RU2603333C1 - Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления - Google Patents

Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления Download PDF

Info

Publication number
RU2603333C1
RU2603333C1 RU2015118013/28A RU2015118013A RU2603333C1 RU 2603333 C1 RU2603333 C1 RU 2603333C1 RU 2015118013/28 A RU2015118013/28 A RU 2015118013/28A RU 2015118013 A RU2015118013 A RU 2015118013A RU 2603333 C1 RU2603333 C1 RU 2603333C1
Authority
RU
Russia
Prior art keywords
substrate
contact electrodes
pixels
manufacturing
matrix
Prior art date
Application number
RU2015118013/28A
Other languages
English (en)
Inventor
Сергей Александрович Леготин
Виктор Николаевич Мурашев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2015118013/28A priority Critical patent/RU2603333C1/ru
Application granted granted Critical
Publication of RU2603333C1 publication Critical patent/RU2603333C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Изобретение может быть использовано в медицине, кристаллографии, ядерной физике и т.д. Гибридный пиксельный фотоприемник согласно изобретению содержит первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, включающая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности пикселей расположены контактные электроды и она содержит вторую полупроводниковую подложку n-(p-) типа проводимости, содержащую на своей верхней (нижней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов, которые через контактные электроды соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на нижней (верхней) поверхности второй подложки, при этом вторая подложка одного n-(p-) типа проводимости является общей - анодной (катодной) областью и она образует с полупроводниковыми контактными электродами p+(n+) типа проводимости, являющимися одновременно катодными (анодными) электродами, матрицу p-i-n-диодов. Изобретение обеспечивает повышение координатной разрешающей способности. 2 н. и 3 з.п. ф-лы, 1 табл., 7 ил.

Description

Изобретение относится к гибридным пиксельным полупроводниковым фотоприемникам - детекторам ионизирующих излучений (ГПДИИ) и может быть использовано в качестве приемника оптического, рентгеновского, гамма, электронного и других видов радиационных излучений и для получения видеоизображений различных объектов.
В частности, такой детектор может быть использован в медицине, таможенном контроле, контроле качества и неразрушающем контроле материалов, рентгеновской астрономии, спектроскопии, фундаментальных исследованиях синхротронных излучений и т.д.
Известны конструкции гибридных пиксельных детекторов, содержащие первую - кремниевую подложку - пластину, на нижней (верхней) поверхности которой расположена интегральная СБИС - микросхема, содержащая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности этих пикселей расположены контактные электроды, и вторую полупроводниковую подложку n-(p-) типа проводимости, выполненную из материала, оптимального для поглощения конкретного вида излучения, например германия (Ge) или арсенида галлия (AsGa) [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»; 2. G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398; 3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»; 4. United states patent US 5729020 «Hybrid type infrared detector»; 5. United states patent US 6204087 B1 Date of filing 20.03.2001 «Fabrication of three-dimensional architecture for solid state radiation detectors»; 6. United states patent US 2009 0045346 A1 Date of filing 19.02.2009 «Х-ray imaging device and method for the manufacturing thereof], содержащую на своей нижней (верхней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее верхней (нижней) поверхности расположена матрица пикселей p-i-n-диодов или диодов Шоттки, которые через контактные электроды (индиевые столбиковые выводы [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»; 2. G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398], либо иного материала [3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»]) соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на верхней (нижней) поверхности второй подложки. Недостатком таких конструкций детекторов является:
- ограничение координатной разрешающей способности из-за относительно больших размеров контактных электродов пиксель и необходимости топологического совмещения пиксель обеих пластин-подложек;
- относительно высокая стоимость из-за высокого процента брака при совмещении электродов пиксель пластин.
Наиболее близкой по технической сущности является широко распространенная конструкция гибридного пиксельного детектора, представленная в [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»] и [G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398], которая взята за прототип. Она содержит первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, содержащая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности этих пикселей расположены контактные электроды (столбиковые выводы), и вторую полупроводниковую подложку n-(p-) типа проводимости, содержащую на своей верхней (нижней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов, которые через контактные электроды (столбиковые выводы) соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на нижней (верхней) поверхности второй подложки.
Недостатком конструкции детектора-прототипа также является:
- ограничение координатной разрешающей способности детекторов из-за относительно больших размеров контактных электродов пикселей ввиду необходимости топологического совмещения пикселей обеих пластин.
Техническим результатом изобретения является повышение координатной разрешающей способности детекторов.
Цель достигается тем, что вторая подложка одного n-(p-) типа проводимости, является общей - анодной (катодной) областью и образует с полупроводниковыми контактными электродами n+(p+) типа проводимости, являющимися одновременно катодными (анодными) электродами, матрицу p-i-n-диодов.
Известны способы изготовления гибридных пиксельных детекторов [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»; 2. G.D. Hallewell «Development of active pixel vertex detectors for high luminosity particle physics applications original research article», Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, Volume 348, Issues 2-3, 1 September 1994, pages 388-398; 3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»; 4. United states patent US 5729020 «Hybrid type infrared detector»], включающие:
- подготовку первой - кремниевой подложки, изготовление на ее поверхности интегральной СБИС - микросхемы с матрицей пикселей с контактными электродами;
- подготовку второй подложки n-(p-) типа проводимости и формирование на ее поверхности n+(p+) сильно легированного слоя;
- утонение второй подложки и изготовление в ней матрицы пикселей - p-i-n-диодов с контактными электродами;
- соединение подложек с топологическим (геометрическим) совмещением соответствующих контактных электродов подложек.
Или способы изготовления детекторов [3. United states patent US 7157300 B2 Date of filing 02.01.2007 «Fabrication of thin film germanium infrared sensor by bonding to silicon wafer»; 4. United states patent US 5,729,020 «Hybrid type infrared detector»], включающие:
- подготовку первой - кремниевой подложки, изготовление на ней интегральной СБИС - микросхемы с матрицей пикселей, формирование на ней контактных электродов (столбиковых выводов);
- подготовку второй подложки и создание на ее нижней (верхней) поверхности сильно легированного n+(p+) слоя и общего контактного электрода, изготовление на ее верхней (нижней) поверхности матрицы пикселей p-i-n-диодов;
- соединение подложек с совмещением контактных электродов (столбиковых выводов) первой подложки с контактными электродами p-i-n-диодов второй подложки.
Недостатком таких способов изготовления гибридных пиксельных детекторов является: технологическая сложность (соответственно высокая стоимость технологии) создания большого числа межсоединений между пластинами из-за проблемы совмещения контактных электродов, особенно если пластины имеют значительную толщину (300 мкм).
Наиболее близким по технической сущности широко применяемым и обладающим наилучшей технологичностью является способ изготовления детектора, который взят за прототип [1. European patent application ЕР 2088451 A1 date of filing 12.08.2009 «Imaging detector»], включающий:
- подготовку первой - кремниевой подложки, изготовление на ней интегральной СБИС - микросхемы с матрицей пикселей с контактными электродами (столбиковыми выводами);
- подготовку второй подложки и создание на ее верхней (нижней) поверхности сильно легированного n+(p+) слоя и общего контактного электрода, изготовление на ее нижней (верхней) поверхности матрицы пикселей p-i-n-диодов;
- соединение подложек с совмещением контактных электродов (столбиковых выводов) первой подложки с контактными электродами p-i-n-диодов второй подложки.
Однако при таком способе также существует проблема совмещения соответствующих пикселей пластин.
Техническим результатом изобретения является уменьшение стоимости, повышение надежности и повышение разрешающей способности гибридных пиксельных детекторов.
Цель достигается тем, что контактные электроды первой подложки выполняются из полупроводникового материала сильно легированного примесью n+(p+) типа, при этом соединение подложек происходит при температуре интенсивной диффузии этой примеси из контактных электродов первой - кремниевой подложки во вторую подложку с одновременным формированием в ней p-i-n-диодов.
С целью надежности работы путем исключения утечек между p-i-n-диодами по поверхности второй подложки, например пластины германия, ее следует пассивировать путем смыкания под давлением, поверхности второй подложки - пластины германия с диэлектриком (оксидом кремния, нитридом кремния и т.д.), расположенном на кремниевом чипе. При этом возможны варианты, в частности, когда:
- контактные электроды выполняются из «твердого» материала, например, поликремния, который углубляется во вторую подложку (пластину) при соединении пластин;
- контактные электроды выполняются ниже уровня поверхности диэлектрика, а во вторую подложку (пластину) углубляется диэлектрик, расположенный на кремниевом чипе.
Изобретение поясняется фиг. 1-6.
На фиг. 1 показана конструкция детектора-прототипа, из которой видно, что раздельное изготовление пластин приводит к проблеме их совмещения и соответственно к браку либо к нежелательному увеличению площади пикселей (ухудшению разрешающей способности).
На фиг. 2 показана конструкция гибридного пиксельного детектора ионизирующих излучений. Она содержит первую - кремниевую подложку - 1 n-типа проводимости, вторую германиевую подложку - 2 n-типа проводимости. На верхней поверхности подложки - 2 расположена интегральная СБИС - микросхема, включающая матрицу пикселей - 3 с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности этих пикселей расположены контактные электроды - 4. Вторая германиевая подложка содержит на своей верхней поверхности сильно легированный n+-слой - 5 с расположенным на нем металлическим общим катодным электродом - 6, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов - 7, которые через контактные электроды - 4 соединены с соответствующими пикселями матрицы первой кремниевой подложки - 1. Матрица пикселей - 3 содержит n-МОП и р-МОП транзисторы, имеющие соответствующие области карманов - 8, стоков и истоков n-типа - 9, стоков и истоков р-типа - 10, затворов - 11, и выводам к ним - 12, на поверхности кремниевой подложки расположен диэлектрик - 13.
На фиг. 2 показана основная операция изготовления конструкции гибридного пиксельного детектора ионизирующих излучений.
Принцип действия гибридного пиксельного детектора
Квант ионизирующего излучения, например рентгеновского, взаимодействует с атомом материала детектирующей пластины-подложки и генерирует фотоэлектрон, который в свою очередь возбуждает определенное количество внешних электронов (порядка нескольких тысяч) с соседних атомов и таким образом создает облако электронов (и дырок) в области пространственного заряда соответствующего p-i-n-диода, которое под действием электрического поля, приложенного к пластине, создает импульс ионизационного тока.
Импульс тока поступает на вход пикселей матрицы микросхемы считывания, расположенной в кремниевой пластине. Здесь он усиливается КМОП электронными схемами и, если его величина превышает некое пороговое значение, суммируется в счетчике импульсов пикселей.
Различное количество одиночных импульсов, накопленных в матрице пикселей, формируют контрастный образ изображения, т.е. изображение объекта. В экспериментах по дифракции рентгеновских лучей одиночные импульсы пикселей формируют двумерную дифракционную картину рентгеновских лучей, а также они могут быть специально интегрированы или разбиты на интервалы для формирования дифрактограмм.
Пример конкретной технологической реализации
Гибридного пиксельного фотоприемника - детектора излучений состоит в следующих технологических операциях:
- формирование диффузией фосфора n+-контактной области в верхней германиевой (или кремниевой) пластине с низкой концентрацией примеси фосфора или бора (1014 см-3 - 1017 см-3) и осаждение на нее металла общего электрода из алюминия (A1) (фиг. 2, а);
- изготовление в кремниевой пластине КМОП интегральных схем, содержащих матрицы пикселей с входными электродами из сильно легированного бором поликремния (полигермания) (см. фиг. 2, б);
- соединение (сварка) пластин при температуре T=500-800°C интенсивной диффузии примеси из поликремния (полигермания) в германиевую подложку (см. фиг. 2, а).
С целью исключения утечек между p-i-n-диодами по поверхности германия ее можно улучшить - пассивировать - путем смыкания под давлением поверхности германия с диэлектриком (оксидом кремния, нитридом кремния и т.д.), расположенным на кремниевом чипе. При этом возможны варианты, в частности, когда:
- контактные электроды выполняются из «твердого» материала - например, поликремния, который углубляется в германий (фиг. 3);
- контактные электроды выполняются из «мягкого» материала, например, германия, а в германиевую пластину углубляется диэлектрик, расположенный на кремниевом чипе (фиг. 4).
Особенности и преимущества использования
1. Например, для регистрации рентгеновских квантов синхротронных излучений (фотонов) с низкими энергиями 3-10 кэВ возможна конструкция детектора, состоящая из двух кремниевых Si пластин, в которой кремниевая пластина, содержащая электронику, выполняется по технологии «кремний на изоляторе». В этом случае имеется возможность утонения кремниевой пластины до минимальных значений 0,2-0,5 мкм (до оксидного слоя - 14) (фиг. 5).
Для улучшения качества контактов к германию на его поверхность могут быть нанесены молекулярные эпитаксиальные слои кремния (фиг. 6).
2. Важным преимуществом предлагаемого детектора является также отсутствие экранирования излучения индиевыми электродами (столбиковыми выводами), которое имеется в традиционных гибридных детекторах.
3. При попадании рентгеновского излучения с лицевой стороны германиевой пластины имеется возможность получения максимально высокой квантовой эффективности (около 98%) и координатного разрешения (размера пикселей) - менее 20 мкм, что существенно превышает аналогичные параметры выпускаемых детекторов, мирового лидера - компании DECTRIS Ltd (соответственно 80% и 172 мкм) (https://www.dectris.com/products.html).
4. Использование германиевой Ge - детектирующей подложки позволяет получить для рентгеновских излучений диапазона 10-35 кэВ квантовую эффективность 98% и координатную разрешающую способность не хуже 20 мкм, а для диапазона 30-150 кэВ не хуже 80% и 100 мкм соответственно, что удовлетворяет предельным требованиям, предъявляемым к детекторам медицинского назначения (табл. 1).
5. Исключение совмещения пластин и отказ от дорогого материала индиевых столбов приводит к существенному уменьшению стоимости детектора и повышению качества полученных изображений.
Figure 00000001
На фиг. 7 показана блок-схема технологической реализации конструкции гибридного пиксельного детектора ионизирующих излучений.

Claims (5)

1. Гибридный пиксельный фотоприемник, содержащий первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, включающая матрицу пикселей с КМОП электронными схемами считывания и обработки электрических сигналов, при этом на поверхности пикселей расположены контактные электроды и она содержит вторую полупроводниковую подложку n-(p-) типа проводимости, содержащую на своей верхней (нижней) поверхности сильно легированный n+(p+) слой с расположенным на нем металлическим общим катодным (анодным) электродом, а на ее нижней (верхней) поверхности расположена матрица пикселей p-i-n-диодов, которые через контактные электроды соединены с соответствующими пикселями матрицы первой кремниевой подложки, расположенной на нижней (верхней) поверхности второй подложки, отличающаяся тем, что вторая подложка одного n-(p-) типа проводимости является общей - анодной (катодной) областью и она образует с полупроводниковыми контактными электродами p+(n+) типа проводимости, являющимися одновременно катодными (анодными) электродами, матрицу p-i-n-диодов.
2. Способ изготовления гибридного пиксельного фотоприемника по п. 1, включающий подготовку первой - кремниевой подложки, изготовление на ней интегральной СБИС - микросхемы с матрицей пикселей, формирование контактных электродов, подготовку второй подложки, создание на ее верхней (нижней) поверхности сильно легированного n+(p+) слоя и общего контактного электрода, соединение подложки, отличающийся тем, что контактные электроды первой подложки выполняют из полупроводникового материала сильно легированного примесью p+(n+) типа, при этом соединение подложек происходит при температуре интенсивной диффузии этой примеси из контактных электродов первой - кремниевой подложки во вторую подложку с одновременным формированием в ней p-i-n-диодов.
3. Способ изготовления по п. 2, отличающийся тем, что поверхность второй подложки пассивируют путем смыкания (контактирования) поверхности второй подложки с диэлектриком, расположенным на кремниевой подложке.
4. Способ изготовления по п. 3, отличающийся тем, что контактные электроды выполняют из поликремния, который углубляют в материал второй подложки при соединении подложек.
5. Способ изготовления по п. 3, отличающийся тем, что контактные электроды выполняют ниже уровня поверхности диэлектрика, расположенного на кремниевой подложке, а во вторую подложку углубляется диэлектрик, расположенный на кремниевой подложке.
RU2015118013/28A 2015-05-14 2015-05-14 Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления RU2603333C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015118013/28A RU2603333C1 (ru) 2015-05-14 2015-05-14 Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015118013/28A RU2603333C1 (ru) 2015-05-14 2015-05-14 Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления

Publications (1)

Publication Number Publication Date
RU2603333C1 true RU2603333C1 (ru) 2016-11-27

Family

ID=57774541

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015118013/28A RU2603333C1 (ru) 2015-05-14 2015-05-14 Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления

Country Status (1)

Country Link
RU (1) RU2603333C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730045C2 (ru) * 2018-09-11 2020-08-14 Объединенный Институт Ядерных Исследований (Оияи) Гибридный пиксельный детектор ионизирующих излучений
RU207343U1 (ru) * 2021-07-05 2021-10-25 OOO «СофтЭксперт» P-I-N-диодный дозиметр

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168450A2 (en) * 2000-06-22 2002-01-02 Pixim Incorporated Improved designs of digital pixel sensors
JP2006120921A (ja) * 2004-10-22 2006-05-11 Fuji Film Microdevices Co Ltd 光電変換膜積層型カラー固体撮像装置
EP2088451A1 (en) * 2008-02-05 2009-08-12 PANalytical B.V. Imaging Detector
RU2478241C1 (ru) * 2011-10-03 2013-03-27 Открытое акционерное общество "Научно-исследовательский институт телевидения" Устройство формирования видеосигнала от кмоп-матрицы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168450A2 (en) * 2000-06-22 2002-01-02 Pixim Incorporated Improved designs of digital pixel sensors
JP2006120921A (ja) * 2004-10-22 2006-05-11 Fuji Film Microdevices Co Ltd 光電変換膜積層型カラー固体撮像装置
EP2088451A1 (en) * 2008-02-05 2009-08-12 PANalytical B.V. Imaging Detector
RU2478241C1 (ru) * 2011-10-03 2013-03-27 Открытое акционерное общество "Научно-исследовательский институт телевидения" Устройство формирования видеосигнала от кмоп-матрицы

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730045C2 (ru) * 2018-09-11 2020-08-14 Объединенный Институт Ядерных Исследований (Оияи) Гибридный пиксельный детектор ионизирующих излучений
RU207343U1 (ru) * 2021-07-05 2021-10-25 OOO «СофтЭксперт» P-I-N-диодный дозиметр

Similar Documents

Publication Publication Date Title
JP5254066B2 (ja) 画像化検出器
US11024666B2 (en) Electromagnetic radiation detector comprising charge transport across a bonded interface
US11508858B2 (en) Multi-well selenium device and method for fabrication thereof
EP2748639A2 (en) Radiation detector
US10535707B2 (en) Monolithic silicon pixel detector, and systems and methods for particle detection
Takahashi et al. High-resolution CdTe detectors and application to gamma-ray imaging
Zwerger et al. Medipix2: Processing and measurements of GaAs pixel detectors
RU2603333C1 (ru) Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления
Sklyarchuk et al. Effect of CdTe crystal thickness on the efficiency of Cr/CdTe/Au Schottky-diode detectors
US20220050218A1 (en) Dual-sensor subpixel radiation detector
Kalliopuska et al. Characterization of edgeless pixel detectors coupled to Medipix2 readout chip
Kalliopuska et al. Processing and characterization of edgeless radiation detectors for large area detection
US9159765B2 (en) Apparatus for detecting soft X-ray radiation and X-ray detection system including such apparatus
KR20210149033A (ko) X-선 검출기 컴포넌트, x-선 검출 모듈, 이미징 디바이스, 및 x-선 검출기 컴포넌트 제조 방법
EP2579067B1 (en) X-ray detection apparatus and X-ray detection system
EP2088625B1 (en) Imaging detector
Hu et al. Advanced back-illuminated silicon photomultipliers with surrounding P+ trench
Legotin et al. Monolithic silicon photodetector-detector of ionizing radiation based on functional integrated MOS structures
Lemonier et al. Thinned backside-bombarded RGS-CCD for electron imaging
US10811220B2 (en) Electron sensor for electron microscopy
Roos Semiconductor Detectors
US20220246669A1 (en) One-piece device for detecting particles with semiconductor material
Aoki Single Crystal Diamond Radiation Detector
Fleta et al. Department of Physics and Astronomy Experimental Particle Physics Group