RU2612059C1 - Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением - Google Patents

Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением Download PDF

Info

Publication number
RU2612059C1
RU2612059C1 RU2016124187A RU2016124187A RU2612059C1 RU 2612059 C1 RU2612059 C1 RU 2612059C1 RU 2016124187 A RU2016124187 A RU 2016124187A RU 2016124187 A RU2016124187 A RU 2016124187A RU 2612059 C1 RU2612059 C1 RU 2612059C1
Authority
RU
Russia
Prior art keywords
water
low
injection
oil
pressure
Prior art date
Application number
RU2016124187A
Other languages
English (en)
Inventor
Наиль Ульфатович Маганов
Раис Салихович Хисамов
Вадим Валерьевич Ахметгареев
Венера Гильмеахметовна Базаревская
Original Assignee
Публичное акционерное общество "Татнефть" им. В.Д.Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Татнефть" им. В.Д.Шашина filed Critical Публичное акционерное общество "Татнефть" им. В.Д.Шашина
Priority to RU2016124187A priority Critical patent/RU2612059C1/ru
Application granted granted Critical
Publication of RU2612059C1 publication Critical patent/RU2612059C1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу повышения нефтеотдачи слоисто-неоднородных нефтяных коллекторов импульсной закачкой низкоминерализованной воды. Способ включает циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в качестве рабочего агента низкоминерализованной воды и отбор продукции из добывающих скважин. Изначально выбирают участок коллектора с разбросом проницаемости нефтенасыщенных пропластков не менее 30%. Низкоминерализованную воду используют с поверхностных водоемов – рек, озер, морей, перед закачкой ее предварительно обеззараживают и фильтруют. Закачку агента начинают вести в нагнетательные скважины с постепенным повышением расхода от нуля до (0,7-0,8)·Ргор, после чего расход уменьшают до значения, при котором давление закачки составляет (0,1-0,2)·Ргор. Циклы увеличения–уменьшения расхода низкоминерализованной воды повторяют многократно. Скорость ежесуточного расхода задают по 2-50 м3/сут на одну нагнетательную скважину. Забойное давление в ближайших добывающих скважинах поддерживают на одном уровне. Предлагаемый способ позволяет повысить коэффициент нефтеизвлечения слоисто-неоднородных нефтяных коллекторов за счет комплексного применения импульсного нагнетания и закачки низкоминерализованной воды.

Description

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке слоисто-неоднородных нефтяных коллекторов импульсной закачкой низкоминерализованной воды.
Известен способ разработки нефтяной залежи с низкопроницаемым коллектором, включающий определение давления и расхода закачки, при котором скважина начинает принимать закачку рабочего агента при установленных давлении и расходе через нагнетательные скважины и отбор нефти через добывающие скважины. В известном способе на первом этапе при минимальном расходе закачки рабочего агента 5-50 м3/сут и минимальном начальном давлении 2-4 МПа закачивают в скважину рабочий агент, проводят технологическую выдержку при закрытой скважине и достигнутом в скважине давлении, циклы закачки при минимальном расходе и давлении повторяют до установления стабильных значений падения давления при выдержке, на втором этапе закачивают в скважину рабочий агент при повышенном давлении закачки, при сохранении минимального расхода рабочего агента, проводят технологическую выдержку при закрытой скважине и достигнутом в скважине давлении, циклы закачки при повышенном давлении и минимальном расходе повторяют до установления стабильных значений падения давления при выдержке, на третьем и последующих возможных циклах закачки и технологической выдержки повышение давления закачки при сохранении минимального расхода повторяют до достижения рабочего давления закачки рабочего агента, после чего постепенно повышают расход закачки рабочего агента при сохранении рабочего давления закачки до достижения максимально достижимого расхода порядка 50-100 м3/сут, достигнутый режим закачки рабочего агента используют при разработке нефтяной залежи (патент РФ №2304704, кл. Е21В 43/20, опубл. 20.08.2007).
Способ позволяет закачивать воду в низкопроницаемые коллектора без риска гидроразрыва, однако исследования показывают, что приемистость скважины в процессе закачки снижается, что приводит к низкой эффективности известного способа в процессе разработки коллектора. В результате нефтеотдача остается низкой.
Наиболее близким по технической сущности к предлагаемому способу является способ разработки нефтяной залежи с глиносодержащим коллектором при циклическом заводнении, включающий циклическое снижение и повышение давления в пласте закачкой воды через нагнетательные скважины и отбор нефти через добывающие скважины. Согласно изобретению, в пласт через нагнетательные скважины периодически закачивают минерализованную воду в объеме 0,1-5 поровых объемов пласта и пресную воду в объеме 0,1-5 поровых объемов пласта, при этом переход к закачке пресной воды после закачки минерализованной воды осуществляют без постепенного снижения минерализации, состав и концентрацию солей закачиваемой минерализованной воды оставляют на уровне пластовой, а цикл закачки вод различной минерализации многократно повторяют, пресную воду закачивают до момента времени, когда снижение приемистости нагнетательной скважины превысит допустимый технологический уровень - критическое падение пластового давления в областях целевого воздействия, минерализованную воду закачивают до момента времени, когда нагнетательная скважина выйдет на начальный или близкий к начальному режим работы, определяемый расходом нагнетаемой жидкости и давлением на устье (патент РФ №2547868, кл. Е21В 43/20, опубл. 10.04.2015 - прототип).
Исследования показали, что глинистые частицы, заблокировавшие поровые каналы в промытых зонах при воздействии пресной (низкоминерализованной) воды, при последующей смене закачиваемого агента на высокоминерализованную воду, практически всегда остаются в данных поровых каналах, что приводит к низкому эффекту от периодической смены рабочего агента. В результате нефтеотдача от применения известного способа практически не отличается от нефтеотдачи при традиционной закачке сточной воды, т.к. снижается только фазовая проницаемость по воде, но не остаточная нефтенасыщенность. Кроме того, известный способ не учитывает эффект изменения смачиваемости коллектора при воздействии низкоминерализованной воды, при котором как раз и снижается остаточная нефтенасыщенность, что повышает коэффициент вытеснения и нефтеотдачу. Данный эффект изменения смачиваемости характерен, согласно исследованиям, для коллекторов, в которых отсутствуют глинистые частицы.
В предложенном изобретении решается задача повышения нефтеотдачи слоисто-неоднородных нефтяных коллекторов.
Задача решается тем, что в способе разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением, включающем циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в качестве рабочего агента низкоминерализованной воды, отбор продукции из добывающих скважин, согласно изобретению, выбирают участок коллектора, в котором разброс проницаемости нефтенасыщенных пропластков составляет не менее чем 30%, низкоминерализованную воду используют с поверхностных водоемов (рек, озер, морей и пр.), которую предварительно обеззараживают и фильтруют до размеров твердых взвешенных частиц не более 0,1 от среднего размера пор коллектора с минимальной проницаемостью, закачку воды начинают вести в нагнетательные скважины с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет (0,7-0,8)·Ргор, где Ргор – вертикальное горное давление вышележащих пород, после чего расход уменьшают до значения, при котором давление закачки составляет (0,1-0,2)·Ргор, циклы увеличения – уменьшения расхода низкоминерализованной воды повторяют многократно, причем скорость как увеличения, так и уменьшения ежесуточного расхода задают одинаковым – по 2-50 м3/сут на одну нагнетательную скважину, забойное давление в ближайших добывающих скважинах поддерживают стабильно на одном уровне.
Сущность изобретения
На нефтеотдачу слоисто-неоднородных нефтяных коллекторов существенное влияние оказывает эффективность создаваемой системы заводнения, которая должна обеспечивать максимальное нефтевытеснение из всех слоев коллектора. Однако существующие технические решения не в полной мере позволяют эффективно разрабатывать указанные коллектора. В предложенном изобретении решается задача повышения нефтеотдачи слоисто-неоднородных нефтяных коллекторов. Задача решается следующим образом.
Способ реализуют следующим образом.
На участке слоисто-неоднородного нефтяного коллектора, в котором разброс проницаемости нефтенасыщенных пропластков составляет не менее чем 30%, в нагнетательные скважины в импульсном режиме, включающем повышение и снижение давления нагнетания, закачивают рабочий агент. В качестве рабочего агента используют низкоминерализованную воду – воду с поверхностных водоемов (рек, озер, морей и пр.). Низкоминерализованную воду перед закачкой предварительно обеззараживают и фильтруют до размеров твердых взвешенных частиц не более 0,1 от среднего размера пор коллектора с минимальной проницаемостью.
Согласно исследованиям, при разбросе проницаемости нефтенасыщенных пропластков менее чем 30%, эффективность закачки низкоминерализованной воды практически не отличается от закачки пластовой или сточной вод. Обеззараживание позволяет избежать попадания в коллектор и роста микроорганизмов и, соответственно, негативного воздействия продуктов их жизнедеятельности. Фильтрация низкоминерализованной воды до размеров твердых взвешенных частиц более 0,1 от среднего размера пор коллектора с минимальной проницаемостью, согласно исследованиям, приводит к значительной потере приемистости коллектора, что снижает нефтеотдачу.
Импульсный режим нагнетания низкоминерализованной воды заключается в следующем. Закачку воды начинают вести в нагнетательные скважины с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет (0,7-0,8)·Ргор, где Ргор – вертикальное горное давление вышележащих пород, после чего расход уменьшают до значения, при котором давление закачки составляет (0,1-0,2)·Ргор. Под давлением закачки понимают давление на забое нагнетательной скважины. Циклы увеличения–уменьшения расхода низкоминерализованной воды повторяют многократно. Причем скорость как увеличения, так и уменьшения ежесуточного расхода задают одинаковой – по 2-50 м3/сут на одну нагнетательную скважину.
Согласно расчетам, наиболее оптимальная амплитуда (разница между максимальным и минимальным давлением закачки) составляет (0,5-0,7)·Ргор. Соответственно, при увеличении давления закачки до значения менее чем 0,7·Ргор, и/или при снижении давления закачки до значения более чем 0,2·Ргор, эффективность импульсного воздействия значительно снижается, что уменьшает нефтеотдачу. Кроме того, при увеличении давления закачки низкоминерализованной воды до значения более чем 0,8·Ргор возникает опасность гидроразрыва пласта. При снижении давления закачки до значения менее чем 0,1·Ргор, эффективность заводнения уменьшается, что снижает нефтеотдачу. При скорости увеличения или уменьшения ежесуточного расхода на одну нагнетательную скважину более чем на 50 м3/сут, согласно исследованиям, для большинства коллекторов эффективность воздействия низкоминерализованной воды снижается, т.к. не успевают пройти физические процессы, повышающие нефтеотдачу, а при скорости менее чем 2 м3/сут – циклы достаточно сильно затягиваются, что сводит к минимуму эффект от импульсного воздействия.
Из ближайших добывающих скважин отбирают продукцию коллектора – нефть и воду, причем забойное давление в данных скважинах поддерживают стабильно на одном уровне.
Физические процессы, происходящие при закачке низкоминерализованной воды в коллекторы состоят в следующем. Для терригенных коллекторов, содержащих мелкодисперсные глинистые частицы, воздействие низкоминерализованной воды приводит к отрыву данных частиц от поверхности пор, их миграции до тех пор, пока частицы не заблокируют поровые каналы меньшего размера, чем размер самих частиц. Ввиду того, что частицы срываются в промытом пропластке коллектора, а в первую очередь промываются высокопроницаемые пропластки, низкоминерализованная вода снижает проницаемость данных промытых пропластков, позволяя воде проникать в ранее слабо охваченные пропластки. В карбонатных коллекторах, при отсутствии глинистых частиц, поверхность пор преимущественно гидрофобна, воздействие низкоминерализованной воды приводит к изменению смачиваемости породы в сторону гидрофилизации. Закачка воды в импульсном режиме позволяет ускорять описанные процессы как для терригенных, так и для карбонатных коллекторов. В результате повышается нефтеотдача коллектора.
Разработку ведут до полной экономически рентабельной выработки участка коллектора.
Результатом внедрения данного способа является повышение нефтеотдачи слоисто-неоднородных нефтяных коллекторов.
Примеры конкретного выполнения способа
Пример 1. Участок слоисто-неоднородного карбонатного нефтяного коллектора представлен одной вертикальной добывающей и одной вертикальной нагнетательной скважинами, вскрывающими три нефтенасыщенных пропластка с разбросом проницаемости в 30%. Проницаемость верхнего пропластка составляет 90 мД, среднего –100 мД, нижнего – 70 мД. Толщина верхнего пропластка составляет 3 м, среднего – 4 м, нижнего – 2 м. Пористость верхнего пропластка – 13%, среднего – 14%, нижнего – 12%. Глубина залегания кровли коллектора – 850 м. Пластовое давление составляет 9 МПа, давление насыщения нефти газом – 2 МПа. Вертикальное горное давление вышележащих пород Ргор = 19,6 МПа. Расстояние между скважинами – 300 м.
В нагнетательную скважину в импульсном режиме, включающем повышение и снижение давления нагнетания, закачивают низкоминерализованную воду – воду с ближайшей реки. Перед закачкой данную воду предварительно обеззараживают под ультрафиолетовым стерилизатором “Dulcodes UV” (Германия) и фильтруют до размеров твердых взвешенных частиц 0,1 от среднего размера пор коллектора с минимальной проницаемостью, т.е. d=0,1·2·(8·70·10-15/0,12)0,5=0,43·10-6 м=0,43 мкм. Для фильтрации твердых взвешенных частиц до диаметра 0,43 мм применяют мембранный фильтр компании “Porex Corporation” (США).
Импульсный режим нагнетания низкоминерализованной воды заключается в следующем. Закачку воды начинают вести в нагнетательную скважину с постепенным повышением расхода от нуля до 60 м3/сут, при котором давление закачки составляет 0,8·Ргор = 0,8·19,6 = 15,7 МПа. Причем скорость увеличения ежесуточного расхода задают 2 м3/сут, т.е. полуцикл повышения расхода – 30 сут. Затем расход уменьшают до 6 м3/сут, при котором давление закачки 0,2·Ргор = 0,2·19,6 = 3,9 МПа. Скорость уменьшения ежесуточного расхода задают также 2 м3/сут, т.е. полуцикл снижения расхода – 28 сут. Далее вновь повышают расход от 6 м3/сут до 60 м3/сут с той же скоростью. Таким образом, каждый полуцикл составляет 28 сут. Циклы увеличения – уменьшения расхода низкоминерализованной воды повторяют многократно. В процессе разработки, приемистость нагнетательной скважины снижается до 30 м3/сут, соответственно длину полуциклов снижают до 14 сут.
Из добывающей скважины отбирают продукцию коллектора – нефть и воду, причем забойное давление поддерживают стабильно на одном уровне 3 МПа.
Пример 2. Выполняют как пример 1. Коллектор является терригенным и имеет несколько иные геолого-физические характеристики. Ргор = 35,1 МПа. Коллектор вскрывают три наклонно-направленные скважины – две добывающие и одна нагнетательная, расположенная между добывающими. Закачку воды начинают вести в нагнетательную скважину с постепенным повышением расхода от нуля до 300 м3/сут, при котором давление закачки составляет 0,7·Ргор = 0,7·35,1 = 24,6 МПа. Причем скорость увеличения ежесуточного расхода задают 50 м3/сут, т.е. полуцикл повышения расхода – 6 сут. Затем расход уменьшают до 100 м3/сут, при котором давление закачки составляет 0,1·Ргор = 0,1·35,1 = 3,5 МПа. Скорость уменьшения ежесуточного расхода задают также 50 м3/сут, т.е. полуцикл снижения расхода – 5 сут. Далее вновь повышают расход от 100 м3/сут до 300 м3/сут с той же скоростью. Таким образом, каждый полуцикл составляет 5 сут. Циклы увеличения – уменьшения расхода низкоминерализованной воды повторяют многократно. В процессе разработки, приемистость нагнетательной скважины снижается до 200 м3/сут, соответственно длину полуциклов снижают до 3 сут.
Разработку ведут до полной экономически рентабельной выработки участка коллектора.
В результате разработки, которое ограничили достижением обводненности добывающей скважины до 98%, было добыто 69,6 тыс.т нефти, коэффициент нефтеизвлечения (КИН) составил 0,422 д.ед. По прототипу при прочих равных условиях было добыто 61,9 тыс.т нефти, КИН составил 0,375 д.ед. Прирост КИН по предлагаемому способу – 0,047 д.ед.
Предлагаемый способ позволяет повысить коэффициент нефтеизвлечения слоисто-неоднородных нефтяных коллекторов за счет применения в комплексе импульсного нагнетания и закачки низкоминерализованной воды.
Применение предложенного способа позволит решить задачу повышения нефтеотдачи слоисто-неоднородных нефтяных коллекторов.

Claims (1)

  1. Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением, включающий циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в качестве рабочего агента низкоминерализованной воды, отбор продукции из добывающих скважин, отличающийся тем, что выбирают участок коллектора, в котором разброс проницаемости нефтенасыщенных пропластков составляет не менее чем 30%, низкоминерализованную воду используют с поверхностных водоемов – рек, озер, морей, которую предварительно обеззараживают и фильтруют до размеров твердых взвешенных частиц не более 0,1 от среднего размера пор коллектора с минимальной проницаемостью, закачку воды начинают вести в нагнетательные скважины с постепенным повышением расхода от нуля до значения, при котором давление закачки составляет (0,7-0,8)·Ргор, где Ргор – вертикальное горное давление вышележащих пород, после чего расход уменьшают до значения, при котором давление закачки составляет (0,1-0,2)·Ргор, циклы увеличения–уменьшения расхода низкоминерализованной воды повторяют многократно, причем скорость как увеличения, так и уменьшения ежесуточного расхода задают одинаковым – по 2-50 м3/сут на одну нагнетательную скважину, забойное давление в ближайших добывающих скважинах поддерживают стабильно на одном уровне.
RU2016124187A 2016-06-19 2016-06-19 Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением RU2612059C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016124187A RU2612059C1 (ru) 2016-06-19 2016-06-19 Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016124187A RU2612059C1 (ru) 2016-06-19 2016-06-19 Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением

Publications (1)

Publication Number Publication Date
RU2612059C1 true RU2612059C1 (ru) 2017-03-02

Family

ID=58459545

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016124187A RU2612059C1 (ru) 2016-06-19 2016-06-19 Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением

Country Status (1)

Country Link
RU (1) RU2612059C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162867A (zh) * 2019-05-16 2019-08-23 中国石油化工股份有限公司 注水井分层配注水量计算新方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478283A (en) * 1983-07-01 1984-10-23 Marathon Oil Company Process for improving waterflood performance in heterogeneous clay-sensitive formations
RU2200231C2 (ru) * 1999-11-30 2003-03-10 Научно-технический центр экологически чистых технологий НТЦ "Экотех" Способ разработки нефтяных месторождений
RU2231631C1 (ru) * 2002-12-15 2004-06-27 Дыбленко Валерий Петрович Способ разработки нефтяной залежи
RU2304704C1 (ru) * 2006-11-01 2007-08-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяной залежи с низкопроницаемым коллектором

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478283A (en) * 1983-07-01 1984-10-23 Marathon Oil Company Process for improving waterflood performance in heterogeneous clay-sensitive formations
RU2200231C2 (ru) * 1999-11-30 2003-03-10 Научно-технический центр экологически чистых технологий НТЦ "Экотех" Способ разработки нефтяных месторождений
RU2231631C1 (ru) * 2002-12-15 2004-06-27 Дыбленко Валерий Петрович Способ разработки нефтяной залежи
RU2304704C1 (ru) * 2006-11-01 2007-08-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки нефтяной залежи с низкопроницаемым коллектором

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ОСТ 39-225-88, Вода для заводнения нефтяных пластов.Требования к качеству, УДК 543.3, 01.07.1990, с.5, Приложение 1,таблица 1,с.6, Приложение 2, таблица 2. СУРГУЧЕВ М.Л., Вторичные и третичные методы увеличения нефтеотдачи, Москва - Недра, 1985, с. 143-154. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162867A (zh) * 2019-05-16 2019-08-23 中国石油化工股份有限公司 注水井分层配注水量计算新方法

Similar Documents

Publication Publication Date Title
EP2627728B1 (en) Water injection systems and methods
US9464516B2 (en) Water injection systems and methods
US7600567B2 (en) Desalination method
NO20111761A1 (no) Vanninjeksjonssystemer og fremgangsmater
CN107001089A (zh) 采出水、特别是从使用增粘聚合物的化学强化采油工艺中获得的采出水的处理
RU2344272C2 (ru) Устройство скважины и способ разработки многопластовой нефтяной залежи
RU2594402C1 (ru) Способ последовательного заводнения слоистого коллектора
RU2612059C1 (ru) Способ разработки слоисто-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением
RU2569101C1 (ru) Способ снижения водопритока к горизонтальным скважинам
RU2584190C1 (ru) Способ разработки многопластовой нефтяной залежи
US10174597B2 (en) Subsurface injection of reject stream
GB2451008A (en) A desalination apparatus disposed in an injection well
RU2616010C1 (ru) Способ разработки зонально-неоднородных нефтяных коллекторов импульсным низкоминерализованным заводнением
CN104481478B (zh) 聚合物驱对应油井上封堵大孔道中聚窜的方法及其所用处理剂
RU2679006C1 (ru) Способ разработки нефтяных коллекторов закачкой воды с изменяющимися свойствами
RU2390626C1 (ru) Способ разработки нефтегазовой залежи
NO339570B1 (en) A seawater pre-treatment and injection system and method
WO2014186829A1 (en) Apparatus, system and method for desalination of groundwater
RU2588502C1 (ru) Способ повышения нефтеотдачи гидрофильных пластов
RU2581854C1 (ru) Заводнение пласта поверхностно-активным веществом сверхнизкой концентрации
US11987750B2 (en) Water mixture for fracturing application
RU2576066C1 (ru) Способ повышения равномерности выработки запасов нефти
RU2576726C1 (ru) Способ снижения водопритока к скважинам
RU2183737C1 (ru) Способ разработки нефтяной залежи с ее гидрофобизацией
RU2584025C1 (ru) Способ снижения водопритока к многозабойным скважинам