RU2615302C1 - Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления - Google Patents

Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления Download PDF

Info

Publication number
RU2615302C1
RU2615302C1 RU2015142804A RU2015142804A RU2615302C1 RU 2615302 C1 RU2615302 C1 RU 2615302C1 RU 2015142804 A RU2015142804 A RU 2015142804A RU 2015142804 A RU2015142804 A RU 2015142804A RU 2615302 C1 RU2615302 C1 RU 2615302C1
Authority
RU
Russia
Prior art keywords
evaporator
production
productional
liquid
stream
Prior art date
Application number
RU2015142804A
Other languages
English (en)
Inventor
Владимир Эрнестович Бородай
Алексей Александрович Коробков
Максим Васильевич Кулик
Николай Николаевич Мёдов
Виктор Васильевич Редькин
Анатолий Иванович Смородин
Original Assignee
Межрегиональное общественное учреждение "Институт инженерной физики"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Межрегиональное общественное учреждение "Институт инженерной физики" filed Critical Межрегиональное общественное учреждение "Институт инженерной физики"
Priority to RU2015142804A priority Critical patent/RU2615302C1/ru
Application granted granted Critical
Publication of RU2615302C1 publication Critical patent/RU2615302C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к технологии регазификации криогенных жидкостей и может быть использовано в криогенной технике. Характеризуется тем, что формируют воздушный поток, направляют его через продукционный испаритель 3, формируют напор гидростатического столба криогенной жидкости, направляют жидкий криопродукт из резервуара 5 в испаритель наддува 4, осушают поток воздуха, направляют осушенный поток воздуха вертикально вниз через продукционный испаритель 3 и испаритель наддува 4 и нагревают полученный продукционный поток газа до заданной температуры. При этом газификатор содержит роторный адсорбционный осушитель воздуха низкого давления 1, блок вентиляторов 2, продукционный испаритель 3, испаритель наддува 4, резервуар жидкого криопродукта 5, предохранительный клапан 6 и догреватель продукционного потока газа 7. Изобретение направлено на увеличение производительности и эффективности газификатора бесперебойного действия. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к криогенной технологии, в частности к технологии регазификации криогенных жидкостей, и может быть использовано в регазификационных установках.
Из уровня техники известен способ холодной регазификации криогенной жидкости, основанный на принудительном обдуве атмосферным воздухом, технической реализацией которого является атмосферный испаритель принудительного обдува. Этот известный способ характеризуется тем, что формируют и с высокой скоростью направляют вентилируемый воздушный поток вертикально вниз через продукционный испаритель, отслеживают толщину слоя образовавшегося льда и прекращают процесс испарения криогенной жидкости на интервал времени, в течение которого поверхность испарителя оттаивает до допустимого значения толщины льда на его поверхности. Устройство, реализующее известный способ, содержит атмосферный продукционный испаритель и блок вентиляторов, заключенные в общий кожух [http://energosmart.com/ru/products/45/, 2015 г.]. Принцип работы атмосферного испарителя основан на принудительной конвекции атмосферного воздуха, содержащего нежелательную влагу. Принудительная конвекция более эффективно использует рабочую поверхность испарителя, что минимизирует габаритные размеры системы, реализующей известный способ регазификации. Непрерывная круглосуточная работа данного устройства возможна только при использовании нескольких испарителей с системой их автоматического переключения. Данное известное техническое решение разработано для использования его на предприятиях с ограниченной территорией, которые нуждаются в больших объемах газообразных продуктов разделения воздуха.
Недостаток известного способа холодной регазификации, основанного на принудительном обдуве, состоит в том, что испарение криогенной жидкости сопровождается десублимацией из атмосферного воздуха кристаллов воды и углекислоты на поверхности атмосферного испарителя, что приводит к существенному снижению эффективности работы испарителя из-за увеличения термического сопротивления теплообменных поверхностей. В результате производительность установок, реализующих известный способ холодной регазификации с принудительным обдувом, резко падает по причине обмерзания атмосферного испарителя и последующих циклических длительных простоев установки, обусловленных необходимостью отогрева и удаления инея с теплообменных поверхностей.
Наиболее близким известным техническим решением к заявляемому, принятым в качестве прототипа, является способ регазификации криогенной жидкости, технической реализацией которого является газификатор криогенной жидкости, который характеризуется тем, что формируют воздушный поток, направляют его через продукционный испаритель, формируют напор гидростатического столба криогенной жидкости и направляют жидкий криопродукт из резервуара в испаритель наддува с обеспечением условий для его испарения за счет тепла окружающего воздуха, одну часть полученного сжатого газа направляют в резервуар жидкого азота, вытесняют жидкость в продукционные испарители, а вторую (большую) часть сжатого газа направляют в пневмопривод вентиляторного устройства, обеспечивающего вращение основного и дополнительного вентиляторных колес [Патент RU 2014553, МПК F17C 9/02, 1994 г.]. Устройство, осуществляющее известный способ, содержит резервуар жидкого криопродукта с испарителем наддува, пневмопривод вентиляторного устройства, которое содержит осевое основное вентиляторное колесо и подсоединенное через муфту включения дополнительное колесо, а также продукционные испарители жидкости. При этом обеспечивается интенсификация теплообмена посредством обдува блоков продукционных испарителей.
Недостатком прототипа является то, что в процессе испарения криопродукта на поверхностях испарителя наддува и продукционных испарителей жидкости образуется иней и последующее их обледенение за счет влаги, содержащейся в атмосферном воздухе. Кроме того, продукционный поток газа имеет температуру, значение которой существенно ниже температуры окружающего воздуха, что может вызывать обмерзание запорной и предохранительной арматуры, а также может не соответствовать требованиям по минимально допустимой температуре газа, выдаваемого потребителю, и требованиям по хладноломкости баллонов-реципиентов. В случае, если температура продукционного потока газа будет ниже температуры хладноломкости баллонов-реципиентов, может произойти их разрушение, что тем более недопустимо при эксплуатации газификатора криогенной жидкости на опасных и особо опасных производственных объектах, где продукционный поток газа (азота) используется в аварийных ситуациях. Указанные недостатки значительно снижают производительность и эффективность установки, реализующей известный способ, выбранный в качестве прототипа.
Технической задачей изобретения является повышение эффективности процесса холодной регазификации криогенных жидкостей за счет улучшения условий теплосъема.
Технический результат изобретения состоит в том, что повышается производительность и эффективность устройства, осуществляющего заявленный способ холодной регазификации криогенной жидкости бесперебойного действия.
Сущность изобретения состоит в том, что, кроме известной и общей совокупности существенных действий, которые характеризуются тем, что формируют воздушный поток, направляют его через продукционный испаритель, формируют напор гидростатического столба криогенной жидкости и направляют жидкий криопродукт из резервуара в испаритель наддува с обеспечением условий для его испарения за счет тепла окружающего воздуха, в предлагаемом способе холодной регазификации криогенной жидкости бесперебойного действия первоначально осушают поток воздуха, направляют осушенный воздух вертикально вниз через продукционный испаритель и испаритель наддува и нагревают полученный продукционный поток газа до заданной температуры. При этом устройство, реализующее предлагаемый способ, кроме известных и общих существенных признаков, а именно продукционного испарителя, испарителя наддува и блока вентиляторов, с помощью которых формируют и направляют вентилируемый воздушный поток через продукционный испаритель, дополнительно содержит роторный адсорбционный осушитель воздуха низкого давления, кожух и догреватель продукционного потока газа, выход роторного адсорбционного осушителя воздуха низкого давления соединен с входом блока вентиляторов, блок вентиляторов расположен в верхней части кожуха с возможностью осуществлять направление ранее осушенного потока воздуха вертикально вниз через продукционный испаритель и испаритель наддува, вход догревателя продукционного потока газа подключен к выходу продукционного испарителя для подогрева продукционного потока газа до заданной температуры.
Новизна изобретения заключается в том, что в предлагаемом способе холодной регазификации криогенной жидкости бесперебойного действия осушают поток воздуха, направляют осушенный воздух вертикально вниз через продукционный испаритель и испаритель наддува и нагревают полученный продукционный поток газа до заданной температуры. При этом устройство, реализующее предлагаемый способ, дополнительно содержит роторный адсорбционный осушитель воздуха низкого давления, кожух и догреватель продукционного потока газа, выход роторного адсорбционного осушителя воздуха низкого давления соединен с входом блока вентиляторов, блок вентиляторов расположен в верхней части кожуха с возможностью направления ранее осушенного потока воздуха вертикально вниз через продукционный испаритель и испаритель наддува, вход догревателя продукционного потока газа подключен к выходу продукционного испарителя для подогрева продукционного потока газа до заданной температуры, что обеспечивает повышение производительности и эффективности устройства, осуществляющего способ холодной регазификации криогенной жидкости бесперебойного действия.
Перечень чертежей: фиг. 1 - результаты известного экспериментального исследования процесса газификации [Ельчинов В.П. Отечественные атмосферные испарители криогенных жидкостей // Холодильный бизнес, №7 2012, с. 14-22];
фиг. 1 а) - изменение во времени толщины слоя инея на первой, холодной (хс), и второй, теплой (тс), последовательно соединенных секциях испарителя;
фиг. 1 б) - изменение во времени температуры недорекуперации газифицированного азота относительно температуры окружающей среды;
фиг. 2 - принципиальная функциональная схема холодной регазификации криогенной жидкости бесперебойного действия, реализующая заявленный способ.
На фиг. 1 и 2 обозначено: 1 - роторный адсорбционный осушитель воздуха низкого давления, 2 - блок вентиляторов, 3 - продукционный испаритель, 4 - испаритель наддува, 5 - резервуар жидкого криопродукта, 6 - предохранительный клапан, 7 - догреватель продукционного потока газа, τ - продолжительность эксперимента, δ(τ) - толщина изменяемого во времени слоя инея на поверхности испарителя, ΔТнед - температура недорекуперации газифицированного азота относительно температуры окружающей среды.
В исходном положении выход роторного адсорбционного осушителя воздуха низкого давления 1 последовательно соединен с блоком вентиляторов 2, продукционным испарителем 3 и испарителем наддува 4, которые закрыты единым кожухом (на фиг. 2 кожух не показан). Вход испарителя наддува 4 соединен с нижней частью резервуара жидкого криопродукта 5, выход испарителя наддува 4 соединен с верхней частью резервуара жидкого криопродукта 5, вход продукционного испарителя 3 - с нижней частью резервуара жидкого криопродукта 5, выход продукционного испарителя 3 соединен с догревателем продукционного потока газа 7, дополнительно, роторный адсорбционный осушитель воздуха низкого давления 1 соединен с догревателем продукционного потока газа 7. Узлы 2, 3, 4 заключены в общий кожух.
Предлагаемый способ холодной регазификации реализуется следующим образом.
Известные действия по формированию и направлению вентилируемого воздушного потока вертикально вниз через продукционный испаритель осуществляют с помощью блока вентиляторов 2 и продукционного испарителя 3. Предлагаемые действия по осушению воздушного потока и подогреву полученного продукционного потока газа осуществляют соответственно с помощью роторного адсорбционного осушителя воздуха низкого давления 1 и догревателя 7 продукционного потока газа. Далее, после роторного адсорбционного осушителя воздуха низкого давления 1 и блока вентиляторов 2 сформированный, осушенный поток воздуха под избыточным давлением, исключающим попадание наружного неосушенного воздуха под кожух, направляют через последовательно расположенные в кожухе продукционный испаритель 3 и испаритель наддува 4. Так как испаритель наддува 4 расположен ниже уровня резервуара 5 жидкого криопродукта, он под напором гидростатического столба заполнен криопродуктом, пары которого, испаряясь за счет тепла осушенного атмосферного воздуха, поступают под избыточным давлением обратно в верхнюю часть резервуара 5 жидкого криопродукта и вытесняют криогенную жидкость в продукционный испаритель 3.
Жидкий криопродукт, находясь в условиях, обеспечивающих его испарение за счет тепла осушенного атмосферного воздуха, переходит в газообразную фазу, газифицированный продукционный поток газа из продукционного испарителя 3 поступает на вход догревателя 7 продукционного потока газа, в котором осуществляется его подогрев путем использования горячего регенерирующего потока роторного адсорбционного осушителя воздуха низкого давления 1, что повышает КПД устройства в целом. Действие по нагреву продукционного потока газа осуществляют до заданной температуры. Реализация предлагаемого способа холодной регазификации криогенной жидкости бесперебойного действия обеспечивает существенное увеличение производительности и эффективности устройства холодной регазификации криогенной жидкости бесперебойного действия, исключаются циклические, длительные простои установок, обусловленные необходимостью отогрева и размораживания теплообменных поверхностей испарителей 3 и 4 за счет использования в качестве теплоносителя осушенного атмосферного воздуха и использования для подогрева продукционного потока газа регенерирующего потока роторного адсорбционного осушителя воздуха низкого давления 1.
Промышленная осуществимость предлагаемого способа обосновывается тем, что в нем используются действия и операции, известные в аналоге и прототипе по своему прямому функциональному назначению. В организации-заявителе разработана функциональная схема действующей модели, реализующая заявленный способ холодной регазификации криогенной жидкости бесперебойного действия в 2015 году.
Положительный эффект от использования изобретения состоит в том, что повышается не менее чем на 15…20% производительность холодной регазификации криогенной жидкости бесперебойного действия за счет обеспечения его непрерывной и бесперебойной работы, что подтверждается ориентировочными расчетами.
Figure 00000001
,
Figure 00000002
,
где τ1 и τ2 - время работы газификатора криогенной жидкости до момента его останова для отогрева и время простоя газификатора в период отогрева соответственно;
у - время работы газификатора с момента начала процесса инееобразования до момента его останова для отогрева;
а - момент начала образования инея на поверхности испарителя;
b - момент достижения максимально допустимой толщины инея на поверхности испарителя.
В отличии от прототипа, в предлагаемом способе, как следует из выражений (1) и (2), отсутствует необходимость длительных, циклических простоев газификатора для его отогрева и размораживания теплообменных поверхностей.
Кроме того, повышается эффективность газификатора за счет повторного использования горячего регенерирующего потока воздуха роторного адсорбционного осушителя воздуха низкого давления для подогрева продукционного потока газа. При этом существенно снижается вероятность охлаждения баллонов-реципиентов до температуры ниже температуры хладноломкости баллонов, что особенно важно при эксплуатации газификатора криогенной жидкости на опасных и особо опасных производственных объектах.

Claims (2)

1. Способ холодной регазификации криогенной жидкости бесперебойного действия, характеризующийся тем, что формируют воздушный поток, направляют его через продукционный испаритель, формируют напор гидростатического столба криогенной жидкости и направляют жидкий криопродукт из резервуара в испаритель наддува с обеспечением условий для его испарения за счет тепла окружающего воздуха, отличающийся тем, что первоначально осушают поток воздуха, направляют осушенный поток воздуха вертикально вниз через продукционный испаритель и испаритель наддува и нагревают полученный продукционный поток газа до заданной температуры.
2. Устройство, осуществляющее способ по п. 1, содержит продукционный испаритель, испаритель наддува и блок вентиляторов, с помощью которых формируют и направляют вентилируемый воздушный поток через продукционный испаритель, отличающееся тем, что дополнительно содержит роторный адсорбционный осушитель воздуха низкого давления, кожух и догреватель продукционного потока газа, выход роторного адсорбционного осушителя воздуха низкого давления соединен со входом блока вентиляторов, блок вентиляторов расположен в верхней части кожуха с возможностью осуществлять направление ранее осушенного потока воздуха вертикально вниз через продукционный испаритель и испаритель наддува, вход догревателя продукционного потока газа подключен к выходу продукционного испарителя для подогрева продукционного потока газа.
RU2015142804A 2015-10-08 2015-10-08 Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления RU2615302C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015142804A RU2615302C1 (ru) 2015-10-08 2015-10-08 Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015142804A RU2615302C1 (ru) 2015-10-08 2015-10-08 Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2615302C1 true RU2615302C1 (ru) 2017-04-04

Family

ID=58505516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015142804A RU2615302C1 (ru) 2015-10-08 2015-10-08 Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2615302C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA038638B1 (ru) * 2019-01-28 2021-09-27 Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" Способ газоснабжения природным газом

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2014553C1 (ru) * 1991-04-17 1994-06-15 Российский научно-исследовательский институт горноспасательного дела Газификатор криогенной жидкости
JP2006029356A (ja) * 2004-07-12 2006-02-02 Kobe Steel Ltd 低温液化ガス気化装置
WO2009062240A1 (en) * 2007-11-16 2009-05-22 Woodside Energy Limited Intermittent de-icing during continuous regasification of a cryogenic fluid using ambient air
RU2511805C2 (ru) * 2012-02-02 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ подогрева криогенной жидкости

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2014553C1 (ru) * 1991-04-17 1994-06-15 Российский научно-исследовательский институт горноспасательного дела Газификатор криогенной жидкости
JP2006029356A (ja) * 2004-07-12 2006-02-02 Kobe Steel Ltd 低温液化ガス気化装置
WO2009062240A1 (en) * 2007-11-16 2009-05-22 Woodside Energy Limited Intermittent de-icing during continuous regasification of a cryogenic fluid using ambient air
RU2511805C2 (ru) * 2012-02-02 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ подогрева криогенной жидкости

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA038638B1 (ru) * 2019-01-28 2021-09-27 Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" Способ газоснабжения природным газом

Similar Documents

Publication Publication Date Title
CA1120736A (en) Solar refrigeration
CN203568873U (zh) 一种用于处理含盐有机废水的蒸发浓缩装置
CN101851946B (zh) 利用分离膜富集空气水蒸气的制水方法和装置
Lu et al. Experimental analysis of an adsorption refrigerator with mass and heat-pipe heat recovery process
RU2615302C1 (ru) Способ холодной регазификации криогенной жидкости бесперебойного действия и устройство для его осуществления
RU2010107447A (ru) Способ охлаждения металлической полосы, движущейся через секцию охлаждения линии непрерывной термообработки, и установка для внедрения вышеуказанного способа
CN202354304U (zh) 荔枝龙眼热泵干燥生产装置
US11473817B2 (en) Method to change fluid temperature using a thermally driven control unit
CN203928667U (zh) 一种冷风干燥海产品的装置
Grewal et al. Efficacy of mass of energy storage material on the performance of a solar driven stepped series system during sugarcane juice concentration
CN104671303A (zh) 一种海水淡化装置
CA3030589A1 (en) A low-temperature distillation facility
JPS61280357A (ja) 熱ポンプ又は冷凍機の作動方法及び装置
JPH05508215A (ja) 単一段階および多段階冷却システムおよび炭化水素を用いる方法
CN103822420A (zh) 水能汽化制冰装置及其控制方法
CN102992422B (zh) 一种间歇式小温差热泵低温海水淡化系统和方法
CN205561422U (zh) 一种冻干机制冷系统
An et al. Study on the performance of heat and mass transfer of cross flow dehumidifier in an industrial plant
CN106907875B (zh) 冻干机的集中供冷系统
Morales et al. Heat and mass transfer in a direct contact humidifier of a humidification-dehumidification desalination system
CN205784264U (zh) 一种高效节能快速干燥房
RU2552028C2 (ru) Способ работы башенной и вентиляторной градирни испарительного типа и устройство для его осуществления
RU2380629C1 (ru) Установка ожижения диоксида углерода
RU2552212C2 (ru) Способ работы башенной и вентиляторной градирни испарительного типа и устройство для его осуществления
JP5124884B2 (ja) 中温熱溶解式冷凍熱機関蒸発濃縮装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181009