RU2616651C2 - Способ калибровки активной антенны - Google Patents

Способ калибровки активной антенны Download PDF

Info

Publication number
RU2616651C2
RU2616651C2 RU2012145678A RU2012145678A RU2616651C2 RU 2616651 C2 RU2616651 C2 RU 2616651C2 RU 2012145678 A RU2012145678 A RU 2012145678A RU 2012145678 A RU2012145678 A RU 2012145678A RU 2616651 C2 RU2616651 C2 RU 2616651C2
Authority
RU
Russia
Prior art keywords
signal
values
reference signal
sub
phase
Prior art date
Application number
RU2012145678A
Other languages
English (en)
Other versions
RU2012145678A (ru
Inventor
Тибо КАЛЬМЕТТ
Лионель РИЕ
Мишель МОННЕРАТ
Original Assignee
Таль
Сантр Насьональ Д'Этюд Спасьаль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Таль, Сантр Насьональ Д'Этюд Спасьаль filed Critical Таль
Publication of RU2012145678A publication Critical patent/RU2012145678A/ru
Application granted granted Critical
Publication of RU2616651C2 publication Critical patent/RU2616651C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements

Abstract

Изобретение относится к области активных антенн с регулировкой фазы. Предложен способ калибровки фазового центра активной антенны (20), содержащей множество субэлементов (21), способных принимать полезный сигнал, испускаемый спутником (25). Причем упомянутая калибровка определяется в зависимости от коэффициента усиления при приеме и фазы при приеме опорного сигнала на уровне каждого субэлемента (21). Упомянутый опорный сигнал испускается тем же спутником (25) в полосе частот, по существу, равной полосе частот полезного сигнала, и его теоретические фаза и амплитуда при приеме известны. Технический результат заключается в упрощении калибровки. 2 н. и 5 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение относится к области активных антенн с регулировкой фазы. Более конкретно, оно относится к способу калибровки фазового центра активной антенны с регулировкой фазы. Изобретение находит, например, свое полезное применение в активных наземных приемных антеннах для спутниковой связи.
В настоящее время наземные приемные станции, как правило, используют множество мобильных параболических антенн, чтобы отслеживать спутники. Пример такой приемной станции представлен на фиг.1.
Проблема с антеннами этого типа заключается в том, что они сложны для реализации. Они также страдают от трудностей, связанных со скоростью изменения направления, что может приводить к ухудшению рабочих характеристик. Более того, в приемных станциях число антенн очень ограничено вследствие их стоимости. Более того, увеличение коэффициента усиления антенны сопровождается увеличением габаритных размеров антенны и, следовательно, увеличением сложности и стоимости.
Известно использование активной антенны с регулировкой фазы, чтобы заменить одну или более мобильных антенн. Активная антенна с регулировкой фазы состоит из множества излучающих субэлементов, каждый из которых имеет фазосдвигающую схему. В такой антенне волна, испускаемая или принимаемая каждым из субэлементов, интерферирует с волной от других субэлементов, и луч создается посредством суммирования этих конструктивных интерференций. Более того, изменяя фазы и амплитуды между каждым из субэлементов, луч может быть направлен в конкретном направлении.
Одной из трудностей связанных с использованием активной антенны, например, для отслеживания и связи со спутниками является управление коэффициентом усиления ее субэлементов и, в частности, полосой частот, в которой они используются.
Если, например, в конкретном направлении создается сдвиг фазы или искажается коэффициент усиления, фазовая функция, которая будет оптимальной для наведения в этом конкретном направлении, не будет такой же, как если бы искажение отсутствовало. Следует отметить, что это искажение может изменяться по времени.
Известно, что создающие помехи элементы, которые могут вызывать изменения фаз, являются элементами порядка длины волны. Следовательно, при низкой полосе частот, например при длине волны порядка приблизительно двадцати сантиметров, множество элементов может создавать помехи работе антенны. Более того, антенна также склонна, например, к эффектам ионосферного мерцания.
Чтобы использовать активную антенну точным образом, следовательно, необходимо выполнять калибровку антенны, то есть предложить решения, чтобы закон изменения фаз и амплитуд между различными субэлементами являлся действительно оптимальным для формирования луча, чтобы гарантировать оптимальный коэффициент усиления антенны. Эта калибровка может быть полностью выполнена, например, при изготовлении, но точность формирования луча будет неоптимальной. Эта калибровка может также выполняться постоянно, но эта операция является довольно дорогостоящей.
Использование одной активной антенны для замены нескольких мобильных антенн, следовательно, как правило, испытывает трудности калибровки, которые приводят либо к заметному ухудшению коэффициента усиления, если калибровка выполнена плохо, либо к применению сложных и дорогостоящих систем калибровки, чтобы получать оптимальный коэффициент усиления. Использование активных антенн для отслеживания группировок спутников на длинах волн, больших, чем 30 см, следовательно, ограничено в настоящее время.
Целью изобретения, в частности, является смягчение вышеупомянутых недостатков посредством предложения способа калибровки, делающего возможным улучшение рабочих характеристик линии связи между по меньшей мере одним спутником и активной наземной приемной антенной с регулировкой фазы.
С этой целью предметом изобретения является способ калибровки фазового центра активной антенны, содержащей множество субэлементов, способных принимать полезный сигнал, испускаемый спутником, причем упомянутая калибровка определяется как функция характеристик приема опорного сигнала на уровне каждого субэлемента, причем упомянутый опорный сигнал испускается тем же спутником в полосе частот, по существу, равной полосе частот полезного сигнала, и его теоретические характеристики приема известны.
Согласно одному варианту осуществления способ содержит:
- этап получения значений опорного сигнала и значений полезного сигнала на уровне каждого из субэлементов приемной антенны,
- этап измерения возможного расхождения по фазе и коэффициенту усиления между значениями фактически принятого опорного сигнала и теоретическими значениями приема опорного сигнала,
- этап оценки оптимальной функции распределения, которая должна быть применена к значениям сигналов, чтобы принять во внимание возможные помехи,
- этап применения возможной новой вычисленной функции распределения к субэлементам антенны.
Согласно варианту осуществления способа этап измерения способа выполняется посредством схемы корреляции.
Согласно конкретной особенности этого варианта значения опорного сигнала модифицируются посредством варьирования этих значений по времени и/или по частоте, и/или по мощности, чтобы найти форму сигнала, которая имеет наилучшую корреляцию с фактически принятым опорным сигналом.
Преимущественно, различные этапы способа выполняются последовательным образом в реальном времени.
Согласно другому варианту способ содержит этап сохранения, в течение предварительно определенного интервала времени, значений опорного сигнала и значений полезного сигнала, измеренных на уровне каждого из субэлементов приемной антенны, чтобы выполнять различные этапы способа отсроченным образом.
Согласно изобретению способ калибровки может использоваться, чтобы калибровать фазовый центр активной антенны для приема MEOSAR-сигналов, причем опорный сигнал является GNSS-сигналом, а полезный сигнал является MEOSAR-сигналом.
Другие конкретные признаки и преимущества настоящего изобретения станут более понятны из последующего описания, в качестве неограничивающего иллюстративного примера, со ссылкой на приложенные чертежи, на которых:
Фиг.1 представляет примерный вариант осуществления наземной приемной станции, использующей мобильные антенны.
Фиг.2 представляет примерный вариант осуществления наземной приемной станции, использующей одну активную антенну.
Фиг.3 представляет примерный вариант осуществления способа калибровки в соответствии с изобретением.
Фиг.4 представляет примерный вариант осуществления приемной антенны в соответствии с изобретением.
Предметом настоящего изобретения является способ калибровки фазового центра активной наземной приемной антенны, содержащей множество излучающих субэлементов и способной осуществлять связь с по меньшей мере одним спутником.
Предполагается, что спутник или спутники, на которые наводится приемная антенна, испускают, в дополнение к полезному сигналу, сигнал, выступающий в качестве опорного, в полосе частот, по существу, равной полосе частот полезного сигнала, причем его характеристики приема известны. Принцип изобретения состоит в использовании этого опорного сигнала, чтобы выполнять автоматически и постоянным образом калибровку фазового центра активной наземной приемной антенны.
В качестве совершенно неограничивающего примера изобретение будет представлено посредством калибровки фазового центра активной приемной антенны с регулировкой фазы наземной станции приема системы MEOSAR (среднеорбитальная система поиска и спасения), для которой полезный сигнал нисходящей линии связи испускается спутниками определения местоположения (GPS, Galileo, ГЛОНАСС) и на частоте, очень близкой к сигналам определения местоположения.
Фиг.2 представляет наземный центр обработки (или MEOLUT для среднеорбитального локального пользовательского терминала) системы MEOSAR, в которой четыре мобильные приемные антенны на фиг.1 были заменены одной активной приемной антенной 20 с регулировкой фазы. Преимущественным образом эта одна антенна делает возможным, как описано ранее, наведение на несколько спутников 25 одновременно и, таким образом, уменьшение стоимости станций MEOLUT.
Система MEOSAR основывается на различных группировках спутников 25 позиционирования (или GNSS для глобальной навигационной спутниковой системы), таких как американская GPS (система глобального позиционирования), русская ГЛОНАСС и европейская система Galileo, для операций поиска и спасения (или SAR, для "поиска и спасения"). В дополнение к своей основной функции определения местоположения эти спутники 25 позиционирования также имеют функцию SAR и соответственно несут на борту ретранслятор, служащий для того, чтобы ретранслировать сигналы, испускаемые наземными аварийными радиомаяками. Частота нисходящей (или обратной) линии связи этого ретранслятора находится в полосе частот 1544~1545 МГц.
Одна из рабочих частот спутников позиционирования или GNSS равна 1576 МГц, следовательно, является частотой, которая очень близка к частоте нисходящей линии связи системы MEOSAR.
Идея изобретения основана на том факте, что характеристики приема GNSS-сигналов, испускаемых спутниками 25 позиционирования, известны.
Действительно, точная позиция GNSS-спутников, позиция приемной антенны и моменты времени, в которые сигналы испускаются спутниками 25, известны с точностью за счет точности принципов GNSS-определения местоположения. Следовательно, теоретические характеристики приема, на уровне антенн MEOLUT, также известны. Более того, MEOSAR и GNSS-сигналы испускаются, по существу, в одинаковых полосах частот и принимаются с одних и тех же направлений. Эти два сигнала, следовательно, будут подвергаться одинаковым помехам во время их распространения между спутником 25 позиционирования и приемной антенной 20. Таким образом, сравнивая характеристики GNSS-сигналов, фактически принятых каждым субэлементом 21 активной приемной антенны, с характеристиками теоретических сигналов, которые они, как предполагается, должны принимать, можно вычислить корректировки, которые должны быть выполнены, чтобы принять эти помехи во внимание. Следовательно, возможно определить оптимальную функцию для амплитуд и фаз, или функцию распределения, которая должна применяться к каждому выходному сигналу субантенн 21 массива, чтобы максимизировать качество приема MEOSAR-сигнала.
Со ссылкой на фиг.3 представляется вариант осуществления способа калибровки в соответствии с изобретением.
В первом варианте осуществления способа калибровка выполняется последовательным образом в реальном времени.
Согласно первому этапу 31 получения, значения опорного GNSS-сигнала и полезных сигналов, а именно MEOSAR-сигналов, измеряются на уровне каждого субэлемента 21 приемной антенны 20.
Значения GNSS-сигнала после этого сравниваются с теоретическими значениями приема этого сигнала. Теоретические значения приема GNSS-сигнала соответствуют значениям, которые получила бы приемная антенна, если бы помехи не искажали этот сигнал по усилению и/или по фазе. Эти помехи могут быть обусловлены элементами с длинами, по существу, равными длине волны сигнала, проблемами, связанными с многолучевым распространением, эффектами ионосферных мерцаний или любым другим создающим помехи элементом.
Известным образом, ожидаемый GNSS-сигнал оценивается согласно знанию позиции приемной антенны 20 и позиции GNSS-спутников 25 посредством традиционного вычисления GNSS-определения местоположения.
Если фактически принятый GNSS-сигнал и ожидаемый теоретический GNSS-сигнал идентичны, то никакая помеха не модифицировала сигнал во время его распространения, или никакая новая помеха не модифицировала распространение сигнала после применения предыдущей функции распределения. Антенна, следовательно, не требует новой калибровки.
Если два сигнала, теоретический и фактически принятый, различаются, должна быть выполнена новая калибровка, чтобы принять во внимание помехи. С этой целью на этапе 32 вычисляется ошибка между фактически принятым опорным GNSS-сигналом и теоретическим GNSS-сигналом для каждого из субэлементов активной приемной антенны.
Согласно конкретному варианту осуществления этот этап 32 измерения ошибки между сигналом, фактически принятым каждым субэлементом 21, и ожидаемым теоретическим сигналом выполняется посредством схемы корреляции.
В некоторых вариантах осуществления способа значение опорного GNSS-сигнала модифицируется посредством варьирования значения сигнала по времени и/или по частоте и/или по мощности, чтобы найти форму сигнала, которая имеет наилучшую корреляцию с фактически принятым GNSS-сигналом и, следовательно, форму сигнала, которая является наиболее близкой к фактически принятому сигналу.
После того как найден оптимальный сдвиг по времени, частоте и/или мощности, корректировка, которая должна быть выполнена по отношению к принятым значениям, будет известна. Оптимальная функция распределения, которая должна быть применена к значениям принятых сигналов на уровне каждого субэлемента, чтобы учитывать помехи, может, следовательно, быть оценена на этапе 33. Получается функция распределения, которая должна быть применена, чтобы максимизировать коэффициент усиления антенны в желаемом направлении. Та же оптимальная функция распределения затем применяется на этапе 34 к субэлементам 21 приемной антенны 20. Применение этой функции распределения эквивалентно применению усиленного луча в направлении, которое максимизирует способность приема сигнала. Это направление, как правило, близко к "геометрическому" направлению между приемной антенной 20 и спутником 25, на который она направлена, но может и отличаться в зависимости от окружающих элементов, таких как, например, соединения между субэлементами 21 антенны 20.
Можно проверить апостериорно, что выбранная функция фаз действительно соответствует той, которая максимизирует корреляцию с ожидаемым сигналом, применяя эту функцию распределения к субэлементам 21 приемной антенны 20, регистрируя GNSS-сигналы и сравнивая их с теоретическими сигналами. Опционально, в случае различий между двумя сигналами, функцию распределения можно отрегулировать посредством небольших вариаций фазы и амплитуды.
Следует отметить, что время вычисления функции распределения составляет порядка секунды, следовательно, является небольшим относительно времени вариации помех. Действительно, эти помехи, особенно атмосферного типа или вызванные проблемами многолучевого распространения излученной волны, имеют вариации порядка нескольких десятков секунд, следовательно, имеют гораздо более медленные вариации, чем секунда времени вычисления. Следовательно, функция распределения, примененная с задержкой около секунды, будет почти оптимальной; она не изменится в достаточной степени в этом масштабе времени, чтобы вызывать какую-либо проблему.
Согласно другому примерному варианту осуществления способа обработка данных не выполняется в реальном времени, а выполняется апостериорно. Например, значения GNSS и MEOSAR-сигналов, принятых на уровне каждого субэлемента 21 антенны 20, могут сохраняться в области памяти антенны и/или терминала для обработки данных в течение определенного периода накопления данных. Впоследствии значения GNSS-сигнала, принятые на уровне каждой субантенны и сохраненные, сравниваются с теоретическими значениями приема, чтобы определить различия между этими двумя значениями и вычислить функцию распределения, наилучшим образом представляющую искажения в коэффициенте усиления и фазе, испытываемые сигналом, испускаемым спутником во время периода накопления данных. Как описано ранее, этап измерения различий между фактически принятым сигналом и ожидаемым теоретическим сигналом, может быть выполнен посредством схемы корреляции. Вычисленная функция распределения после этого применяется к MEOSAR-сигналу, принятому на уровне каждого субэлемента 21 в течение этого же периода накопления данных.
Фиг.4 иллюстрирует совершенно неограничивающий примерный вариант осуществления приемной антенны 20, автоматически калибруемой согласно изобретению. В представленном примере приемная антенна 20 является плоской антенной (или "патч-антенной"), содержащей четыре субэлемента 21. Каждый субэлемент 21 или модуль приема излучения связан с коррелятором 41 , чтобы выполнять корреляцию с ожидаемым теоретическим опорным GNSS-сигналом. Сигналы, выходящие из корреляторов 41, затем анализируются модулем 42 сравнения. В этом модуле каждая задержка или опережение времени переводится в фазовый сдвиг в функции распределения. Аналогично, измеряется каждое различие амплитуды, чтобы определить компенсацию, которая должна быть применена. После этих вычислений в модуле 43 определения функции распределения вычисляется оптимальная функция распределения, обеспечивающая возможность наилучшего переноса этих различий. Эта функция распределения затем применяется к различным субэлементам 21 антенны 20 для приема полезных сигналов, а именно MEOSAR-сигналов в нашем примере.
Изобретение было описано посредством примерного использования способа калибровки согласно изобретению, однако изобретение никоим образом не ограничивается этим примером. В общем, данный способ может быть применен к калибровке фазового центра любой наземной приемной антенны, принимающей сигналы от спутника, испускающего, в дополнение к полезному сигналу, опорный сигнал в полосе частот, по существу, равной полосе частот полезного сигнала, который может служить для калибровки антенны.

Claims (11)

1. Способ калибровки фазового центра активной антенны (20), содержащей множество субэлементов (21), способных принимать полезный сигнал, испускаемый спутником (25), причем способ характеризуется тем, что упомянутая калибровка определяется в зависимости от коэффициента усиления при приеме и фазы при приеме опорного сигнала на уровне каждого субэлемента (21), причем упомянутый опорный сигнал испускается тем же спутником (25) в полосе частот, по существу, равной полосе частот полезного сигнала, и его теоретические фаза и амплитуда при приеме известны.
2. Способ по предшествующему пункту, характеризующийся тем, что содержит:
этап (31), на котором получают значения опорного сигнала и значения полезного сигнала на уровне каждого из субэлементов (21) приемной антенны (20),
этап (32), на котором измеряют возможное расхождение по фазе и коэффициенту усиления между значениями фактически принятого опорного сигнала и теоретическими значениями приема опорного сигнала,
этап (33), на котором оценивают оптимальную функцию распределения, которая должна быть применена к значениям сигналов, чтобы принять во внимание возможные помехи,
этап (34), на котором применяют возможную новую вычисленную функцию распределения к субэлементам (21) антенны (20).
3. Способ по предшествующему пункту, характеризующийся тем, что этап (32) измерения выполняется посредством схемы корреляции.
4. Способ по предшествующему пункту, характеризующийся тем, что значения опорного сигнала модифицируются посредством варьирования этих значений по времени, и/или по частоте, и/или по мощности, чтобы найти форму сигнала, которая имеет наилучшую корреляцию с фактически принятым опорным сигналом.
5. Способ по любому из пп. 2-4, характеризующийся тем, что различные этапы (31, 32, 33, 34) способа выполняются последовательным образом в реальном времени.
6. Способ по любому из пп. 2-4, характеризующийся тем, что содержит этап, на котором сохраняют в течение предварительно определенного интервала времени значения опорного сигнала и значения полезного сигнала, измеренные на уровне каждого из субэлементов (21) приемной антенны (20), чтобы выполнять этапы (32, 33, 34) способа отсроченным образом.
7. Применение способа по любому из предшествующих пунктов для калибровки фазового центра активной антенны (20) для приема MEOSAR-сигналов, при этом опорный сигнал является GNSS-сигналом, а полезный сигнал является MEOSAR-сигналом.
RU2012145678A 2011-10-26 2012-10-25 Способ калибровки активной антенны RU2616651C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103282A FR2982035B1 (fr) 2011-10-26 2011-10-26 Procede de calibrage d'une antenne active
FR1103282 2011-10-26

Publications (2)

Publication Number Publication Date
RU2012145678A RU2012145678A (ru) 2014-04-27
RU2616651C2 true RU2616651C2 (ru) 2017-04-18

Family

ID=47040597

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012145678A RU2616651C2 (ru) 2011-10-26 2012-10-25 Способ калибровки активной антенны

Country Status (6)

Country Link
US (1) US9548534B2 (ru)
EP (1) EP2587588B1 (ru)
CA (1) CA2793327C (ru)
ES (1) ES2910457T3 (ru)
FR (1) FR2982035B1 (ru)
RU (1) RU2616651C2 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371822B2 (en) * 2013-02-21 2019-08-06 Lockheed Martin Corporation Antenna array calibration
CN103391123B (zh) * 2013-07-25 2016-06-08 中国科学院上海微系统与信息技术研究所 星载多波束接收天线校正系统及其校正方法
US9819426B2 (en) * 2016-04-12 2017-11-14 Ford Global Technologies, Llc System and method for remote keyless system characterization
US10756428B2 (en) 2017-02-13 2020-08-25 General Dynamics Mission Systems, Inc. Systems and methods for inertial navigation system to RF line-of sight alignment calibration
EP3887862A1 (en) * 2018-11-30 2021-10-06 Harman Becker Automotive Systems GmbH Phase centre compensation for high precision gnss antennas
CN113141219B (zh) * 2020-01-19 2022-06-21 大唐移动通信设备有限公司 一种天线校准的方法、装置及系统
CN114966238B (zh) * 2022-07-27 2022-12-02 陕西拾贝通讯技术有限公司 一种天线相位中心的自动检测与对准方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038747A1 (en) * 2001-08-23 2003-02-27 Jaynesh Patel Nearfield calibration method used for phased array antennas containing tunable phase shifters
GB2418536A (en) * 2004-09-27 2006-03-29 Nortel Networks Ltd Calibration of antenna array elements
RU2364029C2 (ru) * 2003-07-30 2009-08-10 Нокиа Сименс Нетворкс ГмбХ унд Ко.КГ Устройство и способ калибровки антенной решетки
RU2386223C2 (ru) * 2005-04-22 2010-04-10 Квэлкомм Инкорпорейтед Калибровка антенной решетки для систем беспроводной связи
US20110122016A1 (en) * 2007-12-31 2011-05-26 Elta Systems Ltd. Phased array antenna having integral calibration network and method for measuring calibration ratio thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859874A (en) 1994-05-09 1999-01-12 Globalstar L.P. Multipath communication system optimizer
US6317077B1 (en) 1999-02-22 2001-11-13 Hughes Electronics Corporation Method and system of determining user terminal position using multiple satellites
EP1033582A1 (en) 1999-03-04 2000-09-06 ICO Services Ltd. Mobile station position determination in a satellite mobile telephone system
US6701127B1 (en) 1999-12-16 2004-03-02 General Dynamics Decision Systems, Inc. Burst communications method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038747A1 (en) * 2001-08-23 2003-02-27 Jaynesh Patel Nearfield calibration method used for phased array antennas containing tunable phase shifters
RU2364029C2 (ru) * 2003-07-30 2009-08-10 Нокиа Сименс Нетворкс ГмбХ унд Ко.КГ Устройство и способ калибровки антенной решетки
GB2418536A (en) * 2004-09-27 2006-03-29 Nortel Networks Ltd Calibration of antenna array elements
RU2386223C2 (ru) * 2005-04-22 2010-04-10 Квэлкомм Инкорпорейтед Калибровка антенной решетки для систем беспроводной связи
US20110122016A1 (en) * 2007-12-31 2011-05-26 Elta Systems Ltd. Phased array antenna having integral calibration network and method for measuring calibration ratio thereof

Also Published As

Publication number Publication date
EP2587588A1 (fr) 2013-05-01
FR2982035A1 (fr) 2013-05-03
CA2793327C (en) 2019-05-14
US20130106654A1 (en) 2013-05-02
ES2910457T3 (es) 2022-05-12
FR2982035B1 (fr) 2015-03-20
CA2793327A1 (en) 2013-04-26
RU2012145678A (ru) 2014-04-27
US9548534B2 (en) 2017-01-17
EP2587588B1 (fr) 2022-03-16

Similar Documents

Publication Publication Date Title
RU2616651C2 (ru) Способ калибровки активной антенны
CN101765785B (zh) 用于多波束全球定位系统(gps)接收器的数字波束成形装置和技术
US8089402B2 (en) System and method for correcting global navigation satellite system carrier phase measurements in receivers having controlled reception pattern antennas
US9612337B2 (en) Antenna beam forming for tracking a transmitter signal
Martín-Neira et al. The PARIS ocean altimeter in-orbit demonstrator
US9435893B2 (en) Digital beam-forming apparatus and technique for a multi-beam global positioning system (GPS) receiver
EP2293103A2 (en) System and method for correcting global navigation satellite system pseudorange measurements in receivers having controlled reception pattern antennas
US11431092B1 (en) Near zero intermediate frequency (NZIF) compensation of local oscillator leakage
US10578744B2 (en) Method for calibrating a satellite radio navigation receiver
CN110927751B (zh) 一种基于载波相位测量的阵列天线自适应校正实现方法
JP3593960B2 (ja) マルチビーム空中線装置
EP3620825B1 (en) Precise point positioning method and positioning apparatus and recording medium thereof
Tyapkin et al. Correcting non-indentity in receiving channels in interference-immune systems for GLONASS and GPS
Konovaltsev et al. Novel calibration of adaptive GNSS antenna
Petrov et al. First geodetic observations using new VLBI stations ASKAP-29 and WARK12M
Custovic et al. Next generation of over the horizon HF radars and the determination of foF2 in real-time
Konovaltsev et al. Calibration of adaptive antennas in satellite navigation receivers
Hahn Spatial and Polarization Domain-Based GNSS Processing for Multipath Mitigation using a Dual-Polarized Antenna Array
Vilnrotter et al. EPOXI uplink array experiment of June 27, 2008
Vicario et al. ADIBEAM: Adaptive digital beamforming for Galileo reference ground stations