RU2611915C1 - Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки - Google Patents

Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки Download PDF

Info

Publication number
RU2611915C1
RU2611915C1 RU2015156333A RU2015156333A RU2611915C1 RU 2611915 C1 RU2611915 C1 RU 2611915C1 RU 2015156333 A RU2015156333 A RU 2015156333A RU 2015156333 A RU2015156333 A RU 2015156333A RU 2611915 C1 RU2611915 C1 RU 2611915C1
Authority
RU
Russia
Prior art keywords
aerobic
muscle
emg
load power
test
Prior art date
Application number
RU2015156333A
Other languages
English (en)
Inventor
Анатолий Стратонович Боровик
Даниил Викторович Попов
Ольга Леонидовна Виноградова
Original Assignee
Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации - Институт медико-биологических проблем Российской академии наук (ГНЦ РФ - ИМБП РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации - Институт медико-биологических проблем Российской академии наук (ГНЦ РФ - ИМБП РАН) filed Critical Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации - Институт медико-биологических проблем Российской академии наук (ГНЦ РФ - ИМБП РАН)
Priority to RU2015156333A priority Critical patent/RU2611915C1/ru
Application granted granted Critical
Publication of RU2611915C1 publication Critical patent/RU2611915C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Изобретение относится к области медицины и может быть использовано в спорте и восстановительной практике. Мощность нагрузки определяют как момент аэробно-анаэробного перехода при выполнении теста с линейно возрастающей мощностью нагрузки. Аэробно-анаэробный переход определяют по точке на сглаженной кривой, отражающей динамику изменения интенсивности ЭМГ-активности во время выполнения теста, которая соответствует положению точки перегиба на графике зависимости усредненного значения содержания дезоксигенированной формы гемоглобина в мышечной ткани, измеряемой с помощью ИК-спектроскопии, от усредненного значения ее ЭМГ-активности. При этом точку перегиба определяют по точке пересечения двух прямых, аппроксимирующих начальный и конечный участки графика. Способ позволяет повысить достоверность исследования, что достигается за счет определения зависимости изменения концентрации дезоксигемоглобина от интенсивности ЭМГ-активности работающей мышцы. 1 ил.

Description

Изобретение относится к области медицинской диагностики и предназначено для использования в спорте и восстановительной медицине для определения мощности нагрузки на пороге анаэробного обмена (ПАНО) с целью оценки аэробной работоспособности испытуемого и определения оптимального уровня индивидуальной тренировочной нагрузки при проведении спортивно-оздоровительных и реабилитационных тренировок. Для определения мощности на ПАНО используется зависимость изменения содержания дезоксигенированной формы гемоглобина (HHb) в работающей мышце от ее электромиографической активности во время выполнения теста с линейно возрастающей мощностью нагрузки и сглаженная динамика изменения интенсивности ЭМГ.
Для повышения эффективности спортивно-оздоровительных аэробных тренировок и предупреждения негативных последствий перетренированности тренировочная нагрузка должна задаваться с учетом функциональных возможностей человека. Индивидуальный уровень нагрузки должен определяться по результатам специально проводимых процедур тестирования, во время которых регистрируются изменения физиологических показателей в ответ на аэробную нагрузку заданной интенсивности.
Для оценки аэробных возможностей обычно используются тесты со ступенчато или линейно повышающейся нагрузкой. Такие тесты позволяют оценить реакцию организма во всем диапазоне нагрузок – от минимальной до максимальной. Оба способа задания нагрузки широко используются при тестированиях [1]. В результате такого тестирования определяются не только максимальные показатели, характеризующие аэробную работоспособность, например максимальное потребление кислорода (МПК), но также оценивается мощность нагрузки, при которой наблюдается аэробно-анаэробный переход, т.е. когда в энергообеспечение мышечной работы начинают активно включаться анаэробные процессы. В начале теста, при минимальной мощности, активируются преимущественно низкопороговые двигательные единицы, состоящие из оксидативных мышечных волокон I типа. С увеличением мощности, когда сократительных возможностей этих волокон уже не хватает для поддержания такого уровня нагрузки, в работу вовлекаются более высокопороговые двигательные единицы, то есть включаются волокна типа IIA и IIХ. Ресинтез аденозинтрифосфата в таких волокнах идет в значительной степени за счет реакций гликолиза, конечными продуктами которых являются ионы водорода и лактат. Поэтому при мышечной работе высокой мощности происходит значительное повышение концентрации ионов водорода и лактата в мышце. Метаболиты, накапливающиеся в мышечных волокнах, постепенно переходят в кровь и изменяют динамику системных физиологических показателей, по которой обычно и определяют мощность, соответствующую порогу аэробно-анаэробного обмена (ПАНО). Следует отметить, что в качестве показателя аэробной работоспособности мощность на ПАНО по сравнению с максимальными показателями обладает рядом преимуществ: ее величина более тесно коррелирует с текущим уровнем аэробной работоспособности [1] и, кроме того, для ее определения не требуется проведения предельных тестов. Последнее обстоятельство особенно важно в восстановительной медицине при тестировании больных с целью определения оптимальных нагрузок при проведении реабилитационных тренировок, а также при тестировании высококвалифицированных спортсменов в соревновательный период.
Чаще всего оценку мощности, соответствующей ПАНО в тесте с линейно возрастающей нагрузкой, осуществляют путем анализа динамики системных физиологических показателей [1, 2]:
• накопления содержания лактата в крови. По развиваемой испытуемым мощности, при которой концентрация лактата достигает определенного уровня, определяют аэробный порог, лактатный порог, порог анаэробного обмена. Так, например, считается, что при работе большой мышечной массы ПАНО достигается при концентрации лактата в крови 4 мМ [2, 3, 4]. Основным недостатком этого метода определения аэробно-анаэробного перехода является его инвазивность – во время тестирования необходимо брать пробы крови для измерения концентрации лактата. Причем если при работе большой мышечной массы достаточно брать кровь из пальца, то при сокращениях небольших мышц, когда концентрация лактата в капиллярной крови практически не изменяется, требуется при помощи катетеризации брать пробы из вены, по которой из работающей мышцы оттекает кровь.
• легочной вентиляции и показателей газообмена, по которым определяют вентиляторный порог, точку респираторной компенсации и другие показатели, также отражающие аэробную работоспособность человека [5]. Следует отметить, что экспериментальная регистрация динамики этих физиологических показателей является относительно простой в методическом отношении процедурой, однако определение момента аэробно-анаэробного перехода представляет достаточно сложную проблему, поскольку для этого обычно требуется найти положение особых точек (точек перегиба, точек, в которых наблюдается отклонение от линейности, и т.д.) на динамической кривой. На практике следствием этого является низкая точность определения искомых величин, трудности сопоставления этих величин, полученных разными авторами с помощью отличающихся алгоритмов обработки экспериментальных данных. Кроме того, такой подход также возможен лишь при «глобальной» мышечной работе, в которую вовлечена большая мышечная масса.
Для оценки мощности, соответствующей ПАНО, можно использовать также «локальные» показатели, характеризующие состояние основной работающей мышцы и системы ее кровоснабжения во время работы. Так, в работе [6] предлагается определять мощность, на которой происходит аэробно-анаэробный переход в тесте с возрастающей нагрузкой, по отклонению от линейности сигнала поверхностной ЭМГ. Недостатком этого метода является недостаточная точность, причиной этого являются неизбежные низкочастотные флуктуации электромиографического сигнала, особенно при сложных движениях, которые обеспечиваются сокращениями большой группы различных мышц. Эти флуктуации объясняются тем, что поверхностная ЭМГ отражает сократительную активность лишь небольшого объема одной из работающих мышц. При увеличении нагрузки может изменяться техника выполнения движений – нагрузка может «перераспределяться» по мышцам (или даже по отдельным участкам работающих мышц), давая им возможность поочередно «отдохнуть».
Наиболее близким аналогом является способ определения анаэробного порога в тесте с линейно возрастающей нагрузкой по максимуму на динамической кривой, отражающей изменения отношения содержания гемоглобина в работающей мышце к интенсивности ее ЭМГ-активности [Патент РФ на изобретение № 2491886 «Способ определения мощности нагрузки аэробно-анаэробного перехода по электромиограмме и данным ИК-спектроскопии работающей мышцы» от 10.09.2013 г. Авторы: Кузнецов С.Ю., Попов Д.В., Боровик А.С., Виноградова О.Л.].
Содержание гемоглобина в мышечной ткани измеряется с помощью специализированного ИК-спектрометра, датчик которого располагается рядом с ЭМГ-электродами. Основным недостатком такого подхода также является низкая точность. Причиной недостаточной точности определения мощности на ПАНО также являются низкочастотные флуктуации измеряемых величин, особенно заметные на динамике их отношения. Кроме того, следует отметить, что аэробно-анаэробный переход при увеличении мощности нагрузки не является одномоментным событием, процесс вовлечения анаэробных механизмов энергообеспечения мышечных сокращений растянут во времени, вследствие чего наблюдаемый пик на динамической кривой достаточно размыт, что также сказывается на точности определения положения максимума.
Заявленный способ определения мощности на ПАНО основан на анализе зависимости содержания дезоксигенированной формы гемоглобина в работающей мышце от ее ЭМГ-активности во время теста с линейно возрастающей мощностью нагрузки. Поскольку в питающей мышцу артериальной крови практически весь гемоглобин находится в оксигенированном состоянии, концентрация дезоксигемоглобина в мышечной ткани отражает интенсивность потребления кислорода мышцей. При постепенном увеличении интенсивности мышечных сокращений содержание дезоксигемоглобина растет, причем это происходит параллельно с увеличением ЭМГ-активности. Начиная с некоторой мощности нагрузки, аэробных возможностей мышцы становится недостаточно для выполнения мышечной работы заданной интенсивности и в работу включаются двигательные единицы с анаэробным энергообеспечением. При дальнейшем увеличении мощности нагрузки ЭМГ-активность продолжает расти, тогда как содержание дезоксигемоглобина выходит на плато, уровень которого отражает максимальную аэробную работоспособность исследуемой мышцы (см. Фиг.А). На Фиг.(А) видно, что в начале теста, при относительно низкой мощности мышечных сокращений, содержание дезоксигемоглобина в мышечной ткани растет пропорционально ее ЭМГ-активности, тогда как при дальнейшем увеличении мощности оно остается практически на одном уровне. Переход из чисто аэробного режима мышечных сокращений в аэробно-анаэробный отчетливо виден на графике, по точке пересечения двух прямых, аппроксимирующих начальный и конечный участки графика можно определить интенсивность ЭМГ-активности, при которой происходит этот переход. На Фиг.Б показан график изменения ЭМГ-активности во время выполнения теста. Сглаженная кривая показывает динамику изменения ЭМГ без низкочастотных флуктуаций. По этой «идеализированной» динамике можно определить момент времени, когда интенсивность ЭМГ соответствует величине, определенной по точке пересечения аппроксимирующих прямых на верхнем графике. Поскольку при выполнении теста мощность нагрузки с течением времени линейно возрастает, легко вычислить мощность, при которой наблюдается аэробно-анаэробный переход.
Поскольку низкочастотные флуктуации интенсивности ЭМГ и содержания дезоксигенированной формы гемоглобина в исследуемом участке мышечной ткани, связанные с «перераспределением» нагрузки на отдельные мышцы или отдельные участки одной и той же мышцы во время выполнения теста, происходят согласованно, такой алгоритм позволяет более точно определять мощность на ПАНО по сравнению с методом, описанным в [7].
Техническим результатом заявленного изобретения является то, что во время выполнения теста c линейно возрастающей нагрузкой определяется момент аэробно-анаэробного перехода, а следовательно, и мощность нагрузки, при которой происходит этот переход, используя зависимость концентрации дезоксигемоглобина в работающей мышце от интенсивности ее ЭМГ-активности и динамику изменений ЭМГ во время теста; описываемый способ позволяет оценить аэробную работоспособность как организма в целом – при работе с участием большой группы мышц, так и отдельных мышц небольшой массы, в том числе в режиме on-line; описываемый способ является неинвазивным и простым методически и, кроме того, не требует выполнения теста до полного отказа испытуемого от работы.
Заявленный технический результат достигается за счет того, что способ определения мощности нагрузки в момент аэробно-анаэробного перехода при выполнении теста с линейно возрастающей нагрузкой основан на определении величины интенсивности ЭМГ, отвечающей положению точки перегиба на кривой, которая отражает зависимость усредненного значения содержания дезоксигенированной формы гемоглобина в мышечной ткани, измеряемой с помощью ИК-спектроскопии, от усредненного значения ее ЭМГ-активности, причем точка перегиба определяется по точке пересечения двух прямых, аппроксимирующих начальный и конечный участки этой кривой; на сглаженной кривой, отражающей динамику ЭМГ-активности во время выполнения теста, определяется время с начала теста, когда интенсивность ЭМГ соответствует значению, вычисленному по точке перегиба; мощность нагрузки в этот момент времени соответствует мощности, при которой происходит аэробно-анаэробный переход (см. Фиг.).
Краткое описание чертежей
На Фиг. показаны графики, иллюстрирующие алгоритм определения аэробно-анаэробного перехода по динамике изменения интенсивности ЭМГ и содержания HHb во время теста с линейно возрастающей мощностью нагрузки при работе мышц плечевого пояса. Датчики для определения ЭМГ-активности и содержания дезоксигемоглобина в мышечной ткани установлены в одной и той же области широчайшей мышцы спины (Испытуемый К.).
А – зависимость усредненных значений нормированной величины изменения HHb от интенсивности нормированной ЭМГ (жирные линии – линейная аппроксимация начальных и конечных участков графика); Б – изменение нормированной ЭМГ в течение теста (жирная линия – аппроксимация полиномом пятого порядка).
Осуществление изобретения
Для верификации предлагаемого способа определения мощности на ПАНО были проведены экспериментальные исследования, в которых для каждого из испытуемых эта величина определялась дважды: один раз с использованием предлагаемого метода, второй раз – по содержанию лактата в крови. Для определения мощности на ПАНО лактатным методом во время теста через каждые 2 минуты у испытуемых брали пробу (20 мкл) крови из пальца для измерения концентрации лактата (анализатор SuperGLeasy+, Dr Mueller GmbH, Германия). Мощность на ПАНО определяли как мощность нагрузки, при которой концентрация лактата достигала 4 мM. Вычисленное таким образом значение мощности на ПАНО сравнивали со значением, полученным с помощью предлагаемого метода.
Измерение мощности на ПАНО при велоэргометрической работе
Молодые, физически активные мужчины (22 человека) с различным уровнем аэробной работоспособности выполняли тест на электромагнитном велоэргометре Ergoselect 200 (Ergoline GmbH, Германия) с линейно возрастающей мощностью нагрузки (скорость нарастания – 15 Вт/мин) до отказа от продолжения работы. Во время теста у испытуемых непрерывно регистрировали поверхностную ЭМГ и содержание дезоксигемоглобина в этой мышце, измеряемое с помощью ИК-спектроскопии (спектрометр NIRO-200, Hamamatsu Photonics, Япония), причем хлорсеребряные накожные ЭМГ-электроды крепились на коже над срединной частью m. vastus lateralis рядом с датчиком ИК-спектрометра. Результаты измерений показали, что между мощностью на ПАНО, измеренной с помощью предлагаемого метода (WHHb ), и этой величиной, полученной лактатным методом (WLa), наблюдается статистически значимая корреляция (R = 0,87, p<0,01), причем усредненное по группе испытуемых отношение
Figure 00000001
.
Измерение мощности на ПАНО при работе мышц плечевого пояса
Группа молодых, физически активных мужчин (9 человек) с различным уровнем аэробной работоспособности выполняли тест с линейно возрастающей нагрузкой до отказа на модифицированном лыжном тренажере SkiErg (Concept2 Inc. США). Во время теста испытуемые имитировали одновременный бесшажный лыжный ход. Мощность, развиваемая испытуемым в каждом движении, отображалась в виде графика на экране установленного перед ним планшета одновременно с заданным профилем изменения нагрузки. Таким образом, испытуемый в каждый момент времени мог соотносить свои мышечные усилия с мощностью, определяемой протоколом тестирования. ЭКГ-электроды и оптические датчики ИК-спектрометра располагались рядом на срединной части широчайшей мышцы спины. В случае работы мышц плечевого пояса мощность на ПАНО, измеренная с помощью предлагаемого метода (WHHb ), также хорошо коррелирует с полученной лактатным методом (WLa) (R = 0,93, p<0,01); причем усредненное по группе испытуемых отношение
Figure 00000002
.
Таким образом, проведенные измерения показали, что мощность на ПАНО, определенная предлагаемым способом, хорошо коррелирует с величиной этой мощности, полученной с помощью «золотого стандарта» – по изменению концентрации лактата в крови. Следует также отметить, что обычно величина мощности на ПАНО, определенная с помощью одного и того же выбранного способа, используется как ориентир для определения индивидуальной нагрузки при проведении спортивно-оздоровительных или реабилитационных тренировок и для отслеживания динамики изменений аэробной работоспособности человека в результате проведенных тренировок с целью корректировки тренировочной нагрузки. Поэтому некоторые расхождения в величинах мощности на ПАНО, определяемых различными способами, на практике не имеют значения.
Предлагаемый способ определения момента (а следовательно, и соответствующей этому моменту мощности нагрузки) аэробно-анаэробного перехода в тесте с непрерывно повышающейся нагрузкой по точке перегиба на зависимости содержания дезоксигенированной формы гемоглобина в работающей мышце, определяемой с помощью ИК-спектрометрии, от ее ЭМГ-активности является методически простым, способ не предполагает инвазивных процедур, связанных с взятием проб крови, может использоваться в режиме on-line. Кроме того, с помощью предлагаемого способа можно определять аэробную работоспособность отдельных мышц небольшой массы, сокращение которых практически не меняет динамику системных показателей.
Источники информации
1. Попов Д.В., Виноградова О.Л. & Григорьев А.И. Аэробная работоспособность человека // Ин-т медико-биологических проблем РАН - М.: Наука. 2012.
2. Rusko H., Luhtanen P., Rahkila P., Viitasalo J., Rehunen S., Harkonen M. Muscle metabolism, blood lactate and oxygen uptake in steady state exercise at aerobic and anaerobic thresholds //Eur. J. Appl. Physiol. Occup. Physiol. 1986. V. 55. P. 181-186.
3. Beneke R. Maximal lactate steady state concentration (MLSS): experimental and modelling approaches // Eur. J. Appl. Physiol. 2003. V. 88. P. 361-369.
4. Faude O., Kindermann W., Meyer T. Lactate threshold concepts: how valid are they? // Sports Med. 2009. Vol. 39. № 6. P. 469–490.
5. Попов Д.В., Нетреба А.И., Орлов О.И., Виноградова О.Л., А.И. Григорьев Оценка функционального состояния организма человека при решении задач массового спорта и спорта высоких достижений // Наука о спорте. Энциклопедия систем жизнеобеспечения. Издательство ЮНЕСКО, EOLSS, Магистр-Пресс. 2011. С. 320-354.
6. Коряк Ю.А. Нейромышечные изменения под влиянием семисуточной механической разгрузки мышечного аппарата у человека // Фундаментальные исследования. 2008. № 9. С. 8-21.

Claims (1)

  1. Способ определения мощности нагрузки, при которой происходит аэробно-анаэробный переход в работающих мышцах при выполнении теста с линейно возрастающей нагрузкой, отличающийся тем, что момент аэробно-анаэробного перехода, а следовательно, и мощность нагрузки, соответствующей этому моменту, определяется по точке на сглаженной кривой, отражающей динамику изменения интенсивности ЭМГ во время выполнения теста, которая соответствует положению точки перегиба на графике зависимости усредненного значения содержания дезоксигенированной формы гемоглобина в мышечной ткани, измеряемой с помощью ИК-спектроскопии, от усредненного значения ее ЭМГ-активности, причем точка перегиба определяется по точке пересечения двух прямых, аппроксимирующих начальный и конечный участки этого графика.
RU2015156333A 2015-12-28 2015-12-28 Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки RU2611915C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015156333A RU2611915C1 (ru) 2015-12-28 2015-12-28 Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015156333A RU2611915C1 (ru) 2015-12-28 2015-12-28 Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки

Publications (1)

Publication Number Publication Date
RU2611915C1 true RU2611915C1 (ru) 2017-03-01

Family

ID=58459190

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015156333A RU2611915C1 (ru) 2015-12-28 2015-12-28 Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки

Country Status (1)

Country Link
RU (1) RU2611915C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796467C1 (ru) * 2022-06-06 2023-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный аграрный университет имени П.А. Столыпина" (ФГБОУ ВО Омский ГАУ) Способ анализа биоэлектрического сигнала скелетных мышц

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350707A (ja) * 1999-05-25 2000-12-19 Avl Medical Instr Ag 呼吸測定データに依存した指標を求めるための方法および装置
RU2405426C1 (ru) * 2009-07-14 2010-12-10 Андрей Леонидович Похачевский Способ определения границы аэробно-анаэробного перехода по кардиоритмограмме при нагрузочном тестировании
RU2491886C2 (ru) * 2011-06-03 2013-09-10 Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации - Институт медико-биологических проблем Российской академии наук (ГНЦ РФ - ИМБП РАН) Способ определения мощности нагрузки с определением момента аэробно-анаэробного перехода по электромиограмме и данным ик-спектроскопии работающей мышцы
RU2527848C1 (ru) * 2013-09-13 2014-09-10 Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации-Институт медико-биологических проблем Российской академии наук (ГНЦ РФ-ИМБП РАН) Способ непрямого капнометрического определения анаэробного порога физической работоспособности человека

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350707A (ja) * 1999-05-25 2000-12-19 Avl Medical Instr Ag 呼吸測定データに依存した指標を求めるための方法および装置
RU2405426C1 (ru) * 2009-07-14 2010-12-10 Андрей Леонидович Похачевский Способ определения границы аэробно-анаэробного перехода по кардиоритмограмме при нагрузочном тестировании
RU2491886C2 (ru) * 2011-06-03 2013-09-10 Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации - Институт медико-биологических проблем Российской академии наук (ГНЦ РФ - ИМБП РАН) Способ определения мощности нагрузки с определением момента аэробно-анаэробного перехода по электромиограмме и данным ик-спектроскопии работающей мышцы
RU2527848C1 (ru) * 2013-09-13 2014-09-10 Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации-Институт медико-биологических проблем Российской академии наук (ГНЦ РФ-ИМБП РАН) Способ непрямого капнометрического определения анаэробного порога физической работоспособности человека

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PERRY S.R. et al. Mean power frequency and amplitude of the mechanomyographic and electromyographic signals during incremental cycle ergometry. J Electromyogr Kinesiol. 2001 Aug;11(4):299-305. *
СКЛАДАНИВСКАЯ И. Изменение амплитудных показателей электромиограммы у квалифицированных спортсменов при выполнении ступенчато возрастающей наргузки. Актуальные проблемы физической культуры и спорта. 2013, 3 (28), с. 63-68. *
СКЛАДАНИВСКАЯ И. Изменение амплитудных показателей электромиограммы у квалифицированных спортсменов при выполнении ступенчато возрастающей наргузки. Актуальные проблемы физической культуры и спорта. 2013, 3 (28), с. 63-68. PERRY S.R. et al. Mean power frequency and amplitude of the mechanomyographic and electromyographic signals during incremental cycle ergometry. J Electromyogr Kinesiol. 2001 Aug;11(4):299-305. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796467C1 (ru) * 2022-06-06 2023-05-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный аграрный университет имени П.А. Столыпина" (ФГБОУ ВО Омский ГАУ) Способ анализа биоэлектрического сигнала скелетных мышц

Similar Documents

Publication Publication Date Title
Bellotti et al. Determination of maximal lactate steady state in healthy adults: can NIRS help
Kaikkonen et al. Can HRV be used to evaluate training load in constant load exercises?
Iglesias‐Soler et al. Effect of set configuration on hemodynamics and cardiac autonomic modulation after high‐intensity squat exercise
Buchheit et al. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players
Billat et al. Cardiac output and performance during a marathon race in middle-aged recreational runners
Fabre et al. A novel approach for lactate threshold assessment based on rating of perceived exertion
Kirby et al. The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion
McNarry et al. Aerobic function and muscle deoxygenation dynamics during ramp exercise in children
Willis et al. Vascular and oxygenation responses of local ischemia and systemic hypoxia during arm cycling repeated sprints
Gronwald et al. Real-time estimation of aerobic threshold and exercise intensity distribution using fractal correlation properties of heart rate variability: a single-case field application in a former olympic triathlete
Gayda et al. Comparison of gas exchange data using the Aquatrainer® system and the facemask with Cosmed K4b2 during exercise in healthy subjects
Kim et al. The acute muscular effects of cycling with and without different degrees of blood flow restriction
Gmada et al. Crossover and maximal fat-oxidation points in sedentary healthy subjects: methodological issues
Smith et al. Relationship between muscle sympathetic nerve activity and aortic wave reflection characteristics in aerobic-and resistance-trained subjects
Bernardi et al. Assessment of exercise stroke volume and its prediction from oxygen pulse in paralympic athletes with locomotor impairments: cardiac long-term adaptations are possible
Norheim et al. The effect of aging on physical performance among elderly manual workers: protocol of a cross-sectional study
Mishica et al. Evaluation of nocturnal vs. morning measures of heart rate indices in young athletes
WO2022239507A1 (ja) 最適運動強度の推定方法、トレーニング方法、運動指示装置、及び最適運動強度の推定システム
Collins et al. The effects of walking or walking-with-poles training on tissue oxygenation in patients with peripheral arterial disease
Smith et al. Self-paced cycling at the highest sustainable intensity with blood flow restriction reduces external but not internal training loads
Stanford et al. Acute cardiovascular response to unilateral, bilateral, and alternating resistance exercise with blood flow restriction
RU2611915C1 (ru) Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки
Pope et al. Hypertrophic and strength responses to eccentric resistance training with blood flow restriction: A pilot study
Kuznetsov et al. Determination of aerobic–anaerobic transition in the working muscle using EMG and near-infrared spectroscopy data
RU2491886C2 (ru) Способ определения мощности нагрузки с определением момента аэробно-анаэробного перехода по электромиограмме и данным ик-спектроскопии работающей мышцы