RU2609646C2 - Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica - Google Patents

Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica Download PDF

Info

Publication number
RU2609646C2
RU2609646C2 RU2015116622A RU2015116622A RU2609646C2 RU 2609646 C2 RU2609646 C2 RU 2609646C2 RU 2015116622 A RU2015116622 A RU 2015116622A RU 2015116622 A RU2015116622 A RU 2015116622A RU 2609646 C2 RU2609646 C2 RU 2609646C2
Authority
RU
Russia
Prior art keywords
lacz gene
protein
gene
yarrowia lipolytica
escherichia coli
Prior art date
Application number
RU2015116622A
Other languages
English (en)
Other versions
RU2015116622A (ru
Inventor
Екатерина Юрьевна Эпова
Мария Владимировна Баловнева
Юлия Ивановна Дерябина
Елена Павловна Исакова
Варвара Юрьевна Секова
Елена Владимировна Трубникова
Юлия Константиновна Кудыкина
Марина Валерьевна Зылькова
Марина Александровна Гусева
Александр Сергеевич Белоус
Джаявира Гаспералалаге Лашодя Виндана Диссанаяке Диссанаяке
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курский государственный университет" (ФГБОУ ВПО "КГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курский государственный университет" (ФГБОУ ВПО "КГУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Курский государственный университет" (ФГБОУ ВПО "КГУ")
Priority to RU2015116622A priority Critical patent/RU2609646C2/ru
Publication of RU2015116622A publication Critical patent/RU2015116622A/ru
Application granted granted Critical
Publication of RU2609646C2 publication Critical patent/RU2609646C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Настоящее изобретение относится к биохимии, в частности к способу модификации гена LacZ из Escherichia coli. Для осуществления способа фрагмент ДНК, содержащий кодирующую область гена LacZ, нарабатывают с помощью полимеразной цепной реакции с использованием олигонуклеотидного праймера, позволяющего ввести дополнительный кодон GGA, кодирующий глицин, непосредственно после инициаторного кодона ATG. Настоящий способ позволяет адаптировать указанный ген для его экспрессии в клетках Yarrowia lipolytica. 2 ил., 2 табл.

Description

Область техники, к которой относится изобретение:
Изобретение относится к области биоинженерии, в частности к усовершенствованию метода тестирования активности промоторов, предназначенных для создания векторов для экспрессии генов в экстремофильных дрожжах Yarrowia lipolytica, методом транскрипционных репортеров.
Предметом изобретения является последовательность гена LacZ из Escherichia coli в составе генетической конструкции pUVLT2 (находится под контролем промотора гена митохондриального потенциал-зависимого порина VDAC). Особенностью гена LacZ в составе конструкции pUVLT2 по сравнению с аналогичной конструкцией pUVLT1, содержащей ген LacZ дикого типа, является наличие искусственно введенного дополнительного колона GGA (Gly), совмещенного с рестриктным сайтом, непосредственно после инициаторного кодона ATG (Met) в начале открытой рамки трансляции. В соответствии с «N-концевым правилом Варшавского», наличие этого дополнительного кодона придает продукту гена LacZ повышенную протеолитическую стабильность в цитоплазме Y. lipolytica. В свою очередь, улучшенная стабильность репортерного белка существенно облегчает проведение экспериментов по определению активности промоторов на основании измерения ферментативной активности β-галактозидазы in vivo.
Уровень техники:
Использование транскрипционных репортеров в настоящее время является стандартным методом молекулярного исследования, позволяющим количественно измерять активность промоторов in vivo как при проведении фундаментальных исследований, так и при создании экспрессионных систем коммерческого назначения. Ген β-галактозидазы из E. coli, предложенный в работах основоположников генной инженерии Жакоба и Моно, является наиболее традиционным и популярным среди всех известных репортеров. Он неоднократно применялся и при исследовании активности промоторов экстремофильных дрожжей Yarrowia lipolytica [1, 2]. Авторы опубликованных статей использовали спонтанно возникший мутантный вариант гена LacZ, имеющий делецию 8 кодонов на 5'-конце открытой рамки считывания. Однако ни один из авторов не обсуждал значимость этого факта и, приводя методики определения ферментативной активности репортерного белка LacZ, не рассматривал вопрос о его устойчивости к протеолизу in vivo. В работе [2] эта проблема сведена к указанию на необходимость использовать коктейль ингибиторов протеаз при гомогенизации биомассы рекомбинантного штамма.
В статье [3] описан механизм, влияющий на скорость протеосомной убиквитин-зависимой деградации в дрожжах. На основе анализа статистики установлено, что наличие на N-конце первичного продукта трансляции (вслед за инициаторным Met) остатка Gly или Pro резко повышает стабильность белка в цитоплазме S. saccharomyces. Анализ природной последовательности N-конца продукта трансляции гена lacZ из E. coli показал его неоптимальность с точки зрения этого правила: она состоит из остатков Met-Thr-Met-Ile: для инициации трансляции с образованием активного продукта могут использоваться оба указанные здесь остатка Met.
В ходе реализации изобретения было установлено, что использование гена lacZ из E. coli с нативной структурой N-конца первичного продукта трансляции приводит к образованию продукта с низкой протеолитической стабильностью, что делает невозможным достоверное определение его ферментативной активности. Создание модифицированного гена, содержащего дополнительный кодон GGA (Gly), совмещенного с сайтом рестриктазы BamHI (GGATCC) непосредственно вслед за инициаторным кодоном Met позволяет резко повысить стабильность продукта и добиться воспроизводимых результатов измерения репортерного сигнала в лизатах, несущих его в геноме рекомбинантных штаммов Y. lipolytica при использовании в качестве субстрата β-галактозидазы 3-бром, 4-хлор, 3-индолил-βD-галактопиранозида (X-gal). При реализации изобретения в качестве модельного промотора использовался промотор гена митохондриального потенциал-зависимого порина VDAC Y. lipolytica.
Характеризуя наиболее близкие аналоги заявляемого изобретения, касающиеся разработки систем экспрессии генов в Y. lipolytica, целесообразно указать на действующие в РФ патенты Юзбашевой и соавт. № 2451749 [4] и Выборной и соавт. № 2451075 [5]. В этих патентах описано получение на основе Y. lipolytica продуцентов липазы и генетической конструкции для экспозиции белка на поверхности клеточной стенки дрожжей. В этих заявках не упоминаются ни ген LacZ, ни способы измерения активности β-галактозидазы в Y. lipolytica. Таким образом, можно утверждать, что заявляемое изобретение не затрагивает каких-либо принципов, описываемых в цитируемых патентах, ни вопросов протеолитической стабилизации белков, накапливающихся в цитоплазме Y. lipolytica (предметом этих патентов являются белки, подвергающиеся секреции).
Раскрытие изобретения
1) Фрагмент, кодирующий ген LacZ из E. coli амплифицируют с праймерами Lac-for1 и Lac-rev1: размер продукта 3000 п.н. Продукт очищают и подвергают рестрикции по сайтам SalI и HindIII. Проводят клонирование в вектор pET23b, линеаризованный по сайтам SalI и HindIII. Проводят трансформацию E. coli TG1, отбирают колонии синего цвета.
2) Терминатор гена щелочной протеазы XPR клонируют путем ПЦР из генома штамма Y. lipolytica CLIB 122 с использованием двух праймеров: xprT-R и Txpr-F. Продукт размером 140 пн, рестрикцированный по сайтам XmaJI /XbaI, клонируют в вектор pUK21. Отбирают канамицин-резистентные колонии белого цвета, содержащие вставку в прямой ориентации относительно хода транскрипции α-пептида LacZ.
3) Из конструкции pET23b-LacZ выделяют фрагмент с геном LacZ путем двойной рестрикции SalI/NotI и клонируют в конструкцию, pUT, на базе pUK21, несущую терминатор XPR, линеаризованную по сайтам SalI/NotI.
4) Маркерный ген URA3 экстрагируют из конструкции pUC18-URA3 по сайтам NcoI и SalI и переносят в конструкцию на базе pUK21, несущую терминатор XPR и ген LacZ, линеаризованную по сайтам NcoI и XhoI.
5) Промотор гена митохондриального потенциал-зависимого порина из генома штамма Y. lipolytica CLIB 122 клонируют с помощью ПЦР с использованием праймеров VDAC-F и VDAC-R2. Продукт размером 1050 пн обрабатывают рестриктазами Bsp1407/ XhoI и клонируют в конструкцию на базе pUK21, несущую терминатор XPR, ген URA3 и ген LacZ, линеаризованную по сайтам KpnI и XhoI.
6) При проведении генно-инженерного конструирования используют олигонуклеотидные ДНК-праймеры следующей структуры:
Lac-for1 (SalI) GGGTCGACACCATGATTACGGATTCACTG
Lac-rev1 (HindIII) GGAAGCTTATTTTTGACACCAGACCAACTG
xprT-R (XbaI) ATATCTAGAGCCACCTACAAGCCAG
Txpr-F (Eco31I, XmaJI) CATAAAATGCGAGACCTAGGTAGGCAATTAACAG
VDAC-F-Bsp1407 GGTGTACACACATGCATATAGGATACATTT
VDAC-R-Sal GGGTCGACTGGGTTAGTACGTGTTGCGTGT
VDAC-R2-XhoI GGCTCGAGGGATCCCATGTCGACTGGGTTAGTACGTGT
7) Полученная конструкция pUVLT2 при введении в штамм Y. lipolytica PO1f обеспечивает получение трансформантов, обладающих воспроизводимо определяемой активностью β-галактозидазы в клеточных лизатах, зависимой от условий культивирования рекомбинантного штамма. Аналогичный результат не может быть получен с применением конструкции pUVLT1, аналогичной pUVLT2, но содержащей ген LacZ нативной структуры (без внесения искусственного кодона GGA (Gly) dj втором положении открытой рамки считывания вслед за иницаторным кодоном ATG (Met)).
Краткое описание графических изображений:
Фиг. 1. Схема функциональных элементов конструкций pUVLT1 (SEQ ID NO 1) и pUVLT2 (SEQ ID NO 2), предназначенной для введения в клетки Y. lipolytica гена lacZ из E. coli. Конструкции содержат промотор VDAC, терминатор XPR, ген lacZ из E. coli C600, маркер компенсации ауксотрофности по урацилу URA3. Поддержание конструкции в E. coli осуществляется за счет элементов из состава стандартного вектора pUK21: репликона плазмиды pMC16 и гена канамицинфосфотрансферазы (детерминанта устойчивости к канамицину).
Фиг. 2. Калибровочный график для определения концентрации общего белка.
Осуществление изобретения:
1. Генно-инженерное конструирование
ДНК из биомассы штамма E. coli C600 (F2, thi-1, thr-1, leu136, lacYI, tonA21, supE44) [6], полученной культивированием на бульоне LB, выделяют с помощью набора Проба-ГС (ДНК-технология, Москва), растворяя полученный препарат в 50 мкл деионизованной воды. В качестве матрицы для проведения ПЦР используют 1 мкл препарата геномной ДНК. Реакцию проводят в 30 мкл, используя по 10 пмоль каждого из двух праймеров: Lac-for1 (SalI) GGGTCGACACCATGATTACGGATTCACTG и Lac-rev1 (HindIII) GGAAGCTTATTTTTGACACCAGACCAACTG [7]. Продукт размером 3100 пн очищают путем нанесения-десорбции на стеклянное молоко с применением набора GenJet (MBI Fermentas, Литва) и растворяют в 30 мкл деионизованной воды. 10 мкл препарата отбирают для двойной рестрикции SalI/HindIII и лигируют с ДНК вектора pET23b (Novagen)в стандартных условиях. Лигазной смесью проводят трансформацию E. coli TG1, трансформанты высевают на среду с добавлением 100 мкг/мл ампициллина и 0,01% Х-gal. Отбирают ампициллин-резистентные колонии синего цвета. Полученная конструкция получает обозначение pET23b-LacZ.
Для клонирования терминатора гена щелочной протеазы XPR используют штамм Y. lipolytica CLIB 122. ДНК из биомассы, полученной культивированием на бульоне YPD выделяют с помощью набора Проба-ГС (ДНК-технология, Москва), растворяя полученный препарат в 50 мкл деионизованной воды. В качестве матрицы для проведения ПЦР используют 1 мкл препарата геномной ДНК Y. lipolytica CLIB 122. Реакцию проводят в 30 мкл, используя по 10 пмоль каждого из двух праймеров: xprT-R (XbaI) ATATCTAGAGCCACCTACAAGCCAG и Txpr-F (Eco31I, XmaJI) CATAAAATGCGAGACCTAGGTAGGCAATTAACAG. Продукт размером 140 пн очищают путем нанесения-десорбции на стеклянное молоко с применением набора GenJet (MBI Fermentas, Литва) и растворяют в 30 мкл деионизованной воды. 10 мкл препарата отбирают для двойной рестрикции XmaJI/XbaI и лигируют с ДНК вектора pUK21 в стандартных условиях. Лигазной смесью проводят трансформацию E. coli TG1, трансформанты высевают на среду с добавлением 30 мкг/мл канамицина и 0,01% Х-gal. Отбирают канамицин-резистентные колонии белого цвета. Полученная конструкция, содержащая вставку в прямой ориентации относительно хода транскрипции α-пептида LacZ (проверяется путем контрольной рестрикции по сайтам EcoRI/XbaI - от вектора должен отделяться фрагмент длиной 140 пн), получает обозначение pUK21-T.
Маркерный ген URA3 извлекают из конструкции pUC18-Ura3 [4] в виде фрагмента длиной 860 пн путем двойной рестрикции SalI/NcoI. ДНК вектора pUK21-tXPR подвергается двойной рестрикции XhoI/NcoI. ДНК вставки и вектора объединяют и лигируют в стандартных условиях. Лигазной смесью проводят трансформацию E. coli TG1, трансформанты высевают на среду с добавлением 30 мкг/мл канамицина. Полученная конструкция получает обозначение pUT.
Из конструкции pET23b-LacZ выделяют фрагмент с геном LacZ путем двойной рестрикции SalI/NotI и лигируют с ДНК конструкции pUT, рестрицированной по тем же сайтам. Лигазной смесью проводят трансформацию E. coli TG1, трансформанты высевают на среду с добавлением 30 мкг/мл канамицина. Полученная конструкция получает обозначение pULT.
Клонирование промотора гена VDAC проводят двумя способами.
Вариант 1
В качестве матрицы для проведения ПЦР используют 1 мкл препарата геномной ДНК Y. lipolytica CLIB 122. Реакцию проводят в 30 мкл, используя по 10 пмоль каждого из двух праймеров: VDAC-F-Bsp1407 GGTGTACACACATGCATATAGGATACATTT и VDAC-R-Sal GGGTCGACTGGGTTAGTACGTGTTGCGTGT. Продукт размером 1050 пн очищают путем нанесения-десорбции на стеклянное молоко с применением набора GenJet (MBI Fermentas, Литва) и растворяют в 30 мкл деионизованной воды. 10 мкл препарата отбирают для двойной рестрикции Bsp1407/SalI и лигируют с ДНК вектора pULT, расщепленным по сайтам KpnI/SalI в стандартных условиях. Лигазной смесью проводят трансформацию E. coli TG1, трансформанты высевают на среду с добавлением 30 мкг/мл канамицина. Отбирают канамицин-резистентные колонии белого цвета. Полученная конструкция получает обозначение pUVLT1.
Вариант 2
В качестве матрицы для проведения ПЦР используют 1 мкл препарата геномной ДНК Y. lipolytica CLIB 122. Реакцию проводят в 30 мкл, используя по 10 пмоль каждого из двух праймеров: VDAC-F-Bsp1407 GGTGTACACACATGCATATAGGATACATTT и VDAC-R2-XhoI GGCTCGAGGGATCCCATGTCGACTGGGTTAGTACGTGT. Продукт размером 1050 пн очищают путем нанесения-десорбции на стеклянное молоко с применением набора GenJet (MBI Fermentas, Литва) и растворяют в 30 мкл деионизованной воды. 10 мкл препарата отбирают для двойной рестрикции Bsp1407/XhoI и лигируют с ДНК вектора pULT, расщепленным по сайтам KpnI/SalI в стандартных условиях. Лигазной смесью проводят трансформацию E. coli TG1, трансформанты высевают на среду с добавлением 30 мкг/мл канамицина. Отбирают канамицин-резистентные колонии белого цвета. Полученная конструкция получает обозначение pUVLT2.
2. Получение рекомбинантных штаммов Y. lipolytica
Введение ДНК конструкций pUVLT1 и pUVLT2 в клетки Y. lipolytica PO1f проводится методом трансформации с использованием солей Li+ и отбором трансформантов на минимальной синтетической среде, свободной от урацила. Для проведения трансформации ДНК конструкций pUVLT1 и pUVLT2 препаративно выделяют из клеток E. coli TG1 и линеаризуют с помощью рестриктазы BglI. Полученные штаммы-трансформанты троекратно пассируют на синтетической среде, свободной от урацила, для удаления клеток штамма дикого типа, не несущего конструкции. После этого по 10 клонов, несущих каждую конструкцию, тестируют на наличие активности β-галактозидазы путем высева на среду YPD, содержащую 80 мкг/мл X-gal. Учет результатов проводят после культивирования штамма при +28°С в течение 72 ч. Для дальнейшего тестирования используют клоны, обладающие выраженным синим цветом.
3. Исследование стабильности определения активности β-галактозидазы в рекомбинантных штаммах Y. lipolytica
3.1 Получение посевной культуры.
В микробиологическую пробирку объемом 20 мл, содержащую 3 мл жидкой среды YPD (1% дрожжевого экстракта, 1% пептона, 2% глюкоза), микробиологической петлей засевают материал отдельной колонии Y. lipolytica PO1f, полученной на плотной среде YPD, содержащей 80 мкг/мл X-gal. Культивирование ведут при +28°С в течение 24 ч.
3.2 Получение рабочей культуры.
3 мкл посевной культуры вносят в 3 мл среды YPD с необходимыми добавками. Культивирование ведут при +28°С в течение 18 ч. В качестве добавок вносят следующие растворы:
- 150 мкл 1 мМ K,Na-фосфатного буфера pH= 5,55 (рН среды после внесения добавки 6,1);
- 60 мкл 2,5 М K,Na-фосфатного буфера pH= 9,0; (рН среды после внесения добавки 8,1);
- 60 мкл 2,5 М Трис-сукцинатного буфера pH= 9,7 (рН среды после внесения добавки 9,0);
- 180 мкл 1 М буфера Трис-HCl pH= 8,0 (рН среды после внесения добавки 6,9).
3.3 Сбор биомассы.
Биомассу рабочих культур собирают центрифугированием в пробирках для гомогенизации Qiagen (кат. № 990381) при 9 тыс. G в течение 30 с. Промывают, суспендируя в 400 мкл 0,9% стерильного раствора NaCl, осаждают при 9 тыс. G в течение 30 с.
К осадку биомассы добавляют 400 мкл буфера Z (на 500 мл воды 4,27 г Na2HPO4, 2,75 г NaH2PO4×H2O, 0,375 г KCl, 0,125 г MgSO4×7H2O, pH=7,0) и 1 стальной шарик 7 мм (Qiagen). Гомогенизацию проводят на приборе TissueLyser II (QIAGEN) при 30 оборотах/сек в течение 1,5 мин. Гомогенаты переносят в чистые пробирки без шариков.
3.4 Определение β-галактозидазной активности с использованием в качестве субстрата X-gal.
Готовят рабочий раствор, смешивая 880 мкл буфера (1,5 М глицин, 0,33 М Трис-основание, рН 8,6) и 3520 мкл деионизованной воды. Вносят 44 мкл 1% раствора Х-gal в диметилформамиде. В лунки 96-луночного иммунологического планшета Costar вносят по 100 мкл рабочего раствора, после чего добавляют по 5 мкл гомогенатов рабочих культур. Каждый образец измеряют в трех повторностях. В качестве отрицательного контроля используют деионизованную воду объемом 5 мкл. Реакцию ведут при +37°С в течение 21 ч. Определение оптической плотности проводят на планшетном иммуноферментном фотометре (ОАО «М3» Сапфир, модель Эфос 9305) при длине волны 620 нм. Измерения проводят через 2, 4, 5. и 21 ч.
3.5 Определение содержания белка с помощью бицинхониновой кислоты.
Рабочий раствор получают, смешивая 13922 мкл реагента А и 278 мкл реагента В. В лунки 96-луночного иммунологического планшета Costar вносят по 20 мкл гомогенатов. Разведение образцов для определения белка проводят следующим образом: в лунки столбцов 2 - 5 и 7 - 10 разносят по 10 мкл буфера Z. Переносят по 10 мкл образцов из 1 в 2, перемешивают, отбирают 10 мкл образца из 2 в 3 и т.д. Из последней лунки забирают 10 мкл. Таким образом, получают разведения образцов 1, ½, ¼, 1/8, 1/16.
В лунки 96-луночного иммунологического планшета Costar разносят по 200 мкл рабочего раствора, после чего добавляют в лунки по 10 мкл разведений гомогенатов и стандарта (бычий сывороточный альбумин). Планшет инкубируют 1 ч при 37°С и измеряют на планшетном иммуноферментном фотометре (ОАО «М3» Сапфир, модель Эфос 9305) при длине волны 620 нм.
3.6 Расчет удельной ферментативной активности β-галактозидазы на мг общего белка клеточного лизата.
Каждое измерение активности β-галактозидазы и общего белка в лизате биомассы исследуемого штамма проводят в трех повторностях для каждого типа условий внешней среды. Лизаты готовят и измеряют независимо с момента засева рабочей культуры.
Концентрацию белка определяют по калибровочному графику (табл. 1, фиг. 2), построенному при использовании следующих разведений бычьего сывороточного глобулина (БСА) мг/мл: 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1.
Таблица 1. Калибровочный график для определения концентрации белка по модифицированному методу Лоури.
Концентрация БСА, мг/мл A 620 нм Среднее Средне квадратичное отклонение
1 0,991 1,001 0,999 1,00 4,00×10-3
0,9 0,829 0,831 0,834 0,83 1,78×10-3
0,8 0,702 0,697 0,698 0,70 2,00×10-3
0,7 0,64 0,639 0,642 0,64 1,11×10-3
0,6 0,581 0,587 0,584 0,58 2,00×10-3
0,5 0,534 0,533 0,539 0,54 2,44×10-3
0,4 0,5 0,49 0,48 0,49 6,67×10-3
0,3 0,39 0,37 0,456 0,41 3,38×10-2
0,2 0,361 0,363 0,377 0,37 6,67×10-3
0,1 0,321 0,32 0,325 0,32 2,00×10-3
Коэффициент молярной экстинкции суспензии индиго в воде считают равным 5,4 ммоль/л×см.
Единица активности (Ед.) - количество фермента, которое катализирует превращение одного микромоля субстрата в мин.
Среднее значение определяют путем усреднения соответствующих значений по следующей формуле:
Значение =(СРЗНАЧ(A620 B-Gal, 21 час;1:3)-СРЗНАЧ(A620 B-Gal, 4,5 часа;1:3))/(5,4 ОЕ/ммоль×990 мин×СРЗНАЧ (конц. белка мг/мл; 1:3))×1000;
Результаты определений представлены в таблице 2.
Таблица 2.
pUVLT1 Фосфат
B-gal, A620, ОЕ/мкл Белок, мг/мл Ед. акт. на мг белка
4,5 час 21 час значение ср.кв. откл.
pH=5,5 1,8 1,2 0,89 не опр. не опр.
2,1 1,1 0,81
1,1 1,1 0,92
pH=9,0 2,2 1 1,72 не опр. не опр.
2,4 2,3 1,78
1,1 1,5 1,61
pUVLT1 Сукцинат
B-gal, A620, ОЕ/мкл Белок, мг/мл Ед. акт. на мг белка
4,5 час 21 час значение ср.кв. откл.
pH=5,5 2,1 1,3 1,34 не опр. не опр.
1,1 1,4 1,41
1,5 1,7 1,23
pH=9,0 1,1 1,1 2,54 не опр. не опр.
1,3 1 2,73
1,9 1,2 2,81
pUVLT2 Фосфат
B-gal, A620, ОЕ/мкл Белок, мг/мл Ед. акт. на мг белка
4,5 час 21 час значение ср.кв. откл.
pH=5,5 1,8 9,2 1,02 1,58 1,01
1,4 9,9 0,94
1,3 10,1 0,97
pH=9,0 36,6 126,2 1,54 9,96 3,08
38,4 123,1 1,67
37,9 129,2 1,78
pUVLT2 Сукцинат
B-gal, A620, ОЕ/мкл Белок, мг/мл Ед. акт. на мг белка
4,5 час 21 час значение ср.кв. откл.
pH=5,5 2,4 4,2 1,25 3,25×10-1 0
2,1 4,4 1,12
2,2 4,5 1,31
pH=9,0 15,8 24,2 2,61 7,01×10-1 3,28×10-2
15,9 25,1 2,32
15,1 24,7 2,33
Список использованных источников
1. Gaillardin C, Ribet AM. LEU2 directed expression of beta-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr Genet. 1987. V. 11. № 5. P. 369-75.
2. Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J. Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast. 2001. V. 18. № 2. P. 97-113.
3. Varshavsky A. Recent studies of the ubiquitin system and the N-end rule pathway. Harvey Lect. 2001. V. 96. P. 93-116.
4. Юзбашева Е. Ю., Юзбашев Т. В., Лаптев И. А., Ларина А. С., Синеокий С. П.. Генетическая конструкция для экспозиции белка на поверхности клеточной стенки дрожжей Yarrowia lipolytica. Патент РФ на изобретение № 2451749.
5. Выборная Т. В., Юзбашев Т. В., Соболевская Т. И., Лаптев И. А., Юзбашева Е. Ю., Синеокий С. П.. Рекомбинантный штамм дрожжей Yarrowia lipolytica - продуцент липазы. Патент РФ на изобретение № 2451075.
6. Bachmann BJ. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972. V. 36. № 4. P. 525-57.
7. Смирнова М.С., Кузнецова Т.В., Леонович О.А., Гордейчук И.В., Шевелев А.Б. Метод получения библиотек серийных двухсторонних делеций с помощью ПЦР с вырожденным праймером. Патент РФ на изобретение № 2511424.

Claims (1)

  1. Способ модификации гена LacZ из Escherichia coli, позволяющий адаптировать его для экспрессии в клетках дрожжей Yarrowia lipolytica, заключающийся в том, что фрагмент ДНК, содержащий кодирующую область гена LacZ, нарабатывают с помощью полимеразной цепной реакции с использованием олигонуклеотидного праймера, позволяющего ввести дополнительный кодон GGA, кодирующий глицин, непосредственно после инициаторного кодона ATG.
RU2015116622A 2015-04-30 2015-04-30 Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica RU2609646C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015116622A RU2609646C2 (ru) 2015-04-30 2015-04-30 Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015116622A RU2609646C2 (ru) 2015-04-30 2015-04-30 Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica

Publications (2)

Publication Number Publication Date
RU2015116622A RU2015116622A (ru) 2016-11-20
RU2609646C2 true RU2609646C2 (ru) 2017-02-02

Family

ID=57759622

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015116622A RU2609646C2 (ru) 2015-04-30 2015-04-30 Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica

Country Status (1)

Country Link
RU (1) RU2609646C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2278160C2 (ru) * 2004-04-13 2006-06-20 Институт Молекулярной Генетики Российской Академии Наук (Имг Ран) РЕКОМБИНАНТНЫЙ БЕЛОК LACspCBD, ОБЛАДАЮЩИЙ БЕТА-ГАЛАКТОЗИДАЗНОЙ АКТИВНОСТЬЮ И СПОСОБНОСТЬЮ САМОПРОИЗВОЛЬНО СВЯЗЫВАТЬСЯ С ЦЕЛЛЮЛОЗОСОДЕРЖАЩИМИ СОРБЕНТАМИ, РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК, КОДИРУЮЩАЯ СИНТЕЗ РЕКОМБИНАНТНОГО БЕЛКА LACspCBD, ШТАММ Escherichia coli M15 [pREP4, pLACspCBD] - ПРОДУЦЕНТ РЕКОМБИНАНТНОГО БЕЛКА LACspCBD, СПОСОБ ПОЛУЧЕНИЯ ИММОБИЛИЗОВАННОГО РЕКОМБИНАНТНОГО БЕЛКА LACspCBD НА ЦЕЛЛЮЛОЗЕ И СПОСОБ ФЕРМЕНТАТИВНОГО РАСЩЕПЛЕНИЯ ЛАКТОЗЫ
RU2435856C2 (ru) * 2006-03-28 2011-12-10 Класадо Инк. Бета-галактозидаза с трансгалактозилирующей активностью

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2278160C2 (ru) * 2004-04-13 2006-06-20 Институт Молекулярной Генетики Российской Академии Наук (Имг Ран) РЕКОМБИНАНТНЫЙ БЕЛОК LACspCBD, ОБЛАДАЮЩИЙ БЕТА-ГАЛАКТОЗИДАЗНОЙ АКТИВНОСТЬЮ И СПОСОБНОСТЬЮ САМОПРОИЗВОЛЬНО СВЯЗЫВАТЬСЯ С ЦЕЛЛЮЛОЗОСОДЕРЖАЩИМИ СОРБЕНТАМИ, РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК, КОДИРУЮЩАЯ СИНТЕЗ РЕКОМБИНАНТНОГО БЕЛКА LACspCBD, ШТАММ Escherichia coli M15 [pREP4, pLACspCBD] - ПРОДУЦЕНТ РЕКОМБИНАНТНОГО БЕЛКА LACspCBD, СПОСОБ ПОЛУЧЕНИЯ ИММОБИЛИЗОВАННОГО РЕКОМБИНАНТНОГО БЕЛКА LACspCBD НА ЦЕЛЛЮЛОЗЕ И СПОСОБ ФЕРМЕНТАТИВНОГО РАСЩЕПЛЕНИЯ ЛАКТОЗЫ
RU2435856C2 (ru) * 2006-03-28 2011-12-10 Класадо Инк. Бета-галактозидаза с трансгалактозилирующей активностью

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAILLARDIN C et.al., LEU2 directed expression of betagalactosidase activity and phleomycin resistance in Yarrowia lipolytica, Curr Genet 1987, 11(5), pp.369-75. A THOMAS JURETZEK et.al., Vectors for gene expression and amplification in the yeast Yarrowia lipolytica, Yeast 2001, 18, pp.97-113. *

Also Published As

Publication number Publication date
RU2015116622A (ru) 2016-11-20

Similar Documents

Publication Publication Date Title
US6410264B1 (en) Pichia pastoris gene sequences and methods for their use
US6258559B1 (en) Method for producing proteins in transformed Pichia
Takahashi et al. Yeast Ulpl, an Smt3-specific protease, associates with nucleoporins
Dey et al. The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast.
KR102384271B1 (ko) 신규 융합 단백질의 제조 및 이의 단백질 합성 향상에서의 응용
WO2008128701A2 (en) Yeast expression systems
HU213015B (en) Method for production of the dna-sequences and expression vectors containing a kluyveromyces alpha-factor leader sequence for directing secretion of heterologous polipeptides in yeast
MXPA03004853A (es) Metodos y composiciones para produccion sumamente eficiente de proteinas heterologas en levadura.
Lee et al. Auto-induction of Pichia pastoris AOX1 promoter for membrane protein expression
CN112789353A (zh) 抑制乙醇产生的重组耐酸酵母以及使用其制备乳酸的方法
JP6064915B2 (ja) 発現ベクターおよび蛋白質の製造方法
Smith et al. Overexpression of an archaeal protein in yeast: secretion bottleneck at the ER
WO2000056903A2 (en) IMPROVED METHODS FOR PRODUCING PROTEINS IN TRANSFORMED $i(PICHIA)
RU2609646C2 (ru) Модифицированный вариант гена LacZ из E. coli, кодирующий стабилизированный вариант белка, для использования в качестве транскрипционного репортера в Yarrowia lipolytica
JP4955764B2 (ja) 酵母発現系における組み換え外来タンパク質の分泌効率を増強するための方法
JPH07163373A (ja) マルチクローニングベクター、発現ベクター、および異種蛋白質の生産
JP2018533932A (ja) 新規エピソームプラスミドベクター
WO2020078474A1 (zh) 提高苹果酸产量的新突变蛋白
Ichikawa et al. The effects of culture conditions on the secretion of human lysozyme by Saccharomyces cerevisiae A2-1-1A
US20220315936A1 (en) Recombinant vector for high-expression of proteins in yeasts
Kobayashi et al. A system for temperature-controlled expression of a foreign gene with dual mode in Saccharomyces cerevisiae
US6613547B1 (en) Pichia methanolica glyceraldehyde-3-phosphate dehydrogenase 1 promoter and terminator
BR112020018041A2 (pt) Composições e métodos para aumentar a produção de etanol por meio de levedura com o uso de gcy1 e dak1
WO2022071291A1 (ja) ペプチドタグおよびそれを含むタグ付加タンパク質
Santocanale et al. Overproduction and functional analysis of DNA primase subunits from yeast and mouse

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170501