O3, равной 5. После этого раствор отфильтровали, а оксид Al2O3 просушили в шкафу при температуре 110°C в течение 2 ч. Затем навески оксида Al2O3 массой по 7,8 г поместили в подготовленные хроматографические колонки №1 и №2 и провели их зарядку, пропустив через оксиды по 2,5 мл радиоактивного раствора полимолибдата,99Мо натрия с концентрацией молибдена 0,0328 г/мл (рН=3). При этом зарядка колонки №1 была проведена в направлении сверху вниз (фиг. 1), а колонки №2 - снизу вверх (фиг. 2). После колонки промыли водой по 10 мл и 0,9% раствором NaCl по 15 мл с последующим определением в промывных водах следовых количеств молибдена методом эмиссионного спектрального анализа с использованием многоканального анализатора атомно-эмиссионных спектров МАЭС.
Затем было проведено исследование характера распределения молибдена-99 в объеме обеих колонок путем их сканирования над сцинтилляционным детектором NaI(Tl) с коллимирующим устройством. Регистрация изменения активности 99Мо по длине колонки проводилась, начиная от ее входной части с последующим смещением по длине на 5 мм. При этом содержание молибдена на каждом i-м участке колонки рассчитывали из соотношения:
Figure 00000001
,
где Ai и mi - активность 99Мо и масса молибдена и на i-м участке колонки соответственно; ΣAi - общая активность молибдена в колонке; mMo - общая адсорбированная масса молибдена, которая в обоих случаях была равной 0,085 г. Полученные зависимости распределения молибдена в колонках с «прямой» (сверху вниз) и «обратной» (снизу вверх) зарядкой представлены на фиг. 3. Из них видно, что при «прямой» зарядке колонки (кривая 1) основная масса молибдена более 90% от его введенного количества располагается на участке колонки от 0 до 4 см. При этом участок на выходе колонки длиной 1,5 см практически остается незаполненным. Противоположная картина наблюдается для колонки, заряженной снизу вверх. Здесь молибден располагается, главным образом, в нижней части колонки с существенным снижением его концентрации в верхней, что создает предпосылки для снижения габаритов колонки и, соответственно, габаритов защитного контейнера генератора.
Через 24 ч после зарядки было проведено контрольное элюирование колонок. С этой целью через них пропускали 0,9% раствор NaCl в направлении сверху вниз порциями объемом по 1-1,5 мл с последующим определением в них активности 99mTc с помощью радиометра РИС-А1 и построением по этим результатам элюационных профилей колонок. Для расчета величины выхода технеция-99m
Figure 00000002
в каждом i-м объеме элюента Vi, прошедшем через колонку, использовали соотношение:
Figure 00000003
,
где
Figure 00000004
- общая активность 99mTc, выделенного из колонок при полном элюировании. В обоих случаях ее величина составляла ~17 ГБк.
Полученные в результате элюирования зависимости представлены на фиг. 4. Из них видно, что в случае «прямой» зарядки колонки (кривая 3), величина элюационного выхода
Figure 00000005
достигается при прохождении через колонку 12,5 мл физраствора. При этом в первых трех миллилитрах элюента активность 99mTc практически отсутствует. В случае «обратной» зарядки 90% технеция-99m выделяется в объеме элюента 6,46 мл.
Сопоставление представленных результатов элюирования показывает, что удельная активность препарата, выделяемого из колонки, заряженной сверху вниз составляет 17/12,5=1,36 ГБк/мл, а из колонки с «обратной» зарядкой 17/6,46=2,63 ГБк/мл, что почти в 2 раза больше.
Анализ содержания следовых количеств молибдена в промывных водах, полученных после проведения зарядки колонок, показал, что в обоих случаях содержание молибдена в этих растворах не превысило 0,1 мкг/мл при норме содержания этой примеси в готовом препарате 0,2 мкг/мл. Это свидетельствует об устойчивой адсорбции молибдена на оксиде алюминия с предельным закислением и подтверждает возможность изготовления генераторов технеция-99m путем проведения зарядки активированным молибденом колонок с таким оксидом в направлении снизу вверх.
Предлагаемый способ позволяет повысить объемную активность препарата технеция-99m и уменьшить габариты хроматографической колонки и самого генератора в целом.

Claims (1)

  1. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98, включающий обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с оксидом алюминия, внесение навески подготовленного оксида алюминия в хроматографическую колонку и нанесение на него раствора молибдена, отличающийся тем, что подачу раствора молибдена в колонку производят в направлении снизу вверх в противоток последующему элюированию технеция-99m.
RU2015154281A 2015-12-17 2015-12-17 СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98 RU2616669C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015154281A RU2616669C1 (ru) 2015-12-17 2015-12-17 СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015154281A RU2616669C1 (ru) 2015-12-17 2015-12-17 СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98

Publications (1)

Publication Number Publication Date
RU2616669C1 true RU2616669C1 (ru) 2017-04-18

Family

ID=58642483

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015154281A RU2616669C1 (ru) 2015-12-17 2015-12-17 СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98

Country Status (1)

Country Link
RU (1) RU2616669C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833509A (en) * 1971-09-02 1974-09-03 Mallinckrodt Chemical Works Radionuclide generator production method
RU2171512C2 (ru) * 1999-06-21 2001-07-27 Ермолаев Станислав Викторович Способ производства генератора технеция-99м
RU2276102C1 (ru) * 2004-11-29 2006-05-10 Государственное научное учреждение "Научно-исследовательский институт ядерной физики при Томском политехническом университете Министерства образования и науки Российской Федерации" СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98
RU2403640C2 (ru) * 2008-12-18 2010-11-10 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833509A (en) * 1971-09-02 1974-09-03 Mallinckrodt Chemical Works Radionuclide generator production method
RU2171512C2 (ru) * 1999-06-21 2001-07-27 Ермолаев Станислав Викторович Способ производства генератора технеция-99м
RU2276102C1 (ru) * 2004-11-29 2006-05-10 Государственное научное учреждение "Научно-исследовательский институт ядерной физики при Томском политехническом университете Министерства образования и науки Российской Федерации" СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98
RU2403640C2 (ru) * 2008-12-18 2010-11-10 Государственное образовательное учреждение высшего профессионального образования "Томский политехнический университет" СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98

Similar Documents

Publication Publication Date Title
Domnanich et al. Production and separation of 43 Sc for radiopharmaceutical purposes
Nelson et al. Taking cyclotron 68Ga production to the next level: Expeditious solid target production of 68Ga for preparation of radiotracers
Chakravarty et al. Development of an electrochemical 90Sr–90Y generator for separation of 90Y suitable for targeted therapy
Loveless et al. Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47 Sc
Hogle et al. Reactor production of Thorium-229
Radchenko et al. Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system
Sadeghi et al. Accelerator production of the positron emitter zirconium-89
Johnsen et al. Reactor production of 64 Cu and 67 Cu using enriched zinc target material
BR112012027929B1 (pt) Método para a geração de 223ra de pureza farmaceuticamente tolerável
RU2490737C1 (ru) Способ получения радиоизотопа молибден-99
RU2403640C2 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98
Zaneb et al. Nuclear model analysis of excitation functions of proton induced reactions on 86Sr, 88Sr and natZr: evaluation of production routes of 86Y
Neacsu et al. Radionuclidic purity–An essential parameter in quality control of radiopharmaceuticals
Castillo et al. Production of large quantities of 90Y by ion-exchange chromatography using an organic resin and a chelating agent
Vimalnath et al. Aspects of yield and specific activity of (n, γ) produced 177 Lu used in targeted radionuclide therapy
Kazakov et al. Production of 177 Lu by hafnium irradiation using 55-MeV bremsstrahlung photons
Vasiliev et al. 225Ac/213Bi generator based on inorganic sorbents
Chakravarty et al. Facile radiochemical separation of clinical-grade 90Y from 90Sr by selective precipitation for targeted radionuclide therapy
Jang et al. A preliminary biodistribution study of [99mTc] sodium pertechnetate prepared from an electron linear accelerator and activated carbon-based 99mTc generator
Malja et al. Preparation of 90Y by the 90Sr-90Y generator for medical purpose
Abou et al. Radiopharmaceutical quality control considerations for accelerator-produced actinium therapies
Park et al. Lu-177 preparation for radiotherapy application
Uzunov et al. Quality assurance of Mo-99/Tc-99m radionuclide generators
Manenti et al. New excitation functions measurement of nuclear reactions induced by deuteron beams on yttrium with particular reference to the production of 89Zr
RU2616669C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ХРОМАТОГРАФИЧЕСКОГО ГЕНЕРАТОРА ТЕХНЕЦИЯ-99m ИЗ ОБЛУЧЕННОГО НЕЙТРОНАМИ МОЛИБДЕНА-98

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201218