RU2603340C1 - Морская технологическая ледостойкая платформа - Google Patents

Морская технологическая ледостойкая платформа Download PDF

Info

Publication number
RU2603340C1
RU2603340C1 RU2015128457/13A RU2015128457A RU2603340C1 RU 2603340 C1 RU2603340 C1 RU 2603340C1 RU 2015128457/13 A RU2015128457/13 A RU 2015128457/13A RU 2015128457 A RU2015128457 A RU 2015128457A RU 2603340 C1 RU2603340 C1 RU 2603340C1
Authority
RU
Russia
Prior art keywords
platform
ice
hull
resistant
anchor
Prior art date
Application number
RU2015128457/13A
Other languages
English (en)
Inventor
Игорь Александрович Киш
Original Assignee
Игорь Александрович Киш
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Александрович Киш filed Critical Игорь Александрович Киш
Priority to RU2015128457/13A priority Critical patent/RU2603340C1/ru
Application granted granted Critical
Publication of RU2603340C1 publication Critical patent/RU2603340C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/08Ice-breakers or other vessels or floating structures for operation in ice-infested waters; Ice-breakers, or other vessels or floating structures having equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/02Cleaning or keeping clear the surface of open water; Apparatus therefor from ice otherwise than according to E02B1/003
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions
    • E02B17/0021Means for protecting offshore constructions against ice-loads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/028Ice-structures

Abstract

Морская технологическая ледостойкая платформа включает надводную часть 1 с горизонтальной технологической площадкой 2 сверху, сообщенную с подводной частью 3, выполненной в виде водоизмещающего корпуса, якорную систему удержания, балластные цистерны 8, расположенные в водоизмещающем корпусе. Надводная часть 1 в районе ледовой ватерлинии 9 выполнена в виде ледоломного конуса 10, обращенного сужением вниз. Верхний участок 11 подводной части 3 выполнен в виде конуса, обращенного сужением вверх. Корпус ледостойкой платформы выполнен герметичным, с возможностью полного погружения под воду. Балластные цистерны 8 выполнены равным объемом и размещены симметрично относительно продольной оси симметрии 15 корпуса ледостойкой платформы, а их суммарный объем должен быть не менее величины, определяемой из выражения
Vб.ц.=Pв.п.-Pт.л.,
где Vб.ц. - суммарный объем балластных цистерн, м3; Pв.п. - выталкивающая сила, действующая на корпус ледостойкой платформы, при его полном погружении, т; Pт.л. - суммарная тяга лебедок погружения платформы, т. Якорная система удержания содержит якоря 5, которые тросами 6 связаны с якорными лебедками 7, установленными в водоизмещающем корпусе, равномерно по его периметру. Платформа снабжена дополнительной якорной системой, содержащей якоря 12, которые тросами 13 связаны с лебедками погружения 14, установленными в водоизмещающем корпусе, симметрично относительно его продольной оси 15 на одинаковых расстояниях друг от друга. Дно 18 корпуса выполнено округлым и симметричным относительно продольной оси 15 его симметрии. Обеспечена безопасность работы платформы при подвижках на нее ледяных полей толщины большей 10 м, за счет погружения платформы ниже подводной части ледяных полей (айсбергов). 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области освоения ресурсов континентального шельфа, в частности к возведению в арктических морях платформ островного типа в условиях дрейфа айсбергов, подвижек смерзшихся ледяных полей.
Известна арктическая платформа, содержащая фундамент, смонтированный на дне водоема, на котором установлены подводная и надводная части опоры платформы, оснащенной балластными емкостями и технологическим оборудованием. При этом верхняя часть сооружения выполнена в виде понтона, а подводная опора сооружения оснащена оборудованием для монтажа-демонтажа опоры, буксировки и удаления понтона из зоны дрейфа айсбергов (см. RU №2238365, 2004).
Недостаток этого решения - значительные затраты на монтаж-демонтаж и невозможность обеспечения безопасности эксплуатации арктической платформы при подвижках на нее смерзшихся ледяных полей. Применительно к экстремальным условиям в северных морях имеются различные технологии, конструктивные решения доставки судами, подводными дюкерами и тоннелями материалов, оборудования, персонала, используемых при строительстве, эксплуатации гидротехнических сооружений, транспортировки сырья потребителям. В этих условиях транспортные операции можно проводить с использованием апробированных разработок, таких как: «Устройство стыковки космического объекта» (см. RU №2195417, 2002), представляющего собой переходный шлюз со стыковым узлом, обеспечивающим эксплуатацию подводных судов и/или космических аппаратов.
Морская технологическая ледостойкая платформа, включающая надводную часть с горизонтальной технологической площадкой сверху, сообщенную с подводной частью, выполненной в виде водоизмещающего корпуса, якорную систему удержания, балластные цистерны, расположенные в водоизмещающем корпусе, причем надводная часть в районе ледовой ватерлинии выполнена в виде ледоломного конуса, обращенного сужением вниз, а верхний участок подводной части выполнен в виде конуса, обращенного сужением вверх (см. RU №2522628, 2014).
Недостаток этого решения - невозможность обеспечения безопасности эксплуатации арктической платформы при подвижках на нее смерзшихся ледяных полей большой толщины (большей 10 м).
Задача, на решение которой направлено заявленное техническое решение, выражается в обеспечении безопасности эксплуатации арктической платформы при подвижках на нее смерзшихся ледяных полей большой толщины.
Технический результат, получаемый при решении поставленной задачи, выражается в обеспечении безопасности эксплуатации платформы при подвижках на нее смерзшихся ледяных полей большой толщины (большей 10 м). При этом обеспечивается возможность погружения платформы ниже глубины подводной части ледяных полей (айсбергов).
Для решения поставленной задачи морская технологическая ледостойкая платформа, включающая надводную часть с горизонтальной технологической площадкой сверху, сообщенную с подводной частью, выполненной в виде водоизмещающего корпуса, якорную систему удержания, балластные цистерны, расположенные в водоизмещающем корпусе, причем надводная часть в районе ледовой ватерлинии выполнена в виде ледоломного конуса, обращенного сужением вниз, а верхний участок подводной части выполнен в виде конуса, обращенного сужением вверх, отличается тем, что корпус ледостойкой платформы выполнен герметичным, с возможностью полного погружения под воду, при этом балластные цистерны выполнены равным объемом и размещены симметрично относительно продольной оси симметрии корпуса ледостойкой платформы, а их суммарный объем должен быть не менее величины, определяемой из выражения
Vб.ц.=Pв.п.-Pт.л.,
где Vб.ц. - суммарный объем балластных цистерн, м3;
Pв.п. - выталкивающая сила, действующая на корпус ледостойкой платформы, при его полном погружении, т;
Pт.л. - суммарная тяга лебедок погружения платформы, т,
кроме того, якорная система удержания содержит якоря, которые тросами связаны с якорными лебедками, установленными в водоизмещающем корпусе, равномерно по его периметру, при этом платформа снабжена дополнительной якорной системой, содержащей якоря, которые тросами связаны с лебедками погружения, установленными в водоизмещающем корпусе, симметрично относительно его продольной оси на одинаковых расстояниях друг от друга. Кроме того, дно корпуса выполнено округлым и симметричным относительно продольной оси его симметрии.
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач.
Признаки «корпус ледостойкой платформы выполнен герметичным, с возможностью полного погружения под воду» обеспечивают возможность удаления платформы с пути перемещения тяжелых льдов.
Признаки «балластные цистерны выполнены равным объемом и размещены симметрично относительно продольной оси симметрии корпуса ледостойкой платформы» упрощают работы по балластировке платформы и упрощают сохранение вертикальности ее положения.
Признаки «суммарный объем должен быть не менее величины определяемой из выражения
Vб.ц.=Pв.п.-Pт.л.,
где Vб.ц. - суммарный объем балластных цистерн, м3;
Pв.п. - выталкивающая сила, действующая на корпус ледостойкой платформы, при его полном погружении, т;
Pт.л. - суммарная тяга лебедок погружения платформы, т», позволяют минимизировать тяговое усилие на лебедки погружения и, соответственно, уменьшить их массогабаритные параметры и количество.
Признаки «якорная система удержания содержит якоря, которые тросами связаны с якорными лебедками, установленными в водоизмещающем корпусе, равномерно по его периметру» повышают надежность удержания платформы на точке позиционирования.
Признаки «платформа снабжена дополнительной якорной системой, содержащей якоря, которые тросами связаны с лебедками погружения, установленными в водоизмещающем корпусе, симметрично относительно его продольной оси на одинаковых расстояниях друг от друга» обеспечивают погружение платформы и ее контролируемое вскрытие.
Признаки «дно корпуса выполнено округлым и симметричным относительно продольной оси его симметрии» повышают «мореходность» платформы, упрощают ее буксировку и снижают рыскание и сопротивление движению при погружении.
На фиг. 1 платформа показана в надводном положении; на фиг. 2 - платформа показана в подводном положении.
На чертежах показаны надводная часть 1 морской технологической ледостойкой платформы, с горизонтальной технологической площадкой 2, ее подводная часть 3, цилиндрический участок 4, якорная система удержания, содержащая якоря 5, которые тросами 6 связаны с якорными лебедками 7, балластные цистерны 8, ледовая ватерлиния 9, ледоломный конус 10, участок 11 подводной части, выполненный в виде конуса, якорная система погружения содержит якоря 12, которые тросами 13 связаны с якорными лебедками 14, кроме того, показана продольная ось 15 корпуса ледостойкой платформы, дно 16 акватории, стыковочные узлы 17, дно 18 подводной части 3 корпуса, патрубки 19, поверхность воды 20, ледовое поле 21.
Морская технологическая ледостойкая платформа включает верхнюю часть, содержащую надводную часть 1 с горизонтальной технологической площадкой 2 сверху, сообщенную цилиндрическим участком 4 с подводной частью 3, выполненной в виде водоизмещающего корпуса.
Якорная система удержания содержит якоря 5, которые тросами 6 связаны с якорными лебедками 7, установленными в водоизмещающем корпусе, равномерно по его периметру, при этом при постановке на дно акватории якоря 5 выносят за проекцию водоизмещающего корпуса на дно 16, причем тросы 6 устанавливают радиально относительно проекции продольной оси 15. Якорные лебедки 7 установлены в герметичных отсеках водоизмещающего корпуса, при этом их тросы 6 выпущены через сальниковые узлы (на чертежах не показаны), выполненные в стенках (или дне) корпуса платформы, исключающие попадание воды в эти отсеки.
Якорная система погружения содержит якоря 12, которые тросами 13 связаны с якорными лебедками 14, установленными в водоизмещающем корпусе, предпочтительно, на его донной части, симметрично относительно его продольной оси 15, на одинаковых расстояниях друг от друга, причем тросы 13 устанавливают вертикально (параллельно продольной оси 15). Якорные лебедки 14 установлены в герметичных отсеках водоизмещающего корпуса, при этом их тросы 13 выпущены через сальниковые узлы (на чертежах не показаны), выполненные в донной части корпуса платформы, исключающие попадание воды в эти отсеки. Кроме того, возможен вариант, при котором тросы 6 якорных лебедок 14 могут выпускаться не через сальниковые устройства, а через патрубки 19, жестко и герметично закрепленные на дне 18 корпуса, выпускаться прямо в воду, при поступлении воды в корпус предотвращается избыточным давлением воздуха в отсеках донной части корпуса. Балластные цистерны 8 выполнены равным объемом и размещены симметрично относительно продольной оси 15 (оси симметрии) корпуса ледостойкой платформы. При этом их суммарный объем должен быть не менее величины, определяемой из выражения
Vб.ц.=Pв.п.-Pт.л.,
где Vб.ц. - суммарный объем балластных цистерн, м3;
Pв.п. - выталкивающая сила, действующая на корпус ледостойкой платформы, при его полном погружении, т;
Pт.л. - суммарная тяга лебедок погружения платформы, т.
Надводная часть 1 выше ледовой ватерлинии 9 выполнена в виде ледоломного конуса 10, обращенного сужением вниз, а участок 11 подводной части 3 ниже ледовой ватерлинии 9 выполнен в виде конуса, обращенного сужением вверх (его конусность составляет порядка 60° к продольной оси 15). В целом корпус ледостойкой платформы выполнен герметичным, с возможностью полного погружения под воду технологической площадкой 2, на глубину не меньшую толщины айсбергов, которые могут появиться в районе позиционирования платформы (для этого используют результаты многолетних гидрологических наблюдений, например до 35-40 м). Прочность тросов 6 и 13 и их количество рассчитывают из условия обеспечения взлома льда толщиной до 10 м. Мощность лебедок определяют (если задан суммарный объем балластных цистерн 8) из вышеприведенного выражения или задают расчетом количество лебедок, зная их максимальное тяговое усилие (если неизвестен суммарный объем балластных цистерн 8). Донная часть может быть выполнена выпуклой, закругленной, что облегчает ее буксировку к месту позиционирования и исключает рысканье и накренения в процессе буксировки.
Если платформа предназначена для проведения буровых работ, то буровое оборудование и магазин буровых труб размещают на ее продольной оси 15, на донной части корпуса.
Кроме того, платформу оснащают двумя-тремя стыковочными узлами 13, размещая их на технологической площадке 2, способными обеспечить стыковку с подводными судами обслуживания или снабжения, донная часть которых оборудована аналогичными узлами.
Заявленное устройство используют следующим образом.
Платформу буксируют к месту установки надводными судами (при этом балластные цистерны осушены и платформа находится в надводном крейсерском положении при походной осадке). Если буксировку осуществляют в присутствии льда, то целесообразно использовать ледокол. При выходе в точку базирования отдают якоря 12, которые тросами 13 связаны с якорными лебедками 14. После закрепления якорей 12 на дне акватории выбирают тросы лебедками 14, обеспечивая их натяжение. Далее фиксируют платформу якорной системой удержания, для чего якорь 5 посредством судна обслуживания отвозят на заданное расстояние от платформы, отдавая трос 6 с соответствующей якорной лебедки 7, после чего опускают якорь на дно, затем эту операцию последовательно проводят со всеми остальными якорями 5. После закрепления якорей 5 на дне акватории выбирают тросы 6 лебедками 7, обеспечивая их заданное натяжение. Далее на технологической площадке 2 размещают соответствующее (предпочтительно мобильное) оборудование и используют его в работе.
При этом, при изменении глубины акватории или изменении толщины льда, отрабатывают лебедками 7 и 14 (выбирая или стравливая тросы 6 и 13), или соответственно балластируя платформу балластными цистернами 8, обеспечивая оптимальное положение ледовой ватерлинии 9, так, чтобы воздействие ледяного поля пришлось на «конический» участок подводной части 3 платформы, что приводит к изгибу части ледяного поля, контактирующей с платформой, и ее разрушению. Так работают до подхода ледяных полей с толщиной, большей 10 м, или айсбергов, что определяют, например, с помощью гидролокаторов.
При подходе ледяных полей с толщиной, большей 10 м, или айсбергов платформу притапливают, для чего принимают соответствующий водяной балласт в балластные цистерны 8 и включают в работу якорные лебедки 14, выбирая тросы 13, при этом контролируют силу натяжения тросов 13, обеспечивая ее равенство по всем им. В результате платформа погружается ниже уровня моря на величину, большую осадки айсбергов. Слабину тросов 6, образовавшуюся из-за погружения платформы, выбирают, также контролируя силу их натяжения, обеспечивая ее равенство по всем им.
При обслуживании платформы в подводном положении подводное судно снабжения выходит над технологической площадкой 2, зависает своим стыковочным узлом 17 над одним из стыковочных узлов 17 платформы и опускается на него. Далее герметизируется стык этих стыковочных узлов 17, открываются их люки и происходит выгрузка грузов и высадка людей или погрузка материалов и посадка людей с платформы. Далее люки стыковочных узлов задраиваются, судно снабжения подвсплывает над технологической площадкой 2 и малым ходом уходит с нее.
После прохода ледяных полей с толщиной, большей 10 м, или айсбергов (что также определяют с помощью гидролокаторов) обеспечивают всплытие платформы, для чего отдают тросы 13 и 6, и/или соответственно балластируя платформу балластными цистернами 8. После всплытия обеспечивают оптимальное положение ледовой ватерлинии 9, так, чтобы воздействие ледяного поля приходилось на «конический» участок подводной части 3 платформы.
Далее все повторяется.

Claims (2)

1. Морская технологическая ледостойкая платформа, включающая надводную часть с горизонтальной технологической площадкой сверху, сообщенную с подводной частью, выполненной в виде водоизмещающего корпуса, якорную систему удержания, балластные цистерны, расположенные в водоизмещающем корпусе, причем надводная часть в районе ледовой ватерлинии выполнена в виде ледоломного конуса, обращенного сужением вниз, а верхний участок подводной части выполнен в виде конуса, обращенного сужением вверх, отличающаяся тем, что корпус ледостойкой платформы выполнен герметичным, с возможностью полного погружения под воду, при этом балластные цистерны выполнены равным объемом и размещены симметрично относительно продольной оси симметрии корпуса ледостойкой платформы, а их суммарный объем должен быть не менее величины, определяемой из выражения
Vб.ц.в.п.т.л.,
где Vб.ц. - суммарный объем балластных цистерн, м3;
Рв.п. - выталкивающая сила, действующая на корпус ледостойкой платформы, при его полном погружении, т;
Рт.л. - суммарная тяга лебедок погружения платформы, т,
кроме того, якорная система удержания содержит якоря, которые тросами связаны с якорными лебедками, установленными в водоизмещающем корпусе, равномерно по его периметру, при этом платформа снабжена дополнительной якорной системой, содержащей якоря, которые тросами связаны с лебедками погружения, установленными в водоизмещающем корпусе, симметрично относительно его продольной оси на одинаковых расстояниях друг от друга.
2. Платформа по п.1, отличающаяся тем, что дно корпуса выполнено округлым и симметричным относительно продольной оси его симметрии.
RU2015128457/13A 2015-07-13 2015-07-13 Морская технологическая ледостойкая платформа RU2603340C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015128457/13A RU2603340C1 (ru) 2015-07-13 2015-07-13 Морская технологическая ледостойкая платформа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015128457/13A RU2603340C1 (ru) 2015-07-13 2015-07-13 Морская технологическая ледостойкая платформа

Publications (1)

Publication Number Publication Date
RU2603340C1 true RU2603340C1 (ru) 2016-11-27

Family

ID=57774537

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015128457/13A RU2603340C1 (ru) 2015-07-13 2015-07-13 Морская технологическая ледостойкая платформа

Country Status (1)

Country Link
RU (1) RU2603340C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775022A (zh) * 2018-07-26 2018-11-09 中国电建集团华东勘测设计研究院有限公司 适用于冰区海上风机基础集成附属结构及其施工方法
EP3782898A1 (en) * 2019-08-20 2021-02-24 Siemens Gamesa Renewable Energy A/S Control system for operating a floating wind turbine under sea ice conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2055773C1 (ru) * 1993-07-05 1996-03-10 Александр Сергеевич Кузьмин Плавучая полупогружная ледостойкая платформа
RU2124453C1 (ru) * 1997-12-30 1999-01-10 Клячкин Борис Борисович Способ эксплуатации плавучего стационарного объекта
RU2166584C2 (ru) * 1999-03-29 2001-05-10 Харитонов Валентин Александрович Система для буровых работ под дном водоемов
RU116562U1 (ru) * 2011-09-26 2012-05-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Нефтедобывающая подводная платформа
RU2522628C1 (ru) * 2012-12-19 2014-07-20 Российская Федерация, от имени которой выступает государственный заказчик Министерство промышленности и торговли Российской Федерации (Минпромторг России) Морская технологическая ледостойкая платформа

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2055773C1 (ru) * 1993-07-05 1996-03-10 Александр Сергеевич Кузьмин Плавучая полупогружная ледостойкая платформа
RU2124453C1 (ru) * 1997-12-30 1999-01-10 Клячкин Борис Борисович Способ эксплуатации плавучего стационарного объекта
RU2166584C2 (ru) * 1999-03-29 2001-05-10 Харитонов Валентин Александрович Система для буровых работ под дном водоемов
RU116562U1 (ru) * 2011-09-26 2012-05-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Нефтедобывающая подводная платформа
RU2522628C1 (ru) * 2012-12-19 2014-07-20 Российская Федерация, от имени которой выступает государственный заказчик Министерство промышленности и торговли Российской Федерации (Минпромторг России) Морская технологическая ледостойкая платформа

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775022A (zh) * 2018-07-26 2018-11-09 中国电建集团华东勘测设计研究院有限公司 适用于冰区海上风机基础集成附属结构及其施工方法
EP3782898A1 (en) * 2019-08-20 2021-02-24 Siemens Gamesa Renewable Energy A/S Control system for operating a floating wind turbine under sea ice conditions
WO2021032406A1 (en) * 2019-08-20 2021-02-25 Siemens Gamesa Renewable Energy A/S Control system for operating a floating wind turbine under sea ice conditions

Similar Documents

Publication Publication Date Title
EA020375B1 (ru) Способ опускания груза на дно водоема и установка для его осуществления
US8387550B2 (en) Offshore floating platform with motion damper columns
RU2719645C1 (ru) Базовое основание, опирающееся на морское дно, и способ его установки
US3880102A (en) Method and apparatus for offshore submersible oil storage and drilling
KR20120067357A (ko) 선박의 배치 및 회수용 해양 장비
KR101500844B1 (ko) 잠수식 부교를 이용한 계류장치
RU2145289C1 (ru) Способ швартовки плавучего наливного судна и система для швартовки плавучего наливного судна
US4271550A (en) Method for submerging an equipment of negative buoyancy
KR102630564B1 (ko) 진수 방법
US3163147A (en) Floating drilling platform
RU2603340C1 (ru) Морская технологическая ледостойкая платформа
US3408971A (en) Submerged oil storage vessel and oil loading facility for offshore wells
EP3810500B1 (en) Method and vessel for deploying heavy objects
KR20100136766A (ko) 이동/자항형 해상 하역 부유 구조물
RU2668020C2 (ru) Судно, совмещающее функции перевозки тяжеловесных грузов и логистики
RU2309221C2 (ru) Комплекс для монтажа морской ледостойкой переставной платформы и способ ее транспортировки и монтажа посредством комплекса для монтажа
RU158156U1 (ru) Морская технологическая ледостойкая платформа
US3339511A (en) Marine platforms and sea stations
US20150176764A1 (en) Tank
RU116562U1 (ru) Нефтедобывающая подводная платформа
KR20150049808A (ko) 바지선을 이용한 해상구조물 진수공법
KR20150119308A (ko) 폐액을 배출하기 위한 시스템 및 방법
RU2603423C1 (ru) Морское самоходное самоподъемное крановое судно
KR20150008271A (ko) 부력 장치
KR20130003914A (ko) 선박용 아지무스 쓰러스터의 육상 설치 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180714