RU2612898C1 - Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях - Google Patents

Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях Download PDF

Info

Publication number
RU2612898C1
RU2612898C1 RU2015139940A RU2015139940A RU2612898C1 RU 2612898 C1 RU2612898 C1 RU 2612898C1 RU 2015139940 A RU2015139940 A RU 2015139940A RU 2015139940 A RU2015139940 A RU 2015139940A RU 2612898 C1 RU2612898 C1 RU 2612898C1
Authority
RU
Russia
Prior art keywords
aircraft
cable
route
navigation system
arctic
Prior art date
Application number
RU2015139940A
Other languages
English (en)
Inventor
Ованес Меликсетович Кочаров
Карен Ованесович Кочаров
Армен Ованесович Кочаров
Александр Арменович Кочаров
Original Assignee
Армен Ованесович Кочаров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Армен Ованесович Кочаров filed Critical Армен Ованесович Кочаров
Priority to RU2015139940A priority Critical patent/RU2612898C1/ru
Application granted granted Critical
Publication of RU2612898C1 publication Critical patent/RU2612898C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00

Landscapes

  • Navigation (AREA)

Abstract

Изобретение относится к области навигационного оборудования и авиационного приборостроения арктического назначения и может быть использовано в системах маршрутного пилотирования летательных аппаратов (ЛА), в частности вертолетов. Технический результат – расширение функциональных возможностей. Для этого навигационная система состоит из проложенного по дну акватории токоведущего кабеля, соединяющего взлетно-посадочные пункты, а также аппаратуры ЛА, включающей забортное приемное устройство, состоящее из ортогонально расположенных магнитоприемников, и бортовой пилотажный прибор, определяющий положение ЛА относительно кабеля и кабельный курс. Навигационная система обеспечивает расхождение ЛА на трассе маршрута при двухстороннем или интенсивном движении в сложных метеоусловиях, а также азимутальную обсервацию, и других ЛА в зоне действия подводного кабеля. При этом обеспечивается маршрутное пилотирование ЛА, в частности вертолетов, на малых высотах акватории прибрежного арктического сектора. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области навигационного оборудования и авиационного приборостроения арктического назначения и может быть использовано для разработки технических средств маршрутного пилотирования летательных аппаратов (ЛА), в частности вертолетов.
Известны навигационные системы, основанные на использовании спутниковых систем «ГЛОНАСС» или «GPS», характеризующиеся высокой точностью позиционного определения местоположения.
К их недостаткам относятся зависимость работы приемных устройств от атмосферных условий и географических координат - высоких широт места. Следует отметить, что информационно-аналитический центр «ГЛОНАСС» действительно предоставляет сведения о мгновенной и интегральной навигационной доступности и видимости данного места, но для арктической области с частыми туманами и сплошной облачностью эта информация не эффективна. К тому же, для повышения точности навигационного определения используют метод дифференциальной коррекции, требующий строительства специальных сооружений, станций ретрансляции с геодезически точными координатами мест их расположения в арктической акватории, а также оперативного и апостериорного мониторинга и коррекции. Кроме того, спутниковые навигационные системы (СНС) подвержены воздействию электромагнитных полей естественной и искусственной природы. Тем не менее создание Арктической СНС является актуальной перспективной задачей.
Известны и находят широкое применение инерциальные навигационные системы (ИНС), характеризующиеся автономностью работы, всепогодностью и помехозащищенностью.
Основным их недостатком является накапливающаяся погрешность счисления в зависимости от продолжительности полета и необходимость периодической обсервации. Так, новейшие бесплатформенные инерциальные навигационные системы (БИНС) типа СП-1 и, в перспективе, СП-2 (разработки ОАО «Московский институт электромеханики и автоматики»), которые предназначены для оснащения транспортных вертолетов арктического исполнения МИ-8АТМШ, имеют следующие точностные характеристики: за час полета 3,7 км/час и 1,25 км/час соответственно для СП-1 и СП-2. При этом для повышения надежности их работы предполагается устанавливать по два комплекта БИНС-СП на военных вертолетах и по три комплекта - на гражданских вертолетах.
Известны и другие интегрированные навигационные системы, например астроинерциальная навигационная система (RU, патент 141801, опубл. 10.06.2014).
Их основным недостатком является ограниченная возможность обсервации высоких широт, в арктических условиях.
Навигационная обсервация в Арктике является востребованной и сложной задачей развития транспортных коммуникаций. При этом современные СНС и новейшие ИНС имеют существенные ограничения для навигационного обеспечения прибрежной акватории арктического сектора РФ.
Между тем, освоение Арктики приобретает реальную, все более деятельную активность в промышленно-экономической и оборонной области. Необходимость развития круглогодичной маршрутной и транспортной коммуникации задана и новой морской доктриной РФ (http://static.kremlin.ru/media/events/files/ru/uAFi5nvux2twaqjftS5yrIZUVTJan77L.pdf)
В ходе проведения патентно-информационного поиска не выявлено технического решения, которое можно было бы признать ближайшим аналогом разработанного изобретения. Но следует отметить, что в судовождении известна система подводного ведущего кабеля (ГОСТ 210.63-81, п. 48 «Судовая аппаратура ведущего кабеля. АВК»).
Техническая задача, решаемая посредством разработанного изобретения, состоит в расширении номенклатуры навигационных систем пилотирования ЛА в арктических акваториях.
Технический результат, получаемый при использовании разработанной навигационной системы, состоит в повышении надежности и безопасности навигационного обеспечения маршрутного пилотирования ЛА на прибрежных акваториях арктического сектора РФ.
Для достижения указанного технического результата предложено использовать разработанную навигационную систему маршрутного пилотирования летательных аппаратов в прибрежных арктических акваториях. Разработанная навигационная система содержит проложенный между взлетно-посадочными пунктами материково-островной акватории подводный токоведущий кабель и установленное на летательных аппаратах забортное приемное устройство, состоящее, по меньшей мере, из трех ортогонально расположенных магнитоприемников, оси чувствительности которых направлены по трем главным осям летательного аппарата, и бортовое устройство регистрации параметров магнитной составляющей электромагнитного поля, генерированного подводным токоведущим кабелем.
Кроме того, для обеспечения надежного расхождения летательных аппаратов при интенсификации полетов на маршруте, в дополнение к высотному эшелонированию навигационная система может быть выполнена с возможностью разграничения по сторонам двухстороннего движения путем измерения изменяющейся на 180° фазы вертикальной составляющей магнитного поля кабеля по отношению к горизонтальной составляющей, которое происходит при пересечении вертикальной плоскости кабеля.
Навигационная система может быть использована также для азимутальной обсервации летательных аппаратов, двигающихся не по маршруту кабеля.
Функциональная схема бортовой аппаратуры приведена на рисунке, при этом использованы следующие обозначения: магнитоприемники 1, 2, 3 магнитной составляющей электромагнитного поля кабеля, соответствующие предварительные усилители 4, 5, 6 и усилители 7, 8, 9, измерительный блок 10, блоки измерения кабельного курса 11 и положения ЛА относительно трассы 12, вычислительное устройство 13, блок установки индекса трассы 14, датчик высоты полета 15, блок отображения и индикации 16, блок сигнализации «зона расхождения» 17 и блок питания 18.
Навигационная система состоит из проложенного по дну акватории токоведущего кабеля с частотой питания в области крайне низких частот (КНЧ) и сверхнизких частот (СНЧ), соединяющего взлетно-посадочные пункты акватории, а также аппаратуры ЛА, включающей забортное приемное устройство, состоящее из ортогонально расположенных магнитоприемников 1, 2 и 3, оси чувствительности которых направлены по главным осям ЛА: продольной (x), поперечной (y) и вертикальной (z) с соответствующими предварительными усилителями 4, 5 и 6. В качестве магнитоприемников могут быть использованы высокочувствительные индукционные катушки, при этом они измеряют магнитную составляющую электромагнитного поля кабеля, простирающегося над поверхностью акватории вдоль всей трассы кабеля. Бортовой пилотажный прибор включает избирательные усилители 7, 8, 9, измерительный блок 10, блоки определения кабельного курса 11 и положения ЛА относительно трассы 12, вычислительное устройство 13, блок выбора индекса трассы 14, содержащий информацию о: глубине места, протяженности трассы, угле по отношению к истинному географическому меридиану для азимутальной обсервации и коррекции, например ИНС, а также границы электромагнитного коридора трассы, датчик высоты полета 15, блоки индикации и отображения 16, сигнализации 17 и питания 18.
Выходы магнитоприемников 1, 2 и 3 соединены соответственно через предварительные усилители 4, 5 и 6, а также через избирательные усилители 7, 8 и 9 с входами измерительного блока 10, первый выход измерительного блока 10 через блок 11 определения кабельного курса подключен к первому входу блока 16 индикации и отображения, второй выход измерительного блока 10 через вычислительное устройство 13 подключен ко второму входу блока 16 индикации и отображения, третий выход измерительного блока 10 через блок 12 положения ЛА относительно трассы подключен к третьему входу блока 16 индикации и отображения, выход блока 16 индикации и отображения подключен к входу блока 17 сигнализации, датчик 15 высоты полета подключен к второму входу вычислительного устройства 13, при этом все указанные элементы навигационной системы, кроме магнитоприемников 1, 2 и 3, подключены к блоку 18 питания.
Сущность изобретения состоит в том, что по дну акватории прокладывают токоведущий кабель, соединяющий маршрутные взлетно-посадочные пункты, расположенные на отдельных островах и материковых прибрежьях, при этом навигационное обеспечение маршрутного пилотирования ЛА осуществляют на малых высотах в «электромагнитном коридоре», простирающемся над поверхностью моря вдоль трассы ведущего подводного кабеля, практически при любых метеоусловиях и времени года. В ходе прохождения ЛА над токоведущим кабелем магнитоприемники регистрируют магнитную составляющую, бортовая аппаратура усиливает и обрабатывает зарегистрированный сигнал и с учетом заложенной в аппаратуру информации о трассе формирует кабельный курс ЛА, то есть угол между прямолинейным участком кабеля и направлением продольной оси ЛА.
Другая сущность изобретения основана на том, что градиент отношения вертикальной составляющей магнитного поля кабеля к его горизонтальной составляющей с приближением к вертикальной плоскости кабельной трассы быстро уменьшается и при его пересечении фаза этого сигнала изменяется на 180°. Это позволяет при интенсификации полетов по маршруту или организации двухстороннего движения «встречными курсами» повысить безопасность полетов путем разграничения зоны с использованием бортовой аппаратуры.
Предлагаемое техническое решение задачи расхождения ЛА на маршрутных трассах не исключает другие методы, например эшелонирование полетов по высоте. Однако, в некоторых случаях, разграничение движения в горизонтальной плоскости представляется актуальным, например, при необходимости защиты от радиолокационного обнаружения путем пилотирования на сверхмалых высотах.
Следующая сущность состоит в возможности азимутальной обсервации и других ЛА при известном точно выверенном направлении кабеля или его отдельных участков и измеренном значении кабельного курса.
Осуществление изобретения и его практическое использование можно ожидать в следующих основных направлениях:
1. Разработка отдельных подводных кабельных маршрутов для решения текущих задач освоения Арктики, например для транспортных вертолетов.
2. Опытно-конструкторская разработка, производство и испытание бортовой аппаратуры, в частности применительно к транспортно-штурмовому вертолету арктического исполнения МИ-8 АТМШ.
3. Использование беспилотных ЛА для маршрутных полетов по трассе ведущего кабеля в целях, например, мониторинга, патрулирования, а также в других целях, в режиме программно-управляемого маршрутного пилотирования.
4. Опытно-конструкторская разработка и оценка экономической и тактической эффективности использования экранопланов на кабельных маршрутных трассах арктической акватории.
5. Разработка региональной сети маршрутных кабельных трасс и его интеграция в единую навигационно-информационную систему подводно-подледного пространства прибрежной акватории арктического сектора РФ.

Claims (3)

1. Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях, отличающаяся тем, что содержит проложенный между взлетно-посадочными пунктами материково-островной акватории подводный токоведущий кабель низкой частоты питания, а на летательных аппаратах установлено забортное приемное устройство, состоящее, по меньшей мере, из трех ортогонально расположенных магнитоприемников, оси чувствительности которых направлены по трем главным осям летательного аппарата, и бортовое устройство регистрации параметров магнитной составляющей электромагнитного поля, генерированного подводным токоведущим кабелем.
2. Система по п. 1, отличающаяся тем, что для обеспечения надежного расхождения летательных аппаратов при интенсификации полетов на маршруте, в дополнение к высотному эшелонированию система выполнена с возможностью разграничения по сторонам двухстороннего движения путем измерения изменяющейся на 180° фазы вертикальной составляющей магнитного поля кабеля по отношению к горизонтальной составляющей, которое происходит при пересечении вертикальной плоскости кабеля.
3. Система по п. 1, отличающаяся тем, что может быть использована для азимутальной обсервации летательных аппаратов в режиме немаршрутного пилотирования.
RU2015139940A 2015-09-21 2015-09-21 Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях RU2612898C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015139940A RU2612898C1 (ru) 2015-09-21 2015-09-21 Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015139940A RU2612898C1 (ru) 2015-09-21 2015-09-21 Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях

Publications (1)

Publication Number Publication Date
RU2612898C1 true RU2612898C1 (ru) 2017-03-13

Family

ID=58458215

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015139940A RU2612898C1 (ru) 2015-09-21 2015-09-21 Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях

Country Status (1)

Country Link
RU (1) RU2612898C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763285A (en) * 1985-10-04 1988-08-09 Semco Instruments, Inc. Helicopter low-g monitor, recorder and warning system
DE4311822A1 (de) * 1993-04-13 1994-10-20 Franz Wendl Computergesteuertes Ortungssystem zum Feststellen der Lawinengefahr und Suchen von Lawinenverschütteten
RU2523613C2 (ru) * 2012-09-10 2014-07-20 Лернер Илья Израйлевич Способ дистанционного управления полетом беспилотного летательного аппарата и беспилотная авиационная система

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763285A (en) * 1985-10-04 1988-08-09 Semco Instruments, Inc. Helicopter low-g monitor, recorder and warning system
DE4311822A1 (de) * 1993-04-13 1994-10-20 Franz Wendl Computergesteuertes Ortungssystem zum Feststellen der Lawinengefahr und Suchen von Lawinenverschütteten
RU2523613C2 (ru) * 2012-09-10 2014-07-20 Лернер Илья Израйлевич Способ дистанционного управления полетом беспилотного летательного аппарата и беспилотная авиационная система

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Эпов М.И., Шурина Э.П., Мариненко А.В. Анализ различных типов источников электромагнитного поля в задачах морской геоэлектики / Вторая всероссийская научно-техническая конференция "Научное и техническое обеспечение исследований и освоения шельфа Северного Ледовитого океана" Новосибирск 2012, 54-59. ГОСТ 210.63-81, п. 48 Судовая аппаратура ведущего кабеля. АВК, c. 7. *

Similar Documents

Publication Publication Date Title
US10094667B2 (en) Autonomous precision navigation
US9983009B2 (en) Device and method for calculating estimated navigation performance prediction
US7546183B1 (en) In-flight verification of instrument landing system signals
US10866592B2 (en) Device and method for calculating required navigation performance prediction
CN103963983A (zh) 用于为航空器着陆进场生成虚拟内指点标的方法和设备
Bhatti Improved integrity algorithms for integrated GPS/INS systems in the presence of slowly growing errors
RU2501031C2 (ru) Способ летных проверок наземных средств радиотехнического обеспечения полетов и устройства для его применения
RU2612898C1 (ru) Навигационная система маршрутного пилотирования летательных аппаратов в арктических акваториях
Campbell et al. Terrain‐referenced precision approach guidance: Proof‐of‐concept flight test results
RU2386176C2 (ru) Система посадки летательных аппаратов
Moore et al. Volume raycasting of GNSS signals through ground structure lidar for UAV navigational guidance and safety estimation
Medeiros et al. RNAV and RNP AR approach systems: the case for Pico Island airport
Kozlov et al. Aero Radionavigation
RU181020U1 (ru) Устройство определения навигационной информации для автоматической посадки летательного аппарата на палубу корабля
Sabo et al. New trends of using GNSS in the area navigation
Gebre-Egziabher et al. A DME based area navigation systems for GPS/WAAS interference mitigation in general aviation applications
CN116002060A (zh) 一种通用飞机国产综合航电系统架构
Doppler Papers presented at the 16th IATA Technical Conference
Hollister et al. Flight Evaluation of Loran‐C for General Aviation Area Navigation
RU2590934C1 (ru) Унифицированный навигационный комплекс ла
Ogorodnikova et al. RESEARCH OF RELIABILITY OF RADIO NAVIGATION SUPPORT OF AIRCRAFT FLIGHTS
US20090099771A1 (en) Method and System for Providing Awareness of a Vehicle's Location and Heading
Averin et al. Navigtaion systems
Moody et al. Air Navigation, A Status Report
Casserly et al. Operation of current navigation aids and future prospects

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170922