RU2611591C1 - Скважинное устройство гамма-гамма каротажа - Google Patents

Скважинное устройство гамма-гамма каротажа Download PDF

Info

Publication number
RU2611591C1
RU2611591C1 RU2015151680A RU2015151680A RU2611591C1 RU 2611591 C1 RU2611591 C1 RU 2611591C1 RU 2015151680 A RU2015151680 A RU 2015151680A RU 2015151680 A RU2015151680 A RU 2015151680A RU 2611591 C1 RU2611591 C1 RU 2611591C1
Authority
RU
Russia
Prior art keywords
gamma
source
probe
detectors
small
Prior art date
Application number
RU2015151680A
Other languages
English (en)
Inventor
Евгений Петрович Боголюбов
Евгений Владимирович Громов
Александр Павлович Кошелев
Виталий Иванович Микеров
Владимир Владимирович Первушин
Вячеслав Леонидович Плотников
Виктор Григорьевич Цейтлин
Дмитрий Игоревич Юрков
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority to RU2015151680A priority Critical patent/RU2611591C1/ru
Application granted granted Critical
Publication of RU2611591C1 publication Critical patent/RU2611591C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/12Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma or X-ray sources

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Использование: для исследований параметров пластов и технического состояния скважин методом гамма-гамма каротажа. Сущность изобретения заключается в том, что скважинное устройство гамма-гамма каротажа содержит цилиндрический охранный корпус, цилиндрический экран, соосный с охранным корпусом и содержащий коллимирующие отверстия, находящиеся напротив источника гамма-квантов и гамма-детекторов, источник гамма-квантов, гамма-детекторы малого и большого зондов расположены внутри цилиндрического экрана последовательно вдоль оси охранного корпуса, причем малый зонд включает в себя один гамма-детектор, соосный с охранным корпусом и расположенный на расстоянии L1≈20 см от источника гамма-квантов, а большой зонд включает в себя шесть гамма-детекторов, подобных детектору малого зонда и расположенных по ту же сторону от источника гамма-квантов, что и детектор малого зонда, равномерно в поперечном сечении охранного корпуса, на расстоянии L2=2⋅L1 по оси охранного корпуса от источника гамма-квантов, при этом устройство содержит дополнительный зонд, включающий в себя шесть или более гамма-детекторов, подобных детектору малого зонда и расположенных в экране на расстоянии L3≥3⋅L1 по оси охранного корпуса от источника гамма-квантов по ту же сторону от источника гамма-квантов, что и детекторы большого зонда, равномерно в поперечном сечении охранного корпуса. Технический результат: повышение точности измерения плотности цементного камня в обсаженных скважинах. 3 ил.

Description

Изобретение относится к области геофизических исследований параметров пластов и технического состояния скважин методом гамма-гамма каротажа и может быть использовано в каротажных устройствах, предназначенных для контроля толщины стенок обсадной колонны скважины, а также измерения плотности цементного камня вокруг нее.
Известно «Устройство для определения плотности и эффективного атомного номера горных пород» [Инструкция по проведению литолого-плотностного гамма-гамма каротажа аппаратурой СГПЛ и обработке результатов измерений, МИ 41-17-1402-04, Тверь, 2004 г. http://www.karotazh.ru/sites/default/files/files/instr_sgpl.pdf Аналог.
Данное устройство состоит из охранного корпуса, в котором расположен источник гамма-квантов Cs-137 активностью 1⋅1010 Бк, три последовательно расположенных детектора и система телеметрии для передачи данных на поверхность.
В корпусе напротив источника и детекторов выполнены коллимационные отверстия, оставшееся пространство между источником, детекторами и корпусом прибора заполнено свинцовым экраном. Прибор снабжен прижимным устройством, обеспечивающим прижим прибора со стороны коллимационных окон к стенке скважины. Ближний и дальний зонды обеспечивают регистрацию жесткой части спектра гамма-излучения, средний зонд регистрирует полный спектр. На поверхности информационные сигналы регистрируются и обрабатываются по известным алгоритмам, позволяющим определить плотность и эффективный атомный номер горных пород.
Недостатком аналога является то, что он предназначен для работы только в необсаженных скважинах и не предназначен для контроля толщины стенок обсадной колонны скважины, а также плотности цементного камня вокруг нее.
Известно «Устройство для измерения плотности горной породы в скважине с набором детекторов для компенсации неровностей поверхности скважины и наклона устройства», которое содержит гамма-источник, первый близко расположенный гамма-детектор, второй близко расположенный гамма-детектор, по крайней мере, один гамма-детектор, расположенный на большем расстоянии по оси устройства от источника гамма-квантов. Патент США №5530243, МПК: G01V 5/12. 1996 г. Аналог.
Недостатком аналога является то, что он предназначен для работы только в необсаженных скважинах и не предназначен для контроля толщины стенок обсадной колонны скважины, а также плотности цементного камня вокруг нее.
В процессе эксплуатации месторождений очень важна информация о состоянии обсадной колонны и качества ее цементирования. Наиболее близким техническим средством для решения этой задачи является скважинная аппаратура гамма-гамма каротажа СГДТ-НВ (скважинный гамма-дефектомер-толщиномер - новая версия), определяющая толщину стенки обсадной колонны и плотность цементного камня [http://www.topneftegaz.ru/catalogue/product/view/1180978, каталог (продукция), классификатор, «Гамма-плотномер-толщиномер скважинный (цифровой вариант) СГДТ-НВ»; http://www.text.tr200.biz/referat_geologija/?referat=540064, Реферат: «Геофизические методы исследования скважин и скважинная аппаратура»] Прототип.
Устройство прототипа поясняется на Фиг. 1. Устройство содержит охранный корпус 1, в котором расположены источник гамма-квантов 2, малый зонд 3, выполненный из одного сцинтилляционного детектора, расположенного по оси прибора, большой зонд 4, выполненный из шести сцинтилляционных детекторов, расположенных в поперечном сечении прибора равномерно по окружности, детектор канала естественной гамма-активности (на фигуре 1 не показан), датчик угла пространственной ориентации прибора (на фигуре не показан), систему телеметрии для обработки и передачи данных на поверхность (на фиг. 1 не показана).
Свинцовый экран 5 обеспечивает направленность потока гамма-квантов, излучаемых источником гамма-квантов 2, а также рассеянного излучения, поступающего на малый 3 и большой 4 зонды с помощью коллимирующих отверстий 9.
Во время работы устройство перемещается вдоль оси скважины, находящейся в горной породе 8. Скважина обсажена стальной обсадной колонной 6. Пространство между обсадной колонной 6 и горной породой 8 зацементировано (заполнено цементным камнем 7).
Устройство на Фиг. 1 работает следующим образом.
Устройство, находящееся в охранном корпусе 1, помещают внутрь обсадной колонны 6 и перемещают вдоль ее оси. Гамма-излучение, выходящее из источника гамма-квантов 2, проходит через коллимационное отверстие 9 в свинцовом экране 5 и попадает в окружающую среду: стенку обсадной колонны 6, цементный камень 7 и горную породу 8, где рассеивается и поглощается. Возникающие при этом рассеянные гамма-кванты частично проходят через коллимирующие отверстия 9 в свинцовом экране 5, находящиеся перед детекторами малого 3 и большого 4 зондов, попадают на детекторы зондов, где регистрируются ими.
Интенсивность рассеянного гамма-излучения, регистрируемая малым зондом 3, в основном определяется толщиной стенки Нк обсадной колонны 6. Интенсивность рассеянного гамма-излучения, регистрируемая детекторами большого зонда 4, определяется толщиной стенки Нк обсадной колонны 6, плотностью Rцк цементного камня 7 и плотностью окружающей горной породы 8.
При интерпретации результатов измерений используется система из двух линейных уравнений (1):
Figure 00000001
где:
Нк - толщина стенки обсадной колонны 6;
Rцк - плотность цементного камня 7;
А1, А2, В1, В2, С1, С2 - постоянные коэффициенты, определяемые по результатам калибровки аппаратуры;
Jмз, Jбз - интенсивности рассеянного гамма-излучения, регистрируемые детекторами малого 3 и большого 4 зондов соответственно.
Система уравнений (1) позволяет учитывать влияние толщины Нк стенки обсадной колонны 6 на показания большого зонда 4. При этом сигнал, регистрируемый большим зондом Jбз, формируется также гамма-квантами, рассеянными в цементном камне 7 и породе 8. Разделить влияние плотности породы 8 и плотности цементного камня 7 на Jбз практически невозможно. Поэтому результатом решения системы уравнений (1) является толщина стенки колонны Нк и «кажущаяся» плотность цементного камня Rцк.
Таким образом, недостатком прототипа является низкая точность измерения плотности цементного камня в обсаженных скважинах.
Техническим результатом изобретения является повышение точности измерения плотности цементного камня в обсаженных скважинах.
Технический результат достигается тем, что скважинное устройство гамма-гамма каротажа, содержащее цилиндрический охранный корпус, цилиндрический экран, соосный с охранным корпусом и содержащий коллимирующие отверстия, находящиеся напротив источника гамма-квантов и гамма-детекторов, источник гамма-квантов, гамма-детекторы малого и большого зондов расположены внутри цилиндрического экрана последовательно вдоль оси охранного корпуса, причем малый зонд включает в себя один гамма-детектор, соосный с охранным корпусом и расположенный на расстоянии L1≈20 см от источника гамма-квантов, а большой зонд включает в себя шесть гамма-детекторов, подобных детектору малого зонда и расположенных по ту же сторону от источника гамма-квантов, что и детектор малого зонда, равномерно в поперечном сечении охранного корпуса, на расстоянии L2=2⋅L1 по оси охранного корпуса от источника гамма-квантов, устройство содержит дополнительный зонд, включающий в себя шесть или более гамма-детекторов, подобных детектору малого зонда и расположенных в экране на расстоянии L3≥3⋅L1 по оси охранного корпуса от источника гамма-квантов по ту же сторону от источника гамма-квантов, что и детекторы большого зонда, равномерно в поперечном сечении охранного корпуса.
Сущность изобретения поясняется на Фиг. 2 и Диаграмме, где:
1 - охранный корпус;
2 - источник гамма-квантов;
3, 4 - малый и большой зонды рассеянного гамма-излучения;
5 - экран;
6 - обсадная колонна;
7 - цементный камень;
8 - горная порода;
9 - коллимирующие отверстия;
10 - дополнительный зонд рассеянного гамма-излучения;
L1 - расстояние между источником гамма-квантов 2 и гамма-детектором малого зонда 3;
L2 - расстояние между источником гамма-квантов 2 и гамма-детекторами большого зонда 4;
L3 - расстояние между источником гамма-квантов 2 и гамма-детекторами дополнительного зонда 9;
11 - график изменения плотности ρ породы 8;
12 - границы допустимой погрешности измерения плотности цементного
камня 7;
13 - границы допустимой погрешности измерения толщины стенки обсадной колонны 6;
14, 15 - графики погрешности измерения ΔRцк плотности цементного камня 7 и погрешности измерения ΔНк толщины стенки обсадной колонны 6 аппаратурой гамма-гамма каротажа типа СГДТ-НВ с использованием стандартного двух зондового скважинного устройства;
16, 17 - графики погрешности измерения ΔRцк плотности цементного камня 7 и погрешности измерения ΔНк толщины стенки обсадной колонны 6 аппаратурой гамма-гамма каротажа типа СГДТ-НВ с использованием модифицированного трехзондового скважинного устройства.
На Фиг. 2 показаны основные элементы скважинного устройства.
Штриховыми линиями на Фиг. 2 условно показаны траектории гамма-квантов, выходящих из источника 2, и гамма-квантов, рассеянных в породе и попадающих на детекторы малого 3, большого 4 и дополнительного 10 зондов через коллимирующие отверстия 9.
На Фиг. 2 не показаны детектор канала естественной гамма-активности, датчик угла пространственной ориентации, система телеметрии и другие элементы устройства, общие для прототипа и скважинного прибора, составляющего предмет изобретения.
Устройство содержит: цилиндрический охранный корпус 1, источник гамма-квантов 2, малый 3 и большой 4 зонды рассеянного гамма-излучения, экран 5 цилиндрической формы с коллимирующими отверстиями 9, дополнительный зонд 10, а также детектор канала естественной гамма-активности, датчик угла пространственной ориентации, систему телеметрии и другие элементы устройства, общие для прототипа и скважинного прибора, составляющего предмет изобретения.
Охранный корпус 1 выполняется из стали толщиной около 8 мм и служит в качестве прочного корпуса устройства.
Источником гамма-квантов 2 может быть, например, изотопный источник Cs-137 активностью около 1⋅1010 Бк.
Малый зонд 3 включает в себя, например, сцинтилляционный гамма-детектор с сцинтилляционным кристаллом размером ∅16×40 мм, например, на основе сцинтиллятора NaI(Tl), расположенный на оси охранного корпуса 1 внутри экрана 5 на расстоянии L1 от источника гамма-квантов 2.
Большой зонд 4 включает в себя шесть гамма-детекторов, подобных детектору малого зонда 3 и расположенных равномерно в поперечном сечении охранного корпуса 1 внутри экрана 5 на расстоянии L2=2⋅L1, измеряемого по оси охранного корпуса 1, от источника гамма-квантов 2 по ту же сторону от источника гамма-квантов 2, что и детектор малого зонда 3.
Дополнительный зонд 10, включает в себя шесть или более гамма-детекторов, подобных детектору малого зонда 3 и расположенных равномерно в поперечном сечении охранного корпуса 1 внутри экрана 5 на расстоянии L3≥3⋅L1, измеряемого по оси охранного корпуса 1, по ту же сторону от источника гамма-квантов 2, что и детекторы большого зонда 4.
Экран 5 служит для формирования углового распределения излучаемых и регистрируемых гамма-квантов. Для этого в экране 5 предусмотрены коллимирующие отверстия 9. Экран 5 изготавливается из металла с большим зарядом электронной оболочки атома, например, свинца или вольфрама, обладающих большим сечением ослабления потока гамма-квантов. Ось экрана 5 совпадает с осью охранного корпуса 1.
Стенка стальной обсадной колонны 6 и цементный камень 7 обеспечивают прочность конструкции скважины, окруженной горной породой 8. Толщина стенки Нк обсадной колонны 6 составляет около 8 мм. Толщина цементного камня 7 вокруг обсадной колонны 6 составляет примерно 35 мм.
На Диаграмме показаны погрешности измерения плотности цементного камня 7 ΔRцк и толщины стенки обсадной колонны 6 ΔНк, полученные экспериментально при различных значениях плотности ρ породы 8 с использованием двух зондового скважинного устройства (ломаные линии 14, 15) и модифицированного трехзондового скважинного устройства (ломаные линии 16, 17) в составе аппаратуры гамма-гамма каротажа типа СГДТ-НВ при расстоянии между источником гамма-квантов 2 и детекторами дополнительного зонда 10, обеспечивающем минимальные значения ΔRцк в диапазоне ρ=(1000÷2410) кг/м3.
Ломаной линией 11 на Диаграмме показаны значения плотности ρ породы 8, окружающей цементный камень 7, при которых производились измерения плотности цементного камня Rцк и толщины стенки Нк обсадной колонны 6. Прямыми линиями 12 и 13 обозначены границы допустимой погрешности измерения плотности цементного камня ΔRцк и границы допустимой погрешности измерения толщины стенки обсадной колонны ΔНк соответственно.
Работа устройства осуществляется следующим образом.
Устройство, находящееся в охранном корпусе 1, помещают внутрь обсадной колонны 6 и перемещают вдоль ее оси. Гамма-излучение выходит из источника гамма-квантов 2, проходит через соответствующее коллимирующее отверстие 9 в экране 5, попадает в окружающую среду: стенку обсадной колонны 6, цементный камень 7 и горную породу 8, где рассеивается и поглощается. Возникающие при этом рассеянные гамма-кванты частично проходят через коллимирующие отверстия в экране 5, находящиеся напротив гамма-детекторов малого 3, большого 4 и дополнительного 9 зондов, попадают на сцинтилляционные кристаллы гамма-детекторов этих зондов, где частично регистрируются.
Интенсивность рассеянного гамма-излучения Jмз, регистрируемая гамма-детектором малого зонда 3, в основном определяется толщиной Нк стенки обсадной колонны 6.
Интенсивность рассеянного гамма-излучения Jбз, регистрируемая гамма-детекторами большого зонда 4 определяется толщиной Нк стенки обсадной колонны 6, плотностью Rцк цементного камня 7 и плотностью ρ окружающей горной породы 8.
Интенсивность рассеянного гамма-излучения Jдз, регистрируемая гамма-детекторами дополнительного зонда 10, в значительно большей степени, чем для большого зонда 4, определяется плотностью ρ окружающей породы 8.
Интерпретация результатов измерений производится с использованием следующей системы уравнений:
Figure 00000002
где:
Нк - толщина стенки обсадной колонны;
Rцк - плотность цементного камня;
А1, А2, В1, В2, С1, С2, D1, D2 - постоянные коэффициенты, определяемые по результатам калибровки аппаратуры;
Jмз, Jбз и Jдз - интенсивности рассеянного гамма-излучения, регистрируемые гамма-детекторами малого, большого и дополнительного зондов соответственно.
Система уравнений (2) позволяет учитывать влияние на показания большого зонда 4, как толщины Нк стенки обсадной колонны 6, так и плотности ρ горной породы 8. Что повышает точность измерения плотности цементного камня Rцк.
Выбор расстояния L3 (между гамма-источником 2 и детекторами дополнительного зонда 10) выполняется с учетом того, что при увеличении расстояния L3, с одной стороны, уменьшается вклад в сигнал Jдз гамма-излучения, рассеянного в цементном камне 7, а, с другой, снижается интенсивность излучения, поступающего на дополнительный зонд 10, и, как следствие, ухудшается статистическая точность измерения Jдз. Очевидно, что существует такое расстояние L3, при котором ошибка определения плотности цементного камня принимает минимальное значение.
При выборе расстояния L3 следует учитывать, что на статистическую точность измерения Jдз влияют также размеры и количество детекторов дополнительного зонда 10 и активность источника гамма-квантов 2.
Экспериментальное моделирование работы трехзондового скважинного устройства было проведено для конкретной аппаратуры типа СГДТ-НВ. Малый зонд 3 устройства содержит один сцинтилляционный гамма-детектор на основе NaI(Tl) размером ∅16×40 мм, а большой зонд 4 и дополнительный зонд 10 скважинного устройства содержит шесть таких детекторов. Размеры большого 4 и малого 3 зондов составляли: L1=20 см, L2=40 см.
Целью моделирования было определение такого расстояния L3 между источником гамма-квантов 2 и детекторами дополнительного зонда 10, при котором погрешность измерения плотности цементного камня ΔRцк не выходит за пределы допустимых значений (прямые линии 12 Диаграммы) при значениях плотности ρ окружающей горной породы 8 в пределах (1000÷2410) кг/м3 (ломаная линия 11 Диаграммы). Такое расстояние обычно называется оптимальным.
Результаты экспериментов показали, что для модифицированного трехзондового устройства аппаратуры типа СГДТ с указанными выше размерами малого 3 и большого 4 зондов оптимальный размер дополнительного зонда 10 составляет: L3 опт≈3⋅L1≈60 см.
Оптимальный размер дополнительного зонда L3 опт может быть больше 60 см в случае обеспечения большей эффективности регистрации рассеянных гамма-квантов дополнительным зондом 10 за счет, например, увеличения числа сцинтилляционных кристаллов дополнительного зонда, использования более эффективного сцинтиллятора или применения более мощного источника гамма-квантов.
Результаты измерений характеристик модифицированного трехзондового скважинного устройства аппаратуры типа СГДТ-НВ с малым 3, большим 4 и дополнительным 10 зондами размером: 20 см, 40 см и 60 см соответственно представлены на Диаграмме.
Из Диаграммы видно, что с изменением плотности ρ горной породы 8 (ломаная линия 11) погрешность определения плотности цементного камня ΔRцк стандартным двухзондовым скважинным устройством СГДТ-НВ (ломаная линия 14) превышает допустимую погрешность ±150 кг/м3 (прямые линии 12) и может достигать 1500 кг/м3 при плотности породы ρ=1000 кг/м3; при этом погрешность определения толщины стенки ΔНк (ломаная линия 15) также превышает допустимую погрешность, равную ±0,5 мм (прямые линии 13), и достигает 1,5 мм при плотности породы ρ=1000 кг/м3.
При использовании модифицированного трехзондового скважинного устройства погрешность определения плотности цементного камня ΔRцк (ломаная линия 16) и погрешность определения толщины стенки колонны ΔНк (ломаная линия 17) находятся в коридорах допустимых для них погрешностей, границы которых определяются прямыми линиями 12 и 13 соответственно.

Claims (1)

  1. Скважинное устройство гамма-гамма каротажа, содержащее цилиндрический охранный корпус, цилиндрический экран, соосный с охранным корпусом и содержащий коллимирующие отверстия, находящиеся напротив источника гамма-квантов и гамма-детекторов, источник гамма-квантов, гамма-детекторы малого и большого зондов расположены внутри цилиндрического экрана последовательно вдоль оси охранного корпуса, причем малый зонд включает в себя один гамма-детектор, соосный с охранным корпусом и расположенный на расстоянии L1≈20 см от источника гамма-квантов, а большой зонд включает в себя шесть гамма-детекторов, подобных детектору малого зонда и расположенных по ту же сторону от источника гамма-квантов, что и детектор малого зонда, равномерно в поперечном сечении охранного корпуса, на расстоянии L2=2⋅L1 по оси охранного корпуса от источника гамма-квантов, отличающееся тем, что устройство содержит дополнительный зонд, включающий в себя шесть или более гамма-детекторов, подобных детектору малого зонда и расположенных в экране на расстоянии L3≥3⋅L1 по оси охранного корпуса от источника гамма-квантов по ту же сторону от источника гамма-квантов, что и детекторы большого зонда, равномерно в поперечном сечении охранного корпуса.
RU2015151680A 2015-12-02 2015-12-02 Скважинное устройство гамма-гамма каротажа RU2611591C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015151680A RU2611591C1 (ru) 2015-12-02 2015-12-02 Скважинное устройство гамма-гамма каротажа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015151680A RU2611591C1 (ru) 2015-12-02 2015-12-02 Скважинное устройство гамма-гамма каротажа

Publications (1)

Publication Number Publication Date
RU2611591C1 true RU2611591C1 (ru) 2017-02-28

Family

ID=58459067

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015151680A RU2611591C1 (ru) 2015-12-02 2015-12-02 Скважинное устройство гамма-гамма каротажа

Country Status (1)

Country Link
RU (1) RU2611591C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197560U1 (ru) * 2019-10-09 2020-05-13 Общество с Ограниченной Ответственностью "ТНГ-Групп" Прибор микро гамма-гамма каротажа

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180727A (en) * 1977-10-20 1979-12-25 Mobil Oil Corporation Gamma-gamma density logging method
RU2105331C1 (ru) * 1993-08-16 1998-02-20 Малыхин Анатолий Яковлевич Скважинный прибор для гамма-гамма-каротажа
US6907097B2 (en) * 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
RU2357387C1 (ru) * 2007-10-03 2009-05-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Генератор нейтронов
RU2368024C1 (ru) * 2007-12-19 2009-09-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинный импульсный нейтронный генератор
RU127487U1 (ru) * 2012-12-04 2013-04-27 Закрытое акционерное общество Научно-производственная фирма "ГИТАС" (ЗАО НПФ "ГИТАС") Комплексная спектрометрическая аппаратура ядерного каротажа

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180727A (en) * 1977-10-20 1979-12-25 Mobil Oil Corporation Gamma-gamma density logging method
RU2105331C1 (ru) * 1993-08-16 1998-02-20 Малыхин Анатолий Яковлевич Скважинный прибор для гамма-гамма-каротажа
US6907097B2 (en) * 2001-03-16 2005-06-14 The Regents Of The University Of California Cylindrical neutron generator
RU2357387C1 (ru) * 2007-10-03 2009-05-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" Генератор нейтронов
RU2368024C1 (ru) * 2007-12-19 2009-09-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Скважинный импульсный нейтронный генератор
RU127487U1 (ru) * 2012-12-04 2013-04-27 Закрытое акционерное общество Научно-производственная фирма "ГИТАС" (ЗАО НПФ "ГИТАС") Комплексная спектрометрическая аппаратура ядерного каротажа

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197560U1 (ru) * 2019-10-09 2020-05-13 Общество с Ограниченной Ответственностью "ТНГ-Групп" Прибор микро гамма-гамма каротажа

Similar Documents

Publication Publication Date Title
US10197701B2 (en) Logging tool for determination of formation density and methods of use
US7642507B2 (en) Apparatus and methods for interlaced density and neutron measurements
US7361886B2 (en) Corrections of gamma-ray responses
USRE38910E1 (en) Low activity nuclear density gauge
JPH03150488A (ja) 原子核分光信号の安定化および校正方法およびその装置
US4342911A (en) Focused nuclear interface survey instrument and method of determining density changes in mining and storage wells
US20140034822A1 (en) Well-logging apparatus including axially-spaced, noble gas-based detectors
WO2011094686A2 (en) Apparatus and algorithm for measuring formation bulk density
MXPA06001995A (es) Soportes blindados para detectar fenomenos de radiacion en el subterraneo.
US20060229815A1 (en) Method and apparatus for shale bed detection in deviated and horizontal wellbores
EP0206593B1 (en) Borehole compensation method and apparatus
US9052404B2 (en) Well-logging apparatus including azimuthally-spaced, noble gas-based detectors
US4829176A (en) Logging apparatus and method
RU2611591C1 (ru) Скважинное устройство гамма-гамма каротажа
Chiozzi et al. Practical applicability of field γ-ray scintillation spectrometry in geophysical surveys
RU2680102C2 (ru) Комплексная спектрометрическая аппаратура нейтронного каротажа
US4085323A (en) Calibrator for radioactivity well logging tools
US7649169B2 (en) Method for determining shale bed boundaries and gamma ray activity with gamma ray instrument
RU2769169C1 (ru) Аппаратура мультиметодного многозондового нейтронного каротажа - ммнк для посекторного сканирования разрезов нефтегазовых скважин
RU2578050C1 (ru) Скважинное устройство с двухсторонним расположением измерительных зондов
US11105951B2 (en) Calibration of a gamma logging tool
RU2578048C1 (ru) Устройство для радиационного измерения плотности
Glushkova et al. Express Assessment of the Quality of Fluorite-Containing Raw Materials
RU151860U1 (ru) Скважинное устройство с измерительными зондами гамма излучения
RU2396552C1 (ru) Прибор для исследования качества цементирования обсадной колонны скважины в горной породе