RU2608629C1 - Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната - Google Patents

Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната Download PDF

Info

Publication number
RU2608629C1
RU2608629C1 RU2015141660A RU2015141660A RU2608629C1 RU 2608629 C1 RU2608629 C1 RU 2608629C1 RU 2015141660 A RU2015141660 A RU 2015141660A RU 2015141660 A RU2015141660 A RU 2015141660A RU 2608629 C1 RU2608629 C1 RU 2608629C1
Authority
RU
Russia
Prior art keywords
polyisoprene
cis
optical properties
pinacolylmethylfluorophosphonate
imitator
Prior art date
Application number
RU2015141660A
Other languages
English (en)
Inventor
Игорь Николаевич Ефимов
Дмитрий Анатольевич Бархатов
Петр Евгеньевич Шлыгин
Андрей Александрович Позвонков
Валерий Дмитриевич Еремин
Original Assignee
Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации filed Critical Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации
Priority to RU2015141660A priority Critical patent/RU2608629C1/ru
Application granted granted Critical
Publication of RU2608629C1 publication Critical patent/RU2608629C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к применению цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната для проверки работоспособности инфракрасных дистанционных газосигнализаторов и при обучении специалистов работе на них. Предлагаемое техническое решение позволяет исключить воздействие токсичных веществ на персонал при проведении работ по проверке технического состояния пассивных инфракрасных дистанционных газосигнализаторов и при обучении специалистов работе на них. 2 ил.

Description

Изобретение относится к области разработки имитаторов токсичных химических веществ, а именно к использованию цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната для проверки работоспособности пассивных инфракрасных (ИК) дистанционных газосигнализаторов (фурье-спектрорадиометров) и при обучении специалистов работе на них.
Средства имитации токсичных химических веществ используются при проверке работоспособности приборов химического контроля. Критерием оценки работоспособности прибора химического контроля в этом случае является его срабатывание в присутствии имитатора. Для обучения специалистов действиям в условиях химического заражения и практическим навыкам работы с приборами химического контроля также могут применяться имитаторы токсичных химических веществ. Критерием оценки правильности пользования приборами химического контроля также является их срабатывание в присутствии имитатора, моделирующего те свойства токсичных химических веществ, которые вызывают индикационный эффект.
В литературе имеются сведения об использовании диметилметилфосфоната (DMMP) и гексафторида серы (SF6) в качестве имитаторов фосфорорганических отравляющих веществ (ФОВ) при разработке и испытаниях лидарных систем дистанционного обнаружения химического заражения [1. А.И Еркин; Д.Д. Тальберг; В.А. Малышев; В.А. Гозенбук. Современные принципы организации и аппаратурного оснащения органов химической разведки и химического контроля (обзор) // Гражданская оборона за рубежом. - 1991. - №5-6, С. 39-44]. Однако данные соединения применяются для моделирования оптических характеристик ФОВ лишь в узком спектральном диапазоне 9,2-10,8 мкм (1087-980 см-1), соответствующем рабочему спектральному диапазону активных, лидарных, систем на основе СО2 лазеров, и не в полной мере имитируют оптические свойства ФОВ при проверке работоспособности и технического состояния пассивных инфракрасных дистанционных газосигнализаторов, функционирующих в более широком спектральном диапазоне 8,0-14,0 мкм (1250-714 см-1), соответствующем окну прозрачности атмосферы в средневолновой области инфракрасного спектра электромагнитного излучения. В тоже время указанные выше имитаторы ФОВ не пригодны для использования при обучении персонала работе на пассивных инфракрасных дистанционных газосигнализаторов и проверки их работоспособности, поскольку они сами являются токсичными и малодоступными соединениями.
Существует также нетоксичный имитатор пинаколилметилфторфосфоната N,N-диэтиланилин, имеющий наиболее близкие к нему физические характеристики (растворимость, плотность, вязкость) [2. Патент РФ №2404160, МПК С07С 317/04, G01N 21/00, 01.2006]. Однако данный имитатор применяется для решения задач по имитации химического заражения водных объектов.
Известны органические соединения, использующиеся в качестве имитаторов ФОВ, такие как триметилфосфат и диметилсульфоксид, имеющие близкие к ФОВ спектральные характеристики в среднем инфракрасном диапазоне в парообразном состоянии [3. Патент РФ №2261858, МПК7 С07С 317/04, G01N 21/35, 10.10.2005]. Однако применение данных соединений требует использования технически сложных диспергирующих устройств.
Кроме того, указанные имитаторы токсичных химических веществ безвозвратно расходуются при моделировании соответствующих объектов индикации. Наряду с этим, обеспечение воспроизводимости оптических характеристик создаваемых с их помощью тестовых объектов индикации само по себе является сложной технической задачей.
Кроме вышеуказанных данных в литературе [4. Фурье-спектрометр инфракрасный ИнфраЛЮМ ФТ-02 [Текст]: Методика поверки. 151.00.00.00.00.МП / разработчик и изготовитель ООО «Люмэкс» - Санкт-Петербург, 2004, 5. Морозов А.Н. Основы фурье-спектрорадиометрии / А.Н. Морозов, С.И. Светличный; [отв. ред. Г.К. Васильев]. - 2-е изд. испр. и доп. - М.: Наука, 2014] имеются также сведения об использовании пленочных имитаторов в лабораторных условиях для отладки и экспресс-тестирования работоспособности фурье-спектрорадиометров.
Очевидно, что применение газовых имитаторов не всегда оправданно, поскольку это влечет за собой применение вакуумной техники и газовых оптических кювет, что весьма трудоемко, затратно по финансам и времени и не всегда удовлетворяет требованиям техники безопасности. Чтобы избежать подобных трудностей, применяются имитаторы - микронные и более по толщине пленки, закрепленные по краям в оправу с рабочей площадью, перекрывающей полностью входную апертуру телескопа фурье-спектрорадиометра. В качестве подобных имитаторов использовались широко распространенные пленки полиэтилена, лавсана, полиимида, политетрафторэтилена, полипропилена. Однако инфракрасные спектры поглощения у данных материалов не обладают достаточной похожестью (корреляцией) со спектром пинаколилметилфторфосфоната для симуляции аналогичного индикационного эффекта у пассивных инфракрасных дистанционных газосигнализаторов при его обнаружении.
Таким образом, можно отметить, что в настоящее время отсутствуют нетоксичный, не относящийся к числу жидкостных или газовых, имитатор оптических свойств пинаколилметилфторфосфоната многократного действия для обучения специалистов навыкам работы на пассивных инфракрасных дистанционных газосигнализаторах и проверке их работоспособности в лабораторных и натурных условиях.
Целью изобретения является обоснование возможности использования нетоксичного, воспроизводимого и доступного продукта в качестве многократно используемого имитатора оптических свойств пинаколилметилфторфосфоната, позволяющего провести безопасное обучение специалистов для самостоятельной работы на пассивных инфракрасных дистанционных газосигнализаторах.
Данная цель достигается использованием продукта, обладающего аналогичными пинаколилметилфторфосфонату оптическими свойствами в инфракрасном диапазоне. Такими свойствами обладает цис-1,4-полиизопрен.
Основными критериями выбора имитатора оптических свойств можно считать наиболее полное совпадение количества спектральных полос поглощения, равной интенсивности основных полос и взаимного расположения спектров имитатора и пинаколилметилфторфосфоната в одинаковых ИК-диапазонах светопропускания.
В качестве имитаторов были исследованы пленки различных полимерных материалов: цис-1,4-полиизопрен, лавсан, полистирол и фторопласт. Спектр пропускания цис-1,4-полиизопрена в сравнении с представленным в [6. OPCW Cenlral Analytical Database, PDF-OCAD v. 14, Technical Secrelariat of the Organisation for the Prohibition of Chemical Weapons. December 2011., 7. FT-IR analysis of chemical warfare agents // Microchimica Acta 1988, Volume 94, Issue 1-6, pp 11-16 / Ernest H. Braue Jr., Michael G. Pannella] спектром пинаколилметилфторфосфоната изображен на фигуре 1.
Коэффициент корреляции спектра поглощения цис-1,4-полиизопрена со спектром пинаколилметилфторфосфоната составляет - 0,58. Таблица взаимной корреляции исследованных спектров представлена на фигуре 2.
Из представленных в таблице данных следует, что по совокупности оцениваемых параметров цис-1,4-полиизопрен имеет наиболее близкие к пинаколилметилфторфосфонату спектральные характеристики (положение максимумов основных аналитических линий цис-1,4-полиизопрена и пинокалилметилфторфосфоната совпадают, интенсивность и взаимное расположение линий ИК-спектров этих веществ имеют соизмеримые значения), и поэтому наиболее пригоден для применения в качестве имитатора оптических свойств пинаколилметилфторфосфоната при его индикации дистанционными газосигнализаторами. Кроме того, цис-1,4-полиизопрен является нетоксичным доступным и удобным в эксплуатации материалом, который широко применяется в качестве специальных изделий медицинского назначения и в различных отраслях промышленности и техники [8. Еркова Л.Н., Чечик О.С. Латексы [Текст] / Л.: Химия, 1983].

Claims (1)

  1. Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната для проверки работоспособности инфракрасных дистанционных газосигнализаторов и при обучении специалистов работе на них.
RU2015141660A 2015-09-30 2015-09-30 Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната RU2608629C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015141660A RU2608629C1 (ru) 2015-09-30 2015-09-30 Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015141660A RU2608629C1 (ru) 2015-09-30 2015-09-30 Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната

Publications (1)

Publication Number Publication Date
RU2608629C1 true RU2608629C1 (ru) 2017-01-23

Family

ID=58456921

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015141660A RU2608629C1 (ru) 2015-09-30 2015-09-30 Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната

Country Status (1)

Country Link
RU (1) RU2608629C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691668C1 (ru) * 2018-05-29 2019-06-17 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Аэростатный способ моделирования облаков зараженного воздуха с заданным спектральным составом оптического излучения для технического диагностирования Фурье-спектрорадиометров

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001737A2 (en) * 1997-06-10 1999-01-14 Calspan Corporation Detection of chemical agent materials using a sorbent polymer and fluorescent probe
RU2261858C1 (ru) * 2003-12-24 2005-10-10 Войсковая часть 61469 МО РФ Применение диметилсульфоксида в качестве имитатора фосфорорганических соединений
RU2404160C1 (ru) * 2009-06-01 2010-11-20 Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации"(ФГУ "33 ЦНИИИ МО РФ") Применение n,n-диэтиланилина в качестве имитатора зомана в водной среде

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001737A2 (en) * 1997-06-10 1999-01-14 Calspan Corporation Detection of chemical agent materials using a sorbent polymer and fluorescent probe
RU2261858C1 (ru) * 2003-12-24 2005-10-10 Войсковая часть 61469 МО РФ Применение диметилсульфоксида в качестве имитатора фосфорорганических соединений
RU2404160C1 (ru) * 2009-06-01 2010-11-20 Федеральное государственное учреждение "33 Центральный научно-исследовательский испытательный институт Министерства обороны Российской Федерации"(ФГУ "33 ЦНИИИ МО РФ") Применение n,n-диэтиланилина в качестве имитатора зомана в водной среде

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2691668C1 (ru) * 2018-05-29 2019-06-17 Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации Аэростатный способ моделирования облаков зараженного воздуха с заданным спектральным составом оптического излучения для технического диагностирования Фурье-спектрорадиометров

Similar Documents

Publication Publication Date Title
ES2638965T3 (es) Sistema y método para investigaciones por LIBS y espectroscopía de absorción IR combinadas
JP2017523400A5 (ru)
RU2608629C1 (ru) Применение цис-1,4-полиизопрена в качестве имитатора оптических свойств пинаколилметилфторфосфоната
BR112021024868A2 (pt) Dispositivo portátil de medição, busca e segurança
Hu et al. Improvable method for Halon 1301 concentration measurement based on infrared absorption
CN108107017B (zh) 基于太赫兹探测高危化学品分布的方法
RU2261858C1 (ru) Применение диметилсульфоксида в качестве имитатора фосфорорганических соединений
CN104330387A (zh) 液面油污测量系统
RU2404160C1 (ru) Применение n,n-диэтиланилина в качестве имитатора зомана в водной среде
Puiu et al. Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system
RU2629707C2 (ru) Способ обнаружения и идентификации токсичных химикатов с использованием мобильного комплекса химического контроля
Terziev et al. Human health prevention by detection and quantification of toxic chemical compounds
RU2729234C1 (ru) Применение триэтаноламина в качестве имитатора флуоресцентных свойств O-этил-S-2-диизопропиламиноэтилметилфосфоната
CN207610987U (zh) 太赫兹探测大气高危化学品分布装置
CN207742107U (zh) 大气高危化学品探测的太赫兹自反馈系统
Li et al. Quantitative evaluation of high repetition rate laser jamming effect on the pulsed laser rangefinder
CN108169160A (zh) 基于太赫兹的单个大气高危化学品泄漏源探测方法
Gutierrez et al. Leakage detection using low-cost, wireless sensor networks
CN108169159B (zh) 基于太赫兹的大气高危化学品空间分布判断方法
RU2578105C1 (ru) Способ дистанционного контроля размеров тонкодисперсных аэрозолей стойких токсичных химикатов при возникновении запроектных аварий на химически опасных объектах
RU144573U1 (ru) Спектрорадиометрическая установка беспробоотборного контроля зараженности окрашенных лакокрасочными покрытиями поверхностей различных объектов и автотракторной техники стойкими токсичными химическими веществами
US8294102B2 (en) Tactical chemical biological threat detection
Adam et al. Detection and reconnaissance of pollutant clouds by CO2 lidar (MIRELA)
Dzierliński Towards UAV-based Detection of Leaking Gas Pipelines
Bartholmai et al. Two tasks in environmental monitoring-calibration and characterization of gas sensors and remote gas sensing with multicopter platforms-Part 1

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171001