RU2610830C1 - Устройство для извлечения радионуклидов из водных растворов - Google Patents

Устройство для извлечения радионуклидов из водных растворов Download PDF

Info

Publication number
RU2610830C1
RU2610830C1 RU2015141061A RU2015141061A RU2610830C1 RU 2610830 C1 RU2610830 C1 RU 2610830C1 RU 2015141061 A RU2015141061 A RU 2015141061A RU 2015141061 A RU2015141061 A RU 2015141061A RU 2610830 C1 RU2610830 C1 RU 2610830C1
Authority
RU
Russia
Prior art keywords
radionuclides
aqueous solutions
extracting
column
chamber
Prior art date
Application number
RU2015141061A
Other languages
English (en)
Inventor
Виктор Павлович Ремез
Original Assignee
Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" filed Critical Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб"
Priority to RU2015141061A priority Critical patent/RU2610830C1/ru
Application granted granted Critical
Publication of RU2610830C1 publication Critical patent/RU2610830C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к радиоаналитической химии и может быть использовано для контроля содержания радионуклидов в пресной и морской воде, в пробах различных технологических растворов. Устройство для извлечения радионуклидов из водных растворов включает камеру-колонку, заполненную селективным сорбентом, зафиксированным с двух сторон дисковыми сетками. Камера-колонка дополнительно снабжена крышкой для закрепления устройства для извлечения радионуклидов из водных растворов на емкости с водным раствором, крышка имеет одно или более отверстий и прилегает к одной из дисковых сеток, а дисковая сетка служит внешней перегородкой камеры-колонки. Изобретение позволяет повысить эффективность извлечения радионуклидов из водных растворов, а также повысить удобство и эффективность измерения активности полученного концентрата радионуклидов. 2 з.п. ф-лы, 2 ил., 5 пр.

Description

Изобретение относится к радиоаналитической химии и может быть использовано для контроля содержания радионуклидов в пресной и морской воде, в моче людей, пострадавших от радиационных инцидентов, и в пробах различных технологических растворов.
Испытания ядерного оружия, многочисленные радиационные инциденты и, особенно, аварии на Чернобыльской АЭС и на АЭС Фукусима-1 привели к глобальному загрязнению почвы и природных вод искусственными радионуклидами. Для выявления источников радиационного загрязнения природных вод, контроля содержания изотопов в некоторых технологических растворах, определения количества радионуклидов в организмах людей, подвергнувшихся радиационному воздействию, и для радиационного мониторинга окружающей среды необходимы методы анализа водных растворов, включающие извлечение радионуклидов, подготовку концентрата и измерение активности радионуклидов в концентрате.
Особенно важно точно и быстро определять минимальные количества радионуклидов в растворах, полученных при переработке жидких радиоактивных отходов АЭС, в том числе при использовании технологий типа COREBRICK, направленных на полную дезактивацию водных систем.
Методика определения радионуклидов в водных растворах должна иметь высокую чувствительность, низкую стоимость и возможность применения в крупномасштабных массовых исследованиях. Для извлечения радионуклидов из водных растворов применяются различные виды селективных сорбентов, но их массовому использованию мешают сложности с подготовкой сорбентов для концентрирования и загрузкой в колонки (для гранулированных форм), сложное аппаратурное оформление для мембранных форм сорбентов и т.п. Для массового использования сорбенты должны заранее находиться в устройствах, готовых к непосредственному применению.
Известно фильтрующее устройство для очистки воды пеналов или бассейнов с отработанным топливом, содержащее корпус с входным и выходным патрубками и сорбирующую загрузку из нетканого ионообменного материала, при этом сорбирующая загрузка выполнена многослойной, причем первый слой выполнен из полиамфолита на основе полиакрилонитрильных волокон с обменной емкостью 4,5-5,5 ммоль/г, второй слой - из углеродсодержащего сорбционно фильтрующего материала "бусофита", а между ними расположена армирующая подложка из полипропиленового или поливинилспиртового волокна (см. патент РФ на изобретение №2125746. «Фильтрующее устройство для очистки воды». 5 МПК G21F 9/12, C02F 1/28, B01D 39/16, приоритет 04.03.1997 г., опубл. 27.01.1999 г.) http://www1.fips.ru/fips_servl/fips_servlet.
Недостатком известного фильтрующего устройства для очистки воды является то, что его сложная геометрия и конструкционные материалы, предназначенные для растворов с высоким уровнем активности, не позволяют использовать устройство для радиометрирования концентрата радионуклидов, образовавшегося после очистки раствора.
Сорбирующая загрузка выполнена многослойной, при этом каждый тип фильтрующего материала имеет свою рабочую функцию, что влечет необходимость не только в измерении активности полученного концентрата радионуклидов, но и необходимость расчета очистки по каждому элементу, что усложняет и делает его недоступным для массового экологического мониторинга, а следовательно, снижает его эффективность и удобство.
Также недостатком известного фильтрующего устройства является то, что слои сорбирующей многослойной загрузки способны удерживать большое количество очищаемой воды, при этом их сложно просушить, что приводит к значительному искажению полученных результатов, а следовательно, снижает эффективность и удобство измерения активности полученного концентрата радионуклидов.
Наиболее близким по совокупности существенных признаков является сорбционная система, включающая трубки, подающие водный раствор, регулятор скорости подачи водного раствора, прозрачную капельную камеру объемом около 10 см3, в которой размещены селективный сорбент, внутренние нейлоновые дисковые микрофильтры с диаметром ячейки 15 мкм для фиксации сорбента, водонепроницаемый мембранный воздушный клапан для очистки воздуха (см. патент РФ на изобретение №2524497. «Способ извлечения радионуклидов из водных растворов». 8 МПК G21F 9/12, приоритет 17.07.2012 г., опубл. 27.01.2014 г.).
Недостатком известного устройства является то, что малый объем капельной камеры, а следовательно, небольшое количество селективного сорбента, размещенного в нем, а также малый внутренний диаметр ее выходного отверстия (2 мм) позволяют фильтровать только небольшие объемы водного раствора в течение продолжительного времени, что усложняет эффективное использование этого устройства для извлечения радионуклидов из водных растворов большого объема, что делает его, в этом случае, малоэффективным.
Также недостатком известного устройства является то, что полностью осушить селективный сорбент, помещенный в капельную камеру, из-за малого внутреннего диаметра ее выходного отверстия (2 мм) сложно, что делает его неудобным для измерения активности полученного концентрата радионуклидов, а значит, и малоэффективным для массового экологического мониторинга из-за необходимости использования дополнительных устройств (например, шприца) перед помещением на детектирование, чтобы избежать загрязнения детектора раствором и, как следствие, искажения полученных результатов при измерении.
Кроме того, недостатком известного устройства является невозможность измерения активности полученного концентрата радионуклидов напрямую из-за конструктивной особенности его капельной камеры, в которую помещен селективный сорбент, что также делает его неудобным для измерения активности полученного концентрата радионуклидов, а значит, и малоэффективным для массового экологического мониторинга.
Задача заявляемого изобретения заключается в повышении функциональных возможностей устройства для извлечения радионуклидов из водных растворов, использование которого позволяет осуществлять экспрессный и доступный массовый экологический мониторинг.
Технический результат заявляемого изобретения заключается в упрощении извлечения радионуклидов из водных растворов, а также в повышении эффективности и удобства измерения активности полученного концентрата радионуклидов.
Заявляемый технический результат достигается тем, что в заявляемом устройстве для извлечения радионуклидов из водных растворов, включающем камеру-колонку, заполненную селективным сорбентом, зафиксированным с двух сторон дисковыми сетками, согласно изобретению камера-колонка дополнительно снабжена крышкой для закрепления устройства для извлечения радионуклидов из водных растворов на емкости с водным раствором, при этом крышка имеет одно или более отверстий и прилегает к одной из дисковых сеток, а вторая дисковая сетка служит внешней перегородкой камеры-колонки.
При этом камера-колонка с селективным сорбентом устройства для извлечения радионуклидов из водных растворов может быть многоразового использования.
Кроме того, камера-колонка с селективным сорбентом устройства для извлечения радионуклидов из водных растворов может отсоединяться от крышки.
Снабжение устройства для извлечения радионуклидов из водных растворов крышкой для закрепления устройства на емкости с водным раствором, которая имеет одно или более отверстий и прилегает к одной из дисковых сеток, а также выполнение дисковой сетки в качестве внешней перегородки камеры-колонки, позволяет без дополнительных приспособлений использовать устройство не только для удобного извлечения радионуклидов из водных растворов за счет полной заводской готовности, но и для удобного и экспрессного измерения активности полученного концентрата радионуклидов, причем без искажений полученных результатов, что делает его доступным для массового экологического мониторинга, а следовательно, повышает его эффективность.
Кроме того, заявленные конструктивные признаки устройства для извлечения радионуклидов из водных растворов не определяют его конкретные габаритные размеры, что позволяет учесть объем емкостей, на которых они будут закрепляться еще при заводском изготовлении, что упрощает извлечение радионуклидов из водных растворов любых объемов, а значит, повышает эффективность извлечения.
Также снабжение устройства для извлечения радионуклидов из водных растворов вышеуказанными признаками позволяет, с одной стороны, закрепить устройство на емкости с водным раствором для обеспечения фильтрации сверху вниз всего объема водного раствора, находящегося в емкости, через селективный сорбент, при этом основное количество радионуклидов концентрируется в верхних слоях селективного сорбента, с другой стороны, наличие дисковых сеток позволяет легко удалять влагу из всего объема селективного сорбента при сушке, а выполнение одной из дисковых сеток в качестве внешней перегородки (со стороны наибольшей концентрации радионуклидов) позволяет легко осуществить измерение активности полученного концентрата без искажения результатов, что в том и другом случае повышает не только эффективность извлечения радионуклидов из водных растворов, но и эффективность, удобство измерения, что делает его доступным для массового экологического мониторинга, а, следовательно, повышает эффективность устройства в целом.
Технических решений, совпадающих с совокупностью существенных признаков изобретения, не выявлено, что позволяет сделать вывод о соответствии изобретения критерию патентоспособности «новизна».
Заявляемые существенные признаки, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности «изобретательский уровень».
Условие патентоспособности «промышленная применимость» подтверждает пример конкретного выполнения устройства для извлечения радионуклидов из водных растворов.
На фиг. 1 представлен общий вид устройства для извлечения радионуклидов из водных растворов, совмещенный с разрезом.
На фиг. 2 представлено устройство для извлечения радионуклидов из водных растворов в применении.
Устройство для извлечения радионуклидов из водных растворов 1 (фиг. 1) включает камеру-колонку 2, заполненную селективным сорбентом 3, зафиксированным с двух сторон дисковыми сетками 4, 5.
Камера-колонка 2 дополнительно снабжена крышкой 6 для закрепления устройства для извлечения радионуклидов из водных растворов на емкости с водным раствором, при этом крышка 6 имеет одно или более отверстий 7 и прилегает к одной из дисковых сеток 5, а вторая дисковая сетка 4 служит внешней перегородкой камеры-колонки 2.
В устройстве для извлечения радионуклидов из водных растворов 1 камера-колонка 2 с селективным сорбентом 3 может быть многоразового использования.
В устройстве для извлечения радионуклидов из водных растворов 1 камера-колонка 2 с селективным сорбентом 3 может отсоединяться от крышки.
Ниже приведен пример осуществления заявляемого способа (Фиг. 2).
Пример 1. Извлечение цезия-137 из морской воды для радиоэкологического мониторинга природной среды
Устройство 1, камера-колонка 2 которого заполнена 30 г селективным сорбентом 3 - гранулированным ферроцианидом железа, закрепили на полиэтиленовой емкости 8 объемом 2-50 л с морской водой, содержащей 318 Бк/л цезия-137 (добавленного из эталонного раствора). Емкость 8 перевернули горловиной вниз, сделали с помощью острого предмета (шила) диаметром 5 мм отверстие 9 для выравнивания давления внутри и снаружи емкости 8. Профильтровали раствор через устройство 1. Отсоединили устройство 1 и просушили в сушильном шкафу при температуре 70°С в течение 10 минут. Общее время на извлечение цезия из раствора и приготовление препарата, удобного для измерения, составило 15 минут. Поместили устройство 1 на детектор гамма-спектрометра, установив его вертикально на сетку 4, и измерили активность. Эффективность извлечения цезия-137 составила 99%.
Пример 2. Извлечение цезия-134 из мочи людей с целью оценки внутреннего загрязнения
Были представлены 10 проб мочи (по 2 л), взятых из накопленного суточного объема мочи добровольцев, в которые ввели от 5 до 50 Бк цезия-134, используя сертифицированный образцовый раствор данного изотопа. На горловины 2-л полиэтиленовых емкостей 8, наполненных мочой с цезием-134, навинтили устройства 1, содержащие по 5 г селективного сорбента 3 на основе ферроцианида меди. Каждую из емкостей 8 перевернули над канализационной раковиной вниз горловиной, прокололи иглой диаметром 2 мм отверстие 9 в днище для выравнивания давления внутри и снаружи емкости 8. Время фильтрации раствора через устройство 1 из каждой емкости 8 составило 2 минуты. Затем устройство 1 с селективным сорбентом 3 просушили инфракрасной лампой в вытяжном шкафу в течение 5 минут и провели радиометрирование концентратов цезия-134, находящихся в устройствах 1. Измерения показали, что эффективность извлечения цезия-134 составила для всех образцов не менее 98,8%.
Пример 3. Извлечение радионуклидов йода из водопроводной воды
Авария на АЭС Фукусима показала, что в результате разгерметизации ядерного реактора в атмосферу, а затем и в водопроводную воду поступают радионуклиды йода (г. Токио, апрель 2011 г.), количество которых необходимо контролировать.
В пробу водопроводной воды объемом 10 литров ввели изотоп йод-131 в количестве 287 Бк. К горловине емкости 8 с пробой присоединили устройство 1, в котором находилось 10 см селективного сорбента 3 - серебросодержащего угольного порошка с содержанием серебра 5% от массы селективного сорбента 3. Емкость 8 перевернули, проделали в днище отверстие 9 острым предметом, профильтровали раствор. Отсоединенное устройство 1, просушили и измерили активность на гамма-спектрометре. Степень извлечения йода-131 составила 98,7%.
Пример 4
В пробу озерной воды, помещенную в пластиковую емкость 8, объемом 5 литров, внесли 814 Бк стронция-89. К горловине емкости 8 с пробой присоединили устройство 1, в котором находилось 10 см селективного сорбента на основе двуокиси марганца. Емкость 8 перевернули, сделали отверстие 9, как в предыдущих примерах, и профильтровали раствор через устройство 1. Отсоединили устройство 1 и просушили на воздухе. Измерили бета-активность концентрата в устройстве 1 с помощью приставки к iPhone Lapka Radiation, располагая ее на дисковой сетке 4 устройства 1. Активность составила 796 Бк, степень извлечения стронция-89 соответственно 97,8%.
Пример 5
Очень часто в воде скважин, пробуренных в гранитных породах, наблюдается высокое содержание радона. По оценкам Научного комитета по действию атомной радиации (НКОАР) при ООН, около 10% жителей Земли пьют воду с содержанием радона, превышающим нормативы в 2 и более раза («Радиохимия: дозы, эффекты, риск». «Мир», 1990 г., с. 27). Анализ на определение содержания радона проводится в немногочисленных специализированных лабораториях, при этом этот анализ дорог, требует строго соблюдения правил пробоотбора и сроков доставки проб в лабораторию. Поэтому очень актуальна возможность оценить необходимость проведения такого анализа с помощью недорогого экспрессного индикаторного способа.
Через устройство 1, камера-колонка 2 которого содержит 30 г селективного сорбента на основе гидроксида циркония, из емкости 8 профильтровали 10 л, как в предыдущих примерах, воды, отобранной из скважины в районе с предполагаемым повышенным содержанием радона. Измерили активность концентрата в устройстве 1 с помощью iPhone с соответствующим программным обеспечением. Получили значение дозы излучения 189 мкЗв/ч, что значительно превышало фоновое значение (10 мкЗв/ч). Следовательно, предположение о наличии радона в скважине подтвердилось. Для уточнения содержания радона, если требуется, необходимо провести анализ в аккредитованной лаборатории.
Как видно из приведенных примеров, применение заявляемого устройства, содержащего от 50 до 70 г селективных сорбентов, позволяет за 20-30 мин извлекать радионуклиды из проб объемом 250-300 л с получением препарата, удобного для эффективного измерения активности сконцентрированных радионуклидов.
Таким образом, заявляемое изобретение обеспечивает повышение эффективности извлечения радионуклидов из водных растворов, а также повышение удобства и эффективность измерения активности полученного концентрата радионуклидов.

Claims (3)

1. Устройство для извлечения радионуклидов из водных растворов, включающее камеру-колонку, заполненную селективным сорбентом, зафиксированным с двух сторон дисковыми сетками, отличающееся тем, что камера-колонка дополнительно снабжена крышкой для закрепления устройства для извлечения радионуклидов из водных растворов на емкости с водным раствором, при этом крышка имеет одно или более отверстий и прилегает к одной из дисковых сеток, а вторая дисковая сетка служит внешней перегородкой камеры-колонки.
2. Устройство для извлечения радионуклидов из водных растворов по п. 1, отличающееся тем, что камера-колонка с селективным сорбентом многоразового использования.
3. Устройство для извлечения радионуклидов из водных растворов по п. 1, отличающееся тем, что камера-колонка с селективным сорбентом отсоединяется от крышки.
RU2015141061A 2015-09-25 2015-09-25 Устройство для извлечения радионуклидов из водных растворов RU2610830C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015141061A RU2610830C1 (ru) 2015-09-25 2015-09-25 Устройство для извлечения радионуклидов из водных растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015141061A RU2610830C1 (ru) 2015-09-25 2015-09-25 Устройство для извлечения радионуклидов из водных растворов

Publications (1)

Publication Number Publication Date
RU2610830C1 true RU2610830C1 (ru) 2017-02-16

Family

ID=58458636

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015141061A RU2610830C1 (ru) 2015-09-25 2015-09-25 Устройство для извлечения радионуклидов из водных растворов

Country Status (1)

Country Link
RU (1) RU2610830C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672473C1 (ru) * 2017-10-17 2018-11-15 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)
RU194757U1 (ru) * 2018-12-29 2019-12-23 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Устройство фильтра-сорбера для очистки водных сред от радионуклидов цезия, стронция

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2101072C1 (ru) * 1997-03-27 1998-01-10 Пензин Роман Андреевич Сорбционный блок для очистки жидких радиоактивных отходов
KR100822862B1 (ko) * 2007-08-08 2008-04-16 주식회사 하나원자력 금속 방사성폐기물의 일괄 제염처리 시스템 및 이를 이용한제염방법
RU2422160C1 (ru) * 2010-03-05 2011-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Биотех-М" Одноразовая гемосорбционная колонка "гемос-кс"
CN102623077A (zh) * 2012-04-09 2012-08-01 苏州热工研究院有限公司 一种放射性废水吸附过滤器
RU2524497C2 (ru) * 2012-07-17 2014-07-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ извлечения радионуклидов из водных растворов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2101072C1 (ru) * 1997-03-27 1998-01-10 Пензин Роман Андреевич Сорбционный блок для очистки жидких радиоактивных отходов
KR100822862B1 (ko) * 2007-08-08 2008-04-16 주식회사 하나원자력 금속 방사성폐기물의 일괄 제염처리 시스템 및 이를 이용한제염방법
RU2422160C1 (ru) * 2010-03-05 2011-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие Биотех-М" Одноразовая гемосорбционная колонка "гемос-кс"
CN102623077A (zh) * 2012-04-09 2012-08-01 苏州热工研究院有限公司 一种放射性废水吸附过滤器
RU2524497C2 (ru) * 2012-07-17 2014-07-27 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ извлечения радионуклидов из водных растворов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672473C1 (ru) * 2017-10-17 2018-11-15 Общество с ограниченной ответственностью Научно-производственное предприятие "Эксорб" Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)
RU194757U1 (ru) * 2018-12-29 2019-12-23 федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) Устройство фильтра-сорбера для очистки водных сред от радионуклидов цезия, стронция

Similar Documents

Publication Publication Date Title
Kameník et al. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples
Yasutaka et al. Rapid quantification of radiocesium dissolved in water by using nonwoven fabric cartridge filters impregnated with potassium zinc ferrocyanide
JP6029099B2 (ja) 排水中の放射性セシウムの濃度を実質上連続的に測定する方法および装置
Yasutaka et al. Rapid measurement of radiocesium in water using a Prussian blue impregnated nonwoven fabric: Fukushima NPP Accident Related
Jabbar et al. A review on 129I analysis in air
CN103344982A (zh) 一种土壤中Sr-90的放化分析方法
RU2610830C1 (ru) Устройство для извлечения радионуклидов из водных растворов
Lee et al. Rapid sequential determination of Pu, 90Sr and 241Am nuclides in environmental samples using an anion exchange and Sr-Spec resins
Chiera et al. Removal of radioactive cesium from contaminated water by whey protein amyloids–carbon hybrid filters
Huang et al. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool
Lee et al. Radiochemical separation of Pu, U, Am and Sr isotopes in environmental samples using extraction chromatographic resins
Burnett et al. Pre-concentration of short-lived radionuclides using manganese dioxide precipitation from surface waters
RU2672473C1 (ru) Способ определения содержания радионуклидов в растворах и устройство для его осуществления (варианты)
RU2524497C2 (ru) Способ извлечения радионуклидов из водных растворов
Akata et al. Determination of the atmospheric HTO concentration around the nuclear fuel reprocessing plant in Rokkasho by using a passive type sampler
CN114354301A (zh) 一种液体中铁-55分析方法
Liu et al. Method development for plutonium analysis in environmental water samples using TEVA microextraction chromatography separation and low background liquid scintillation counter measurement
Simgen et al. A new system for the 222Rn and 226Ra assay of water and results in the Borexino project
RU2225648C2 (ru) Способ контроля радионуклидов йода в водном теплоносителе атомных энергетических установок
RU142177U1 (ru) Устройство для контроля насыщения адсорбера тритированной водой
Ghaffar et al. Pre-concentration of Cs-137 through sorption: low level analysis in seawater
RU2523823C2 (ru) Способ извлечения радионуклидов цезия из водных растворов
Dubourg Review of advanced methods for treating radioactive contaminated water
US7045065B2 (en) Method of removing radioactive antimony from waste streams
Hsiao et al. Practical applications of inorganic adsorbents for radioactive waste water treatment at NARI. Part I: Laboratory scale tests