RU2609619C2 - Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов - Google Patents
Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов Download PDFInfo
- Publication number
- RU2609619C2 RU2609619C2 RU2015125494A RU2015125494A RU2609619C2 RU 2609619 C2 RU2609619 C2 RU 2609619C2 RU 2015125494 A RU2015125494 A RU 2015125494A RU 2015125494 A RU2015125494 A RU 2015125494A RU 2609619 C2 RU2609619 C2 RU 2609619C2
- Authority
- RU
- Russia
- Prior art keywords
- outputs
- simulator
- control
- inputs
- current
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G7/00—Simulating cosmonautic conditions, e.g. for conditioning crews
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Изобретение относится к испытательной технике и может быть использовано при экспериментальной отработке системы электропитания КА. Автоматизированное рабочее место для исследований и испытания систем электропитания КА содержит имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля. Силовые выводы аппаратуры регулирования и контроля подключены к выходам соответствующих имитаторов. Имитатор батареи солнечной содержит блок управления и последовательно соединенные выпрямитель, регулируемый источник питания и цепь из параллельно соединенных стабилизаторов тока. Имитатор нагрузки содержит блок управления стабилизаторами тока и цепь из параллельно соединенных стабилизаторов тока. Имитатор аккумуляторной батареи содержит последовательно соединенные модули, включающие электрохимические источники тока. Техническим результатом изобретения является повышение точности моделирования и эффективности испытания автоматизированного рабочего места. 2 ил.
Description
Изобретение относится к испытательной технике и может быть использовано при проектировании и наземной экспериментальной отработке системы электропитания (СЭП) космического аппарата (КА).
В космической технике среди прочих стоит задача по увеличению срока активного существования автоматических КА. При этом наблюдается тенденция возрастания величины среднесуточной электрической мощности, необходимой для нормального функционирования бортовой аппаратуры (БА) космического аппарата. Поэтому создание надежной СЭП с большим ресурсом работы является актуальной задачей.
Основным источником электрической энергии на КА являются электрические генераторы на основе фотоэлектрических преобразователей (ФЭП), размещаемых на батарее солнечной (БС). На теневых участках орбиты КА бортовая аппаратура питается от аккумуляторных батарей (АБ), которые периодически заряжаются генерируемым БС током.
Необходимость непрерывного питания БА электроэнергией и поддержания стабилизированного напряжения обуславливает использование в СЭП аппаратуры регулирования и контроля (АРК), представляющего собой сложную электрическую и электронную аппаратуру.
Технология проведения комплексных испытаний СЭП имеет свои особенности и, как правило, существенно отличается от традиционных методов, основанных на использовании штатного прибора в качестве объекта испытаний.
Наиболее простой способ комплексных испытаний СЭП - это проведение наземных электрических испытаний в составе штатного КА. При этом используются штатные АБ и АРК, а вместо БС - ее электронный имитатор. Нагрузкой является бортовая аппаратура, потребляющая электроэнергию как от имитатора батареи солнечной (ИБС), так и от АБ в зависимости от величины потребляемого тока. Комплексные испытания СЭП подобного типа являются частью испытаний всего КА (Козлов Д.И., Аншаков Г.П. и др. Конструирование автоматических КА. - М.: Машиностроение, 1996, 448 с, 2 гл.).
Частичное или полное ограничение комплексных испытаний СЭП, проводимых автономно вне штатного КА, оправдано только в том случае, если СЭП прошла летно-конструкторские испытания в составе других КА и не является новой разработкой.
В противном случае (при проведении комплексных испытаний в составе штатного КА) при наличии неисправностей возможны большие затраты как трудовые, так и финансовые, связанные с демонтажом (монтажом) уже установленных на борт КА составных частей СЭП с соответствующей их отправкой на завод-изготовитель на ремонт.
Таким образом, для вновь проектируемых СЭП возникает необходимость проведения комплексных испытаний на специальном стенде - автоматизированном рабочем месте (АРМ).
Известно автоматизированное рабочее место для моделирования и испытаний системы электропитания космического аппарата, содержащее имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля, силовые выводы которой подключены к выходам соответствующих имитаторов (патент РФ 2349518).
Аппаратура регулирования и контроля СЭП КА содержит стабилизатор напряжения (параллельный стабилизатор, подключаемый параллельно БС) и параллельно соединенные зарядное и разрядное устройства, включенные между плюсовой шиной СЭП и плюсовым выводом АБ. К плюсовой и минусовой шинам подключен емкостный фильтр. Полезная нагрузка КА подключается к плюсовой и минусовой шинам СЭП, причем минусовая шина соединена с минусовым выводом АБ. Аппаратура регулирования и контроля должна обеспечивать стабилизированное напряжение на шинах СЭП с высокой точностью и при заданных параметрах переходных процессов.
В известном АРМ содержатся как физические так электронные имитаторы компонентов СЭП КА, которые управляются сложной в наладке и настройке системой управления. В известном АРМ не применяется модульный принцип построения имитаторов, он сложен в освоении персоналом.
Таким образом, недостатком прототипа является его высокая себестоимость и относительно низкая эффективность испытаний и экспериментальной отработки АРК.
Задачей изобретения является увеличение точности моделирования СЭП и эффективности испытаний АРК, а также снижение себестоимости изготовления и эксплуатации АРМ.
Указанная задача решается в автоматизированном рабочем месте для моделирования и испытаний системы электропитания космического аппарата, содержащем имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля, силовые выводы которой подключены к выходам соответствующих имитаторов.
Имитатор батареи солнечной содержит блок управления и последовательно соединенные выпрямитель, регулируемый источник питания и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления имитатора батареи солнечной, имитатор нагрузки содержит блок управления стабилизаторами тока и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления стабилизаторами тока, имитатор аккумуляторной батареи содержит последовательно соединенные модули, содержащие электрохимические источники тока, к выводам которых подключены входы блоков измерения напряжения и блоков выравнивания, входы контроля и управления которых соединены с выходами контроллера управления, входы/выходы системы управления соединены с входами/выходами блока управления имитатора батареи солнечной, с входами/выходами блока управления стабилизаторами тока нагрузки и с входами/выходами контроллера управления имитатора аккумуляторной батареи.
На фиг. 1 показана схема АРМ для моделирования СЭП КА.
На фиг. 2 приведена структурная схема ИАБ.
Автоматизированное рабочее место для моделирования и испытаний системы электропитания космического аппарата содержит имитатор батареи солнечной 1, имитатор аккумуляторной батареи 2, имитатор нагрузки 3, систему управления 4 и аппаратуру регулирования и контроля 5, силовые выводы которой подключены к выходам соответствующих имитаторов. В состав системы управления 4 входит персональный компьютер.
Имитатор батареи солнечной 1 содержит блок управления 6 и последовательно соединенные выпрямитель 7, регулируемый источник питания 8 и цепь из параллельно соединенных стабилизаторов тока 9, входы управления которых соединены с выходами блока управления имитатора батареи солнечной.
Имитатор нагрузки 3 содержит блок управления стабилизаторами тока 10 и цепь из параллельно соединенных стабилизаторов тока 11, входы управления которых соединены с выходами блока управления стабилизаторами тока 10. Мощность нагрузки зависит от уровня тока стабилизации и количества включенных стабилизаторов (например, при токе стабилизации 1А и 100 включенных стабилизаторов нагрузка будет потреблять ток 100 А). Стабилизаторы тока могут быть выполнены на базе транзисторов, работающих в линейном режиме. Например, при токе стабилизации 1А и напряжении СЭП 30В мощность единичного стабилизатора составляет 30 Вт.
Имитатор аккумуляторной батареи 2 содержит последовательно соединенные модули 12, содержащие электрохимические источники тока. К выводам модулей 12 подключены входы блоков измерения напряжения 13 и блоков выравнивания 14, входы контроля и управления которых соединены с выходами контроллера управления 15.
Входы/выходы системы управления 4 соединены с входами/выходами блока управления 6 имитатора батареи солнечной, с входами/выходами блока 10 управления стабилизаторами тока нагрузки и с входами/выходами контроллера 15 управления имитатора аккумуляторной батареи. Аппаратура регулирования и контроля 5 содержит регулятор напряжения на шинах СЭП и зарядно-разрядные устройства.
Функционирование АРМ в процессе моделирования и испытаний АРК и СЭП в целом осуществляется следующим образом. С персонального компьютера, входящего в состав системы управления АРМ, задается циклограмма работы СЭП КА, то есть временные интервалы солнце - тень.
На солнечном участке орбиты источником электрической энергии является ИБС. На теневых участках орбиты аппаратура питается от ИАБ, которые периодически заряжаются генерируемым ИБС током. Изменение мощности и формирование заданной вольтамперной характеристики имитатора батареи солнечной 1 обеспечивается включением соответствующего количества стабилизаторов тока и изменением напряжения регулируемого источника питания 8. Изменение потребляемой мощности имитатора нагрузки 3 обеспечивается включением соответствующего количества стабилизаторов тока 11. Имитатор аккумуляторной батареи 2 заряжается зарядным устройством АРК на солнечном участке орбиты, а на теневом участке ИАБ через разрядное устройство аппаратуры регулирования и контроля 5 обеспечивает стабилизированным напряжением имитатор нагрузки 3. Имитатор аккумуляторной батареи 2 выполняется на основе электрохимических элементов, аналогичных электрохимической системе штатной АБ, а блоки измерения напряжения 13, блоки выравнивания 14 и контролер управления 15 схемотехнически и алгоритмически не отличаются от соответствующей аппаратуры штатной АБ.
Таким образом, АРМ обеспечивает точное моделирование работы СЭП на всех участках орбиты космического аппарата и существенно повышает эффективность испытаний аппаратуры регулирования и контроля.
Снижение стоимости АРМ обеспечивается путем использования модульного принципа построения имитаторов - параллельное соединение стабилизаторов тока в ИБС и имитаторе нагрузки и последовательное соединение электрохимических элементов ИАБ.
Универсальные части АРМ используются для моделирования и испытаний СЭП последующих изделий, что ускоряет окупаемость данного АРМ и снижает себестоимость изготовления следующего.
Таким образом, предложенное АРМ для моделирования и испытаний системы электропитания КА позволяет увеличить точность моделирования, повысить эффективность испытания АРК и снизить затраты на изготовление и эксплуатацию стендов для экспериментальной отработки СЭП.
Claims (1)
- Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов, содержащее имитатор батареи солнечной, имитатор аккумуляторной батареи, имитатор нагрузки, систему управления и аппаратуру регулирования и контроля, силовые выводы которой подключены к выходам соответствующих имитаторов, отличающееся тем, что имитатор батареи солнечной содержит блок управления и последовательно соединенные выпрямитель, регулируемый источник питания и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления имитатора батареи солнечной, имитатор нагрузки содержит блок управления стабилизаторами тока и цепь из параллельно соединенных стабилизаторов тока, входы управления которых соединены с выходами блока управления стабилизаторами тока, имитатор аккумуляторной батареи содержит последовательно соединенные модули, содержащие электрохимические источники тока, к выводам которых подключены входы блоков измерения напряжения и блоков выравнивания, входы контроля и управления которых соединены с выходами контроллера управления, входы/выходы системы управления соединены с входами/выходами блока управления имитатора батареи солнечной, с входами/выходами блока управления стабилизаторами тока нагрузки и с входами/выходами контроллера управления имитатора аккумуляторной батареи.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015125494A RU2609619C2 (ru) | 2015-06-29 | 2015-06-29 | Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015125494A RU2609619C2 (ru) | 2015-06-29 | 2015-06-29 | Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015125494A RU2015125494A (ru) | 2017-01-11 |
RU2609619C2 true RU2609619C2 (ru) | 2017-02-02 |
Family
ID=58449174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015125494A RU2609619C2 (ru) | 2015-06-29 | 2015-06-29 | Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2609619C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2760729C1 (ru) * | 2020-06-02 | 2021-11-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) | Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002039062A1 (fr) * | 2000-11-08 | 2002-05-16 | Centre National D'etudes Spatiales | Banc de test au sol d'un senseur stellaire |
RU2349518C1 (ru) * | 2007-07-12 | 2009-03-20 | Федеральное Государственное унитарное предприятие Государственный научно-производственный ракетно-космический центр (ФГУП ГНПРКЦ "ЦСКБ-Прогресс") | Стенд для моделирования системы электропитания космического аппарата |
RU2559661C2 (ru) * | 2013-07-08 | 2015-08-10 | Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" | Способ электрических проверок космического аппарата |
-
2015
- 2015-06-29 RU RU2015125494A patent/RU2609619C2/ru active IP Right Revival
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002039062A1 (fr) * | 2000-11-08 | 2002-05-16 | Centre National D'etudes Spatiales | Banc de test au sol d'un senseur stellaire |
RU2349518C1 (ru) * | 2007-07-12 | 2009-03-20 | Федеральное Государственное унитарное предприятие Государственный научно-производственный ракетно-космический центр (ФГУП ГНПРКЦ "ЦСКБ-Прогресс") | Стенд для моделирования системы электропитания космического аппарата |
RU2559661C2 (ru) * | 2013-07-08 | 2015-08-10 | Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" | Способ электрических проверок космического аппарата |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2760729C1 (ru) * | 2020-06-02 | 2021-11-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) | Автоматизированный испытательный комплекс для наземной экспериментальной отработки систем электроснабжения космических аппаратов |
Also Published As
Publication number | Publication date |
---|---|
RU2015125494A (ru) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Das | Maximum power tracking based open circuit voltage method for PV system | |
CN103235270A (zh) | 一种月球探测器星上电源系统可靠性测试装置 | |
Birkl et al. | Modular converter system for low-cost off-grid energy storage using second life li-ion batteries | |
Jou et al. | Operation strategy for a lab-scale grid-connected photovoltaic generation system integrated with battery energy storage | |
JP2017051083A (ja) | 発電システム、発電方法およびプログラム | |
RU2609619C2 (ru) | Автоматизированное рабочее место для исследований и испытания систем электропитания космических аппаратов | |
RU73102U1 (ru) | Имитатор аккумуляторной батареи для испытания систем электроснабжения космических аппаратов | |
Rinaldi et al. | Design of Solar of Cell and PLN Using Automatic Transfer Switch (ATS) for Minimarket Loads in Sorek Satu Area | |
Tungal et al. | Effective control of three power source dc micro grid using Smart meter | |
RU159208U1 (ru) | Комплекс для наземных испытаний систем электропитания космических аппаратов | |
RU2013131324A (ru) | Способ электрических проверок космического аппарата | |
Pantelimon et al. | Aspects regarding solar battery charge controllers | |
Abdelwahab et al. | Maximizing solar energy input for Cubesat using sun tracking system and a maximum power point tracking | |
Samy et al. | Fuzzy logic based battery power management for PV and wind hybrid power system | |
KR20130125704A (ko) | 전력 축적 시스템, 및, 축전 모듈의 제어 방법 | |
CN110383096B (zh) | 用于模拟模块化的直流电压源的设备和测试装置 | |
Arnedo et al. | Hybrid solar inverter based on a standard power electronic cell for microgrids applications | |
Haidoury et al. | Design of a Boost DC/DC Converter Controlling a Fuel Cell System Under Proteus | |
Waremra | Design Of Battery Charge Control System On Hybrid Power Plants | |
Agrawal et al. | Strategical operational modes for isolated solar PV system in battery power management scenario | |
RU2541599C2 (ru) | Способ изготовления космического аппарата | |
Ahmed et al. | Real-time platform for controlling DC microgrid based standalone solar energy conversion system | |
Herwald et al. | Development of A Load Control Algorithm to Enhance Energy Sustainability for the International Space Station | |
Braitor et al. | Adaptive droop control design with overcurrent protection for onboard DC microgrids in hybrid electric aircrafts | |
Yang et al. | Hierarchical Distributed Model Predictive Control for Multiple Hybrid Energy Storage Systems in a DC Microgrid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20170630 |
|
NF4A | Reinstatement of patent |
Effective date: 20180820 |