RU2603231C1 - Устройство для диагностики импульсных пучков ионизирующих частиц - Google Patents

Устройство для диагностики импульсных пучков ионизирующих частиц Download PDF

Info

Publication number
RU2603231C1
RU2603231C1 RU2015139244/28A RU2015139244A RU2603231C1 RU 2603231 C1 RU2603231 C1 RU 2603231C1 RU 2015139244/28 A RU2015139244/28 A RU 2015139244/28A RU 2015139244 A RU2015139244 A RU 2015139244A RU 2603231 C1 RU2603231 C1 RU 2603231C1
Authority
RU
Russia
Prior art keywords
distribution
ionizing particles
processing unit
signal processing
registration
Prior art date
Application number
RU2015139244/28A
Other languages
English (en)
Inventor
Фархат Фагимович Валиев
Никодим Александрович Макаров
Олег Иванович Столяров
Григорий Александрович Феофилов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)
Priority to RU2015139244/28A priority Critical patent/RU2603231C1/ru
Application granted granted Critical
Publication of RU2603231C1 publication Critical patent/RU2603231C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области ядерной физики и может быть использовано в ускорительной технике для измерения распределения ионизирующих частиц в поперечном сечении импульсных пучков. Устройство для диагностики профиля пучка ионизирующих частиц содержит систему регистрации распределения ионизирующих частиц в поперечном сечении пучка, включающую ускоряющий электрод, микроканальные пластины, печатную плату с линией задержки, соединенную с блоком обработки сигналов, при этом вдоль направления пучка ионизирующих частиц ортогонально системе регистрации распределения ионизирующих частиц расположена такая же система регистрации, печатная плата которой соединена с блоком обработки сигналов, линии задержки на печатных платах имеют форму меандра, а блок обработки сигналов имеет по два входа для каждой из ортогональных систем регистрации. Технический результат - повышение объема получаемой информации о распределении ионизирующих частиц вдоль двух ортогональных координат. 3 ил.

Description

Изобретение относится к области ядерной физики и может быть использовано в ускорительной технике для измерения распределения ионизирующих частиц в поперечном сечении импульсных пучков.
Известно устройство для измерения пространственного распределения плотности потока энергии в поперечном сечении пучка или направленного излучения [1]. В нем для получения двумерной информации о распределении плотности потока используются конвертор потока излучения в поток вторичных электронов, коллиматор вторичных электронов и многоэлектродная позиционно-чувствительная ионизационная камера. Такая информация позволяет при лучевой терапии оптимально расположить облучаемый орган пациента. Однако известное устройство имеет недостаточно высокую точность за счет имеющегося в нем конвертора потока излучения.
Известно устройство для визуализации распределения плотности потока в пучке импульсного ионизирующего излучения [2]. В нем для получения двумерной информации применен волоконно-оптический экран, который через волоконно-оптическую линию связи подключен к фотоэлектрическому преобразователю, выход которого соединен с микропроцессором. Однако известное устройство не позволяет получить полную информацию о распределении ионизирующих частиц без нарушения целостности самого пучка.
Известно устройство для неразрушающего измерения распределения плотности тока по сечению импульсных пучков заряженных частиц [3], которое имеет набор коллекторов в виде проводящих пластин, подключенных к регистрирующему устройству и расположенных радиально по отношению к пучку. Радиальные размеры пластин различаются. Пластина минимального размера только касается пучка, максимального размера входит в пучок на половину его диаметра. Сигналы от наведенного пучком тока обрабатываются в регистрирующем устройстве для получения информации о радиальном распределении тока пучка. Однако известное устройство не позволяет получить полную информацию за счет того, что невозможно учесть азимутальное распределение тока пучка и воздействие на пучок введенных в него коллекторов.
Известен датчик поперечного распределения плотности пучка ускоренных частиц [4], в котором использованы извлекающий конденсатор в виде пластин, размещенных по обеим сторонам пучка, анализирующий конденсатор, двухкоординатный позиционно-чувствительный детектор в виде электронно-оптического преобразователя (ЭОП) с усилителем на микроканальных пластинах (МКП), регистрирующее устройство, выполненное в виде телевизионной камеры. Пластина, к которой движутся ионы остаточного газа, имеет щель, ортогональную направлению пучка. Вдоль щели отсчитывается первая координата распределения плотности пучка. Ионы, прошедшие эту щель, попадают в поле анализирующего конденсатора. Под действием этого поля они направляются на входную поверхность микроканальной пластины усилителя, имея распределение по второй ортогональной координате, повторяющее распределение в пучке. Выходной экран ЭОПа выполнен в виде четырех взаимно изолированных квадрантов. По сигналам с этих квадрантов определяют отклонение пучка от оптимального положения. Однако известный датчик имеет сложную конструкцию, трудоемкий в эксплуатации и имеет недостаточно высокую чувствительность к распределению плотности пучка вдоль второй координаты за счет наличия в его конструкции узкой щели.
Известно устройство для бесконтактной (неразрушающей) диагностики профиля пучка заряженных частиц, использующее ионы остаточного газа [5]. Устройство имеет два плоских параллельных электрода, один из которых выполнен в виде сетки, прозрачной для ионов, две пластины МКП и печатную плату с 32-мя ламелями в виде параллельных проводящих полосок, соединенную с блоком обработки сигналов. Контролируемый поток заряженных частиц находится между электродами и ионизирует остаточный газ. Под действием поля между электродами ионы направляются к МКП. Сигнал распределения зарядов вдоль одной координаты поперечного сечения пучка снимается с ламелей печатной платы. Однако это устройство имеет недостатки, связанные с получением ограниченной информации - только вдоль одной координаты, а также со сложностью обработки информации в блоке обработки сигналов при большом количестве ламелей.
Известно устройство для диагностики пучков [6], наиболее близкое к заявленному изобретению и выбранное в качестве прототипа. Оно представляет собой систему регистрации профиля пучка вдоль одной координаты, включающую ускоряющий электрод, микроканальные пластины и плату с линией задержки, подключенную к блоку обработки сигналов. Поверхность ближайшей к пучку МКП и ускоряющий электрод образуют извлекающий конденсатор.
Недостатком известного устройства является не достаточно полный объем получаемой информация о профиле пучка, так как извлекающий конденсатор позволяет получить распределение извлекаемых ионов только по одной координате.
Техническим результатом заявляемого изобретения является повышение объема получаемой информации о распределении ионизирующих частиц вдоль двух ортогональных координат. Это достигается за счет использования еще одной системы регистрации профиля пучка и линий задержки, для которых обработка информации в блоке обработки сигналов менее сложная по сравнению с обработкой информации с большого количества ламелей.
Заявленный технический результат достигается тем, что устройство для диагностики профиля пучка ионизирующих частиц, содержащее систему регистрации распределения ионизирующих частиц в поперечном сечении пучка, включающую ускоряющий электрод, микроканальные пластины, печатную плату с линией задержки, соединенную с блоком обработки сигналов, согласно изобретению имеет расположенную вдоль направления пучка ионизирующих частиц ортогонально системе регистрации распределения ионизирующих частиц такую же систему регистрации, печатная плата которой соединена с блоком обработки сигналов, линии задержки на печатных платах имеют форму меандра а блок обработки сигналов имеет по две пары входов для каждой из ортогональных систем регистрации.
Общими признаками с прототипом являются ускоряющий электрод, микроканальные пластины, печатная плата с линией задержки, соединенная с блоком обработки сигналов.
Схема заявленного устройства приведена на Фиг. 1. Одна из систем регистрации более наглядно показана на Фиг. 2.
Устройство состоит из ортогонально расположенных ускоряющих электродов 1 и 6, микроканальных пластин 2, 3 и 7, 8, печатных плат с линией задержки 4 и 9. Последние соединены с блоком обработки сигналов, имеющим 2 входа для каждой печатной платы. Относительно контролируемого пучка ионизирующих частиц устройство располагается так, чтобы пучок находился в области между элементами 1, 2, 6, 7. На Фиг. 1 направление пучка считается ортогональным рисунку, на Фиг. 2 это направление показано стрелкой.
Устройство работает следующим образом.
Пучок ионизирующих частиц, проходя между ускоряющим электродом 1 и микроканальной пластиной 2 системы регистрации, ионизирует остаточный газ. Так как между ускоряющим электродом 1 и регистрирующей поверхностью микроканальной пластины 2 есть напряжение, то образовавшиеся ионы дрейфуют в электрическом поле к поверхности микроканальной пластины 2. В каналах пластин 2 и 3 от каждого иона за счет эффекта вторичной эмиссии происходит образование сгустка зарядов гораздо большей величины по сравнению с зарядом иона. Положение этого сгустка вдоль одной координаты определяется по сигналам с линии задержки на плате 4, которые поступают в блок обработки сигналов 5.
Аналогично работает другая система регистрации, состоящая из ускоряющего электрода 6, микроканальных пластин 7 и 8 и печатной платы с линией задержки 9, соединенной с блоком обработки сигналов 5.
Блок обработки сигналов 5 имеет по два входа для каждой из ортогональных систем регистрации, так как сигнал о наведенном от зарядов токе поступает с двух концов каждой из линий задержки.
Линия задержки на каждой печатной плате имеет форму меандра. Такая форма наиболее удобна для планарных замедляющих структур.
Заявленное устройство было апробировано в лабораторных условиях Санкт-Петербургского государственного университета. Результаты апробации приведены ниже в виде конкретного примера реализации макетного образца на вакуумном стенде с электронным оборудованием (Фиг. 3) с пояснением его работоспособности
В вакуумной камере 10 установлен альфа-источник узконаправленного ионизирующего излучения с возможностью его перемещения вдоль одной координаты, а также размещены ускоряющий электрод 1, микроканальные пластины 2 и 3, печатная плата с линией задержки в виде меандра 4. Вакуум в камере обеспечивается форвакуумным насосом 14, азотной ловушкой 15 и магниторазрядным насосом 13, соединенным фланцами 12 с камерой. Напряжение на микроканальные пластины подается от высоковольтного источника питания 16 через делитель 17, расположенный на съемном фланце 11. В качестве блока обработки сигналов 5 применен крейт КАМАК 18 с компьютером 27. Для обработки сигналов с линии задержки были использованы быстрые усилители 19, формирователи 20, преобразователь время - амплитуда 21, преобразователь амплитуда - код 22. Сигналы из вакуумной камеры поступают через гермовыводы 25 по кабелям 26.
Приведенный пример конкретной реализации заявленного устройства позволяет определить изменение числа регистрируемых ионов при прохождении около микроканальных пластин альфа-частиц в зависимости от координаты их пролета. При изменении координаты источника имитируется пучок частиц с заданным профилем. Главная информация, которая важна при настройке ускорителей, - положение центра тяжести пучка. Это положение, определяемое по результатам измерений, с точностью до погрешностей измерения совпадает с заданным. Аналогичные измерения проведены при азимутальном развороте на 90 градусов ускоряющего электрода, микроканальных пластин и печатной платы. Результаты получены аналогичные.
При изготовлении заявленного устройства в заводских условиях выполнима более удобная в применении конструкция в едином корпусе с окнами для пучка и блоком обработки сигналов на основе известных электронных компонентов.
Таким образом, полученные данные проверки работоспособности устройства показали возможность ее использования для двумерной диагностики профиля пучка ионизирующих частиц, что существенно повышает объем и качество получаемой информации.
Литература
1. Тюрин Г.П., Румянцев Б.В., Тренкин В.А., Дмитриев В.Д. Драпчинский Л.В. Устройство для измерения пространственного распределения плотности потока энергии в поперечном сечении пучка (импульсного и непрерывного) направленного излучения высокой интенсивности и энергии фотонов и локализации отдельных органов пациента. Патент РФ №2334251, МПК G01T 1/29, 2008.
2. Демьянович М.В., Евреев А.И., Казачков Ю.П. Устройство для визуализации распределения плотности потока в пучке импульсного ионизирующего излучения. Патент РФ №2019858, МПК G01T 1/29, 1994.
3. Логачев Е.И., Ремнев Г.Е., Толопа A.M. Устройство для неразрушающего измерения распределения плотности тока по сечению импульсных пучков заряженных частиц. Патент РФ №1021264, МПК G01T 1/29, 1994.
4. П.Ю. Комиссаров, В.А. Резвов, А.А. Рощин и др. Датчик поперечного распределения плотности пучка ускоренных частиц. Патент РФ №2033630, МПК G01T 1/29, 1995.
5. А.А. Балдин, А.И. Берлев, И.В. Кудашкин и др. Детектор на основе микроканальных пластин для контроля пространственно-временных характеристик циркулирующего пучка нуклотрона. // Письма в ЭЧАЯ”, 2014, Т. 11, N 2 (186), с. 209-218
6. Валиев Ф.Ф., Виноградов Л.И., Касаткин В.А. и др. Координатно-чувствительный детектор для диагностики пучков // Тезисы докладов 48-го международного совещания по ядерной спектроскопии и структуре атомного ядра. 1998. Л.: Наука. С. 306 (прототип).

Claims (1)

  1. Устройство для диагностики профиля пучка ионизирующих частиц, содержащее систему регистрации распределения ионизирующих частиц в поперечном сечении пучка, включающую ускоряющий электрод, микроканальные пластины, печатную плату с линией задержки, соединенную с блоком обработки сигналов, отличающееся тем, что вдоль направления пучка ионизирующих частиц ортогонально системе регистрации распределения ионизирующих частиц расположена такая же система регистрации, печатная плата которой соединена с блоком обработки сигналов, линии задержки на печатных платах имеют форму меандра, а блок обработки сигналов имеет по два входа для каждой из ортогональных систем регистрации.
RU2015139244/28A 2015-09-15 2015-09-15 Устройство для диагностики импульсных пучков ионизирующих частиц RU2603231C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015139244/28A RU2603231C1 (ru) 2015-09-15 2015-09-15 Устройство для диагностики импульсных пучков ионизирующих частиц

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015139244/28A RU2603231C1 (ru) 2015-09-15 2015-09-15 Устройство для диагностики импульсных пучков ионизирующих частиц

Publications (1)

Publication Number Publication Date
RU2603231C1 true RU2603231C1 (ru) 2016-11-27

Family

ID=57774459

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015139244/28A RU2603231C1 (ru) 2015-09-15 2015-09-15 Устройство для диагностики импульсных пучков ионизирующих частиц

Country Status (1)

Country Link
RU (1) RU2603231C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU210000U1 (ru) * 2021-11-09 2022-03-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Сцинтилляционный сканер профилей пучков ионизирующих излучений
RU2784826C1 (ru) * 2021-11-22 2022-11-30 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Сцинтилляционный сканер профилей пучков ионизирующих излучений

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1538715A1 (ru) * 1988-04-04 1991-04-30 Предприятие П/Я В-8851 Измеритель параметров пучков ионизирующих частиц
RU152734U1 (ru) * 2015-01-12 2015-06-20 Федеральное государственное бюджетное учреждение "Петербургский институт ядерной физики им. Б.П. Константинова" (ФГБУ "ПИЯФ") Устройство для измерения профилей протонных пучков ускорителей высоких энергий

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1538715A1 (ru) * 1988-04-04 1991-04-30 Предприятие П/Я В-8851 Измеритель параметров пучков ионизирующих частиц
RU152734U1 (ru) * 2015-01-12 2015-06-20 Федеральное государственное бюджетное учреждение "Петербургский институт ядерной физики им. Б.П. Константинова" (ФГБУ "ПИЯФ") Устройство для измерения профилей протонных пучков ускорителей высоких энергий

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.А. Балдин, А.И. Берлев, И.В. Кудашкин и др. Детектор на основе микроканальных пластин для контроля пространственно-временных характеристик циркулирующего пучка нуклотрона. // Письма в ЭЧАЯ", 2014, T. 11, N 2 (186), с. 209-218. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU210000U1 (ru) * 2021-11-09 2022-03-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Сцинтилляционный сканер профилей пучков ионизирующих излучений
RU2784826C1 (ru) * 2021-11-22 2022-11-30 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Сцинтилляционный сканер профилей пучков ионизирующих излучений

Similar Documents

Publication Publication Date Title
Janik et al. Time Projection Chambers with C-pads for heavy ion tracking
Blank et al. A time projection chamber for the three-dimensional reconstruction of two-proton radioactivity events
Cirrone et al. Transport and dosimetric solutions for the ELIMED laser-driven beam line
Saneesh et al. Performance results of National Array of Neutron Detectors (NAND) facility at IUAC
Poleshchuk et al. The SpecMAT active target
CN111077561A (zh) 一种残留气体带电粒子束流监测装置及其方法
RU2603231C1 (ru) Устройство для диагностики импульсных пучков ионизирующих частиц
Harasimowicz et al. Faraday cup for low-energy, low-intensity beam measurements at the USR
Zhang et al. A multiple sampling ionization chamber for the External Target Facility
Scisciò et al. High sensitivity Thomson spectrometry: analysis of measurements in high power picosecond laser experiments
RU161857U1 (ru) Датчик распределения ионизирующих частиц в пучке
Dore et al. FALSTAFF: A new tool for fission studies
Baldin et al. Monitoring extracted beams of the nuclotron accelerator complex for “energy+ transmutation” experiments
Barrett et al. Testing and calibration of a Faraday cup and other intensity monitors for the external proton beam at LAMPF
Dietrich et al. Beam profile measurements based on light radiation of atoms excited by the particle beam
Gavrilov et al. Two-dimensional non-destructive diagnostics for accelerators by Beam Cross Section Monitor
Rodríguez-Tajes et al. A mask for high-intensity heavy-ion beams in the MAYA active target
Bäck Prestudy: Detectors for variance measurements in the nanometer range
Carvalho Large Area Cascaded Gas Electron Multipliers for Imaging Applications
Blank et al. A time projection chamber to study two-proton radioactivity
Esin et al. INR activity in development and production of bunch shape monitors
Hashimoto et al. Development of a beam profile monitor using nitrogen molecular jet for intense beams
Harca et al. Development of a low-pressure Multi-Mesh THGEM detector for fission experiments at FRIB
Rozpedzik et al. Multi-Wire 3D Gas Tracker for Searching New Physics in Nuclear Beta Decay
Ikram Radio-frequency generation of an electron plasma in a Malmberg-Penning trap and its interaction with a stationary or pulsed electron beam.