RU2612670C1 - Солнечная электростанция - Google Patents

Солнечная электростанция Download PDF

Info

Publication number
RU2612670C1
RU2612670C1 RU2015153240A RU2015153240A RU2612670C1 RU 2612670 C1 RU2612670 C1 RU 2612670C1 RU 2015153240 A RU2015153240 A RU 2015153240A RU 2015153240 A RU2015153240 A RU 2015153240A RU 2612670 C1 RU2612670 C1 RU 2612670C1
Authority
RU
Russia
Prior art keywords
photodetector
homogenizer
plates
plane
heat exchanger
Prior art date
Application number
RU2015153240A
Other languages
English (en)
Inventor
Дмитрий Семенович Стребков
Владимир Иванович Поляков
Михаил Алексеевич Никитин
Николай Юрьевич Бобовников
Original Assignee
Дмитрий Семенович Стребков
Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Семенович Стребков, Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) filed Critical Дмитрий Семенович Стребков
Priority to RU2015153240A priority Critical patent/RU2612670C1/ru
Application granted granted Critical
Publication of RU2612670C1 publication Critical patent/RU2612670C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, к конструкции солнечных электростанций с концентраторами. Солнечная электростанция содержит концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора, установленные в прозрачной для солнечного излучения оболочке и снабженные устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная их площадь при естественном охлаждении равна площади миделя концентратора. Технический результат заключается в снижении потерь электроэнергии, увеличении КПД и срока службы солнечной электростанции. 4 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области преобразования солнечной энергии в электрическую и тепловую, в первую очередь к конструкции солнечных электростанций с концентраторами.
Известна солнечная фотоэлектрическая станция, содержащая концентратор на основе концентрических линз Френеля, двухосную систему слежения за Солнцем и фотоприемники излучения на основе каскадных гетероструктурных планарных солнечных элементов с односторонней рабочей поверхностью. Солнечная электростанция имеет следующие характеристики: коэффициент концентрации 385, электрическая мощность 5,75 кВт, КПД преобразования солнечной радиации с учетом КПД концентратора и инвертора 23,5%, стоимость 9,3 долл. США/Вт. Плоскость фотоприемников и p-n переходов фотоприемников параллельна плоскости линзы Френеля и перпендикулярна оптической оси концентратора и концентрированному потоку солнечного излучения. Стоимость фотоприемника составляет 13 долл. США за 1 см площади фотоприемника (Photon International, июль 2008 г., с. 15).
Недостатками известной электростанции являются высокая трудоемкость изготовления и большая стоимость материалов фотоприемников, содержащих галлий, германий и другие дорогостоящие материалы.
Известна солнечная фотоэлектрическая станция, содержащая концентратор с поверхностью миделя, на который поступает солнечное излучение, двухосную систему слежения и фотоприемники излучения на основе каскадных гетероструктурных солнечных элементов на основе полупроводников AIII BV. Концентратор содержит параболоидное зеркало квадратной формы, контротражатель системы Кассегрена и пирамидальный оптический элемент из стекла, на нижнем основании которого закреплен каскадный гетероструктурный солнечный элемент с односторонней рабочей поверхностью с р-n переходом, плоскость которого параллельна плоскости миделя концентратора и перпендикулярна оптической оси концентратора, потоку солнечного излучения и боковым граням оптического элемента. Параметры солнечной электростанции: концентрация 476, КПД 22,7%, площадь солнечного элемента 1 см2, размеры параболоида 25×25 см, суммарная электрическая мощность 500 кВт (Photon International, ноябрь 2008 г., с. 150, 153; Sun and Wind Energy, 2008, №5, с. 130).
Недостатками известной солнечной электростанции являются большая стоимость и низкий КПД трехэлементной оптической системы: параболическое зеркало - контротражатель - оптический элемент - солнечный элемент.
Известна солнечная электростанция, содержащая концентраторы, двухосную систему слежения и фотоприемники в фокальной области каждого концентратора на основе скоммутированных солнечных элементов с р-n переходами, каждый фотоприемник выполнен в виде секций твердотельной матрицы из последовательно скоммутированных миниатюрных солнечных элементов с диодными структурами и двусторонней рабочей поверхностью, плоскости р-n переходов диодных структур параллельны двум из четырех боковых граней и перпендикулярны рабочей поверхности фотоприемника, плоскости миделя и фокальной плоскости концентратора, а оптическая ось концентратора и поток солнечного излучения параллельны плоскости р-n переходов фотоприемника, фотоприемник установлен в прозрачной для солнечного излучения оболочке и снабжен устройством для отвода теплоты.
В варианте солнечной электростанции концентратор выполнен в виде параболоидного зеркала системы Кассегрена с гиперболическим контротражателем в фокальной области и четырехгранной призмой у вершины параболоида, в основании которой установлен фотоприемник, плоскости р-n переходов которого параллельны двум боковым граням призмы.
В варианте солнечной электростанции фотоприемник со стороны концентратора имеет защитное покрытие из стекла, обратная сторона фотоприемника прикреплена через электроизолирующий теплопроводящий клей к поверхности теплообменника, а теплообменник снабжен устройством для прокачки теплоносителя или радиатором воздушного охлаждения (Патент РФ №2431086, опубл. 20.03.2011 г., Бюл. №28).
Недостатком известной солнечной электростанции является снижение электрической мощности и ресурса работы фотоприемника из-за недостаточно высокой теплопроводности и старения электроизолирующего теплопроводящего клея между фотоприемником и теплообменником. Другим недостатком является снижение электрической мощности из-за схемных потерь при неравномерной освещенности фотоприемника в фокальной области концентратора.
Задачей настоящего изобретения является увеличение электрической мощности и ресурса работы солнечной электростанции.
Технический результат заключается в снижении потерь электроэнергии и увеличении КПД и срока службы солнечной электростанции.
Технический результат достигается тем, что в солнечной электростанции, содержащей концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора на основе скоммутированных солнечных элементов с р-n переходами, каждый фотоприемник выполнен в виде секций твердотельной матрицы из последовательно скоммутированных миниатюрных солнечных элементов с диодными структурами и токоотводами, плоскости р-n переходов и токоотводов диодных структур параллельны двум из четырех боковых граней и перпендикулярны рабочей поверхности фотоприемника, плоскости миделя и фокальной плоскости концентратора, а оптическая ось концентратора и поток солнечного излучения параллельны плоскости р-n переходов фотоприемника, фотоприемник установлен в прозрачной для солнечного излучения оболочке и снабжен устройством для отвода теплоты, прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, а произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, а длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная площадь пластин теплообменника при естественном охлаждении равна площади миделя концентратора.
В варианте солнечной электростанции пластины теплообменника выполнены из металла, например из меди, толщиной 0,05-0,5 мм.
В другом варианте солнечной электростанции пластины теплообменника выполнены из теплопроводящей керамики, например из нитрида алюминия.
Еще в одном варианте солнечной электростанции пластины теплообменника выполнены из двух разнородных материалов: у токоподводов секций пластины теплообменника выполнены из металла, например из меди, толщиной 0,1-0,5 мм, а на расстоянии 1-5 мм от секции пластины теплообменника выполнены из теплопроводящей керамики, причем два разнородных материала соединены между собой путем пайки или сварки.
В варианте устройства солнечной электростанции пластины теплообменника выполнены из двух металлических частей, которые соединены электроизолирующей прокладкой из теплопроводящей керамики, например нитрида алюминия, путем пайки или сварки.
Изобретение иллюстрируется на фиг. 1-5, где на фиг. 1 представлена оптическая схема солнечной электростанции с концентратором на основе линзы Френеля и ход лучей; на фиг. 2 - поперечное сечение гомогенизатора; на фиг. 3 - оптическая схема солнечной электростанции с параболическим концентратором и ход лучей; на фиг. 4 - фотоприемник с устройством теплоотвода с теплообменниками из двух разнородных материалов; на фиг. 5 - фотоприемник с устройством теплоотвода с теплообменниками из двух металлических частей, которые соединены электроизолирующей вставкой из теплопроводящей керамики.
На фиг. 1 солнечная электростанция содержит концентратор 1 на основе концентрической линзы Френеля, фотоприемник 2 в виде секций 3 твердотельной матрицы из последовательно скоммутированных миниатюрных солнечных элементов 4 с диодной структурой n+-р-р+ или р+-n-n+, плоскости р-n переходов 5 и изотипных переходов р-р+ или n-n+ 6 параллельны двум граням 7 фотоприемника 2 и перпендикулярны рабочей поверхности 8 фотоприемника 2, плоскости миделя 9 и фокальной плоскости 10 концентратора 1, оптическая ось 11 концентратора 1 и поток солнечного излучения 12 на входе в концентратор 1 параллельны плоскости р-n переходов 5 фотоприемника 2. Фотоприемник 2 установлен в прозрачной для солнечного излучения 12 оболочке 13 и содержит гомогенизатор 14 сконцентрированного солнечного излучения 15, размеры поперечного сечения a и b гомогенизатора 14 соизмеримы с размерами рабочей поверхности 8 фотоприемника 2, а длина
Figure 00000001
гомогенизатора 14 в 2-10 раз больше размеров рабочей поверхности фотоприемника 2:
Figure 00000002
,
Figure 00000003
.
Плоскости р-n переходов 5 параллельны двум граням 16 гомогенизатора 14. Входной торец 17 гомогенизатора 14 установлен в фокальной плоскости 10 на оптической оси 11 концентратора 1. Устройство теплоотвода 18 выполнено в виде тонких пластин 19 из теплопроводящего материала, присоединенных к токоподводам 20 каждой секции 3 путем пайки или сварки параллельно плоскости р-n переходов 5, размер секций 3d между пластинами 18 составляет d=4-20 мм, а суммарная площадь Sт пластин 18 теплообменника 17 при естественном охлаждении равна площади Sм миделя 9 концентратора 1. Площадь миделя 9 Sм равна произведению площади Sф фотоприемника 2 на коэффициент концентрации к:
Sм=кSф.
Поэтому площадь Sт теплообменника 17 равна:
Sт=Sм=кSф.
На фиг. 2 показано поперечное сечение гомогенизатора 14. Гомогенизатор 14 содержит набор тонких пластин 21 из оптического стекла. Ширина а каждой пластины 21 равна расстоянию между токовыводами 22 фотоприемника 2, а плоскости пластин 21 перпендикулярны плоскости р-n переходов 5 и изотипных переходов 6 фотоприемника 2. Размер b поперечного сечения гомогенизатора 14 равен произведению количества n пластин 21 на их толщину с:b=c⋅n.
На фиг. 3 концентратор 1 выполнен в виде параболоцилиндрического концентратора 23, а фотоприемник 2 с гомогенизатором 14 установлен над параболическим концентратором 23.
На фиг. 4 устройство теплоотвода 18 содержит пластины теплообменника, выполненные из двух разнородных материалов: у токоподводов секций 20 пластины 24 выполнены из металла, например меди, а на расстоянии 1-5 мм от секции пластины 25 теплообменника выполнены из теплопроводящей керамики, пластины 24 и 25 соединены между собой путем пайки или сварки.
На фиг. 5 пластины 24 и 26 теплообменника выполнены из меди и соединены между собой электроизолирующей прокладкой 27 из теплопроводящей керамики.
Солнечная электростанция работает следующим образом.
Солнечное излучение 12 после концентратора 1 поступает на входной торец 17 гомогенизатора 14 в виде сконцентрированного излучения 15. За счет эффекта многократного полного внутреннего отражения от стенок пластин 21 гомогенизатора 14 неравномерно распределенное сконцентрированное излучение 15 в фокальной плоскости 10 на входном торце 17 поступает на фотоприемник 2 в виде равномерно распределенного по площади фотоприемника 2 потока излучения. Распространение излучения в направлении, перпендикулярном плоскости пластин 21, затруднено из-за эффекта полного внутреннего отражения внутри каждой пластины 21. Фотоприемник 2 преобразует равномерно распределенное концентрированное излучение 15 в электрическую энергию с высоким КПД ηф из-за отсутствия схемных потерь в фотоприемнике 2, связанных с неравномерным освещением последовательно соединенных солнечных элементов 4 в фотоприемнике 2.
Часть энергии сконцентрированного солнечного излучения 15, пропорциональная 1-ηф, преобразуется в тепло в секциях 3 и поступает в устройство теплоотвода 18, и через пластины теплообменника 19 рассеивается в окружающей среде за счет конвекции и излучения. При естественном охлаждении и выполнении условия Sм=Sт=кSф температура фотоприемника 2 при концентрации к=5-500 не превысит 80°С. Площадь Sт пластин 19 теплообменника может быть уменьшена при использовании воздушного принудительного охлаждения с помощью вентилятора или при водяном охлаждении пластин 19, 24, 25, 26 (на фиг. не показано), при этом для изоляции секций 3 от окружающей среды, например воды, используют пластины 25 из керамики или изолирующие вставки 27 из керамики.
Пример выполнения солнечной электростанции.
Концентратор 1 на фиг. 1 выполнен из линзы Френеля размером 400×400 мм, фотоприемник 2 имеет размеры 40×40 мм, коэффициент концентрации к=100. Размер секции 3 между двумя пластинами 19 равен 5 мм, количество пластин 9, размеры пластин 130×130×0,1 мм, общая площадь пластин 0,169 м2, размеры гомогенизатора 14 - 40×40×320 мм. Гомогенизатор 14 состоит из 40 пластин 21 из оптического стекла размером 40×1×130 мм. Электрическая мощность 24 Вт, рабочее напряжение 96 В, КПД 15%, температура фотоприемника 2 при естественном охлаждении 80°C, при воздушном охлаждении с помощью вентилятора 40°C.
Использование гомогенизатора 14 концентрированного солнечного излучения 15 и устройства теплоотвода 18 увеличивает электрическую мощность солнечной электростанции и ресурс работы за счет снижения схемных потерь в фотоприемнике 2 и снижения температуры фотоприемника 2 при работе с концентратором солнечного излучения.

Claims (5)

1. Солнечная электростанция, содержащая концентраторы, систему слежения и фотоприемники в фокальной области каждого концентратора на основе скоммутированных солнечных элементов с р-n переходами, каждый фотоприемник выполнен в виде секций твердотельной матрицы из последовательно скоммутированных миниатюрных солнечных элементов с диодными структурами и токовыводами, плоскости р-n переходов токовыводов диодных структур параллельны двум из четырех боковых граней и перпендикулярны рабочей поверхности фотоприемника, плоскости миделя и фокальной плоскости концентратора, а оптическая ось концентратора и поток солнечного излучения параллельны плоскости р-n переходов фотоприемника, фотоприемник установлен в прозрачной для солнечного излучения оболочке и снабжен устройством для отвода теплоты, отличающаяся тем, что прозрачная оболочка содержит гомогенизатор концентрированного солнечного излучения из набора плоских тонких пластин из оптически прозрачного материала, размеры поперечного сечения гомогенизатора соизмеримы с размерами рабочей поверхности фотоприемника, ширина каждой пластины равна расстоянию между токоотводами, а произведение толщины пластин на их количество определяет размер гомогенизатора вдоль плоскости р-n переходов диодных структур, а длина гомогенизатора в 2-10 раз больше размеров рабочей поверхности фотоприемника, плоскости диодных структур параллельны двум из четырех граней гомогенизатора, а устройство отвода тепла выполнено в виде тонких пластин из теплопроводящего материала, присоединенных к токоподводам каждой секции твердотельной матрицы путем пайки или сварки параллельно плоскости р-n переходов диодных структур, размер секций между пластинами теплообменника составляет 4-20 мм, а суммарная площадь пластин теплообменника при естественном охлаждении равна площади миделя концентратора.
2. Солнечная электростанция по п. 1, отличающаяся тем, что пластины теплообменника выполнены из металла, например из меди, толщиной 0,05-0,5 мм.
3. Солнечная электростанция по п. 1, отличающаяся тем, что пластины теплообменника выполнены из теплопроводящей керамики, например из нитрида алюминия.
4. Солнечная электростанция по п. 1, отличающаяся тем, что пластины теплообменника выполнены из двух разнородных материалов: у токоподводов секций пластины теплообменника выполнены из металла, например из меди, толщиной 0,05-0,5 мм, а на расстоянии 1-5 мм от секции пластины теплообменника выполнены из теплопроводящей керамики, причем два разнородных материала соединены между собой путем пайки или сварки.
5. Солнечная электростанция по п. 1, отличающаяся тем, что пластины теплообменника выполнены из двух металлических частей, которые соединены электроизолирующей прокладкой из теплопроводящей керамики, например нитрида алюминия, путем пайки или сварки.
RU2015153240A 2015-12-11 2015-12-11 Солнечная электростанция RU2612670C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015153240A RU2612670C1 (ru) 2015-12-11 2015-12-11 Солнечная электростанция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015153240A RU2612670C1 (ru) 2015-12-11 2015-12-11 Солнечная электростанция

Publications (1)

Publication Number Publication Date
RU2612670C1 true RU2612670C1 (ru) 2017-03-13

Family

ID=58457998

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015153240A RU2612670C1 (ru) 2015-12-11 2015-12-11 Солнечная электростанция

Country Status (1)

Country Link
RU (1) RU2612670C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU214906U1 (ru) * 2022-08-11 2022-11-21 Акционерное общество "Центральный научно-исследовательский институт "Электрон" Устройство датчика формирования изображения

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2252373C1 (ru) * 2003-12-03 2005-05-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Солнечный модуль с концентратором
RU2431086C2 (ru) * 2009-09-11 2011-10-10 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Солнечная электростанция (варианты)
US20130247961A1 (en) * 2010-10-24 2013-09-26 Airlight Energy Ip Sa Solar collector having a concentrator arrangement formed from several sections

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2252373C1 (ru) * 2003-12-03 2005-05-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Солнечный модуль с концентратором
RU2431086C2 (ru) * 2009-09-11 2011-10-10 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Солнечная электростанция (варианты)
US20130247961A1 (en) * 2010-10-24 2013-09-26 Airlight Energy Ip Sa Solar collector having a concentrator arrangement formed from several sections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU214906U1 (ru) * 2022-08-11 2022-11-21 Акционерное общество "Центральный научно-исследовательский институт "Электрон" Устройство датчика формирования изображения

Similar Documents

Publication Publication Date Title
Reddy et al. Numerical investigation of micro-channel based active module cooling for solar CPV system
Zimmermann et al. A high-efficiency hybrid high-concentration photovoltaic system
CN202059353U (zh) 高倍聚光太阳能光伏光热复合发电系统
US20110259386A1 (en) Thermoelectric generating module
KR20080097449A (ko) 집속 태양 전지 장치
US9331258B2 (en) Solar thermoelectric generator
WO2012076847A1 (en) Solar energy apparatus with a combined photovoltaic and thermal power generation system
RU2612670C1 (ru) Солнечная электростанция
CN201733250U (zh) 一种线聚焦的聚光光伏组件
RU2431086C2 (ru) Солнечная электростанция (варианты)
RU2690728C1 (ru) Концентраторно-планарный солнечный фотоэлектрический модуль
RU2615243C2 (ru) Солнечная электростанция
RU2395136C1 (ru) Фотоэлектрический модуль
US20110272001A1 (en) Photovoltaic panel assembly with heat dissipation function
Djafar et al. A new hybrid of photovoltaic-thermoelectric generator with hot mirror as spectrum splitter
JP6255553B2 (ja) 太陽光発電システム
RU2578735C1 (ru) Концентраторный солнечный фотоэлектрический модуль
JP2016214079A5 (ru)
Norman et al. Trough-lens-cone optics with microcell arrays: high efficiency at low cost
Frank et al. A low series resistance silicon photovoltaic cell for high intensity applications
RU2445553C2 (ru) Солнечный концентраторный модуль и способ его изготовления (варианты)
Yazawa et al. Material optimization for concentrated solar photovoltaic and thermal co-generation
Tabet et al. Performances Improvement of photovoltaic thermal air collector by planer reflector
JPS61292970A (ja) 太陽電池の放熱板
CN215956344U (zh) 一种聚光光伏装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171212