RU2602150C2 - Method of producing hydrogen from biomass - Google Patents

Method of producing hydrogen from biomass Download PDF

Info

Publication number
RU2602150C2
RU2602150C2 RU2015104766/05A RU2015104766A RU2602150C2 RU 2602150 C2 RU2602150 C2 RU 2602150C2 RU 2015104766/05 A RU2015104766/05 A RU 2015104766/05A RU 2015104766 A RU2015104766 A RU 2015104766A RU 2602150 C2 RU2602150 C2 RU 2602150C2
Authority
RU
Russia
Prior art keywords
biomass
pyrolysis
hydrogen
producing hydrogen
heat carrier
Prior art date
Application number
RU2015104766/05A
Other languages
Russian (ru)
Other versions
RU2015104766A (en
Inventor
Анатолий Яковлевич Столяревский
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2015104766/05A priority Critical patent/RU2602150C2/en
Publication of RU2015104766A publication Critical patent/RU2015104766A/en
Application granted granted Critical
Publication of RU2602150C2 publication Critical patent/RU2602150C2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

FIELD: chemistry.
SUBSTANCE: invention relates to a method of producing hydrogen from biomass and can be used for producing hydrogen-containing products by producing hydrogen from pyrolysis products of vegetal biofuel in systems of energy accumulation and transport, as well as in systems for production of fuel for vehicles and stationary power plants. Method involves biomass grinding and drying, its further pyrolysis using heated solid heat carrier and superheated steam, separation of hydrogen-containing gases of pyrolysis and pyrolysis mass, which is subjected to high-temperature gasification. Solid heat carrier used is carbonates, forming oxides at high-temperature gasification, solid heat carrier heating is performed by combustion of pyrolysis mass of oxygen produced during electrolysis of water formed during biomass drying process.
EFFECT: technical result consists in reduction of heat consumption, as well as allowing to produce various energy carriers of various biomass in the absence of oxygen consumption from the atmosphere.
10 cl, 1 dwg, 1 tbl

Description

Изобретение относится к способу получения водорода из биомассы и может быть использовано для получения водородсодержащих продуктов путем получения водорода из продуктов пиролиза растительного биотоплива, а также в системах аккумулирования и транспорта энергии, в системах производства топлива для транспорта и в стационарных энергоустановках.The invention relates to a method for producing hydrogen from biomass and can be used to produce hydrogen-containing products by producing hydrogen from products of pyrolysis of vegetable biofuel, as well as in energy storage and transport systems, in fuel production systems for transport, and in stationary power plants.

Солнечная энергия - основной энергоресурс на нашей планете: приблизительно 7×1017 кВт·ч/год достигает поверхности Земли, что примерно в 10000 раз больше, чем фактически используется земной цивилизацией (на мировом коммерческом рынке покупается и продается чуть меньше 8,5×1013 кВт·ч энергии в год). Практически все возобновляемые виды энергии, используемые на Земле, формируются за счет солнечной энергии, включая ветровую и гидроэнергетику, получение биотоплива и использование тепловых ресурсов океанов.Solar energy is the main energy resource on our planet: approximately 7 × 10 17 kWh / year reaches the Earth’s surface, which is about 10,000 times more than what is actually used by terrestrial civilization (a little less than 8.5 × 10 is bought and sold on the world commercial market 13 kWh of energy per year). Almost all renewable types of energy used on Earth are generated by solar energy, including wind and hydropower, biofuels and the use of thermal resources of the oceans.

Наряду с фотоэлектрическими преобразователями энергии наиболее подходящим источником для получения водородсодержащих продуктов является растительное биотопливо, уже содержащее связанные водород и углерод, полученные из воды и углекислого газа с помощью солнечной энергии.Along with photovoltaic energy converters, the most suitable source for producing hydrogen-containing products is vegetable biofuel, which already contains bound hydrogen and carbon obtained from water and carbon dioxide using solar energy.

Известен способ производства водорода и диоксида углерода из биомассы, в частности из бурых водорослей, заключающийся в том, что бурые водоросли перерабатывают в метан с использованием ферментов, растворяющих биомассу, отличающийся тем, что в качестве биомассы используют бурые водоросли, которые собирают в Саргассовом море Атлантического океана, основные технологические процессы производства водорода и диоксида углерода производят на корабле-плавбазе в Саргассовом море, а сбор и подачу бурых водорослей на плавбазу производят с помощью траулеров-сборщиков, причем разделение водорода осуществляют с его очисткой на палладиевой мембране и подачей его в модульную систему металлогидридных накопителей водорода, а диоксид углерода собирают в баллоны в сжатом или жидком состоянии, при этом полученные продукты в металлогидридных емкостях и баллонах на транспортных судах доставляют в порты, причем выработку электроэнергии для технологических процессов осуществляют с использованием технологии топливных элементов (патент RU 2282582, опубл. 27.08.2006. Бюл. №24). Недостатком этого способа является сложность и высокая стоимость процесса, его низкая объемная производительность, необходимость фильтрации и очистки водорода и диоксида углерода как конечных продуктов, сброса отходов ферментации в окружающую среду, низкое содержание водорода в металлогидридных накопителях.A known method of producing hydrogen and carbon dioxide from biomass, in particular from brown algae, which consists in the fact that brown algae is processed into methane using enzymes that dissolve the biomass, characterized in that brown algae are collected as biomass, which are collected in the Sargasso Atlantic Sea ocean, the main technological processes for the production of hydrogen and carbon dioxide are carried out on a floating ship in the Sargasso Sea, and the collection and supply of brown algae to the floating base is carried out using assembly trawlers, and the separation of hydrogen is carried out with its purification on a palladium membrane and feeding it into a modular system of metal hydride storage hydrogen, and carbon dioxide is collected in cylinders in a compressed or liquid state, while the resulting products in metal hydride containers and cylinders on transport ships in ports, and the generation of electricity for technological processes is carried out using fuel cell technology (patent RU 2282582, publ. 08/27/2006. Bull. No. 24). The disadvantage of this method is the complexity and high cost of the process, its low volumetric productivity, the need for filtration and purification of hydrogen and carbon dioxide as final products, dumping of fermentation waste into the environment, low hydrogen content in metal hydride storage rings.

Известен способ получения водорода из биомассы путем пиролиза с помощью перегретого водяного пара и высокотемпературной газификации пиролизной массы, которую подвергают высокотемпературной газификации, включающий:A known method of producing hydrogen from biomass by pyrolysis using superheated water vapor and high-temperature gasification of the pyrolysis mass, which is subjected to high-temperature gasification, including:

a) измельчение биомассы, подачу биомассы в печь пиролиза с одновременным распылением низкотемпературного перегретого водяного пара в печи пиролиза, регулирование печи пиролиза в интервале рабочей температуры 500-800°C, контактирование биомассы с низкотемпературным перегретым водяным паром для проведения реакции пиролиза с выходом неочищенного синтетического газа и золы, содержащей кокс;a) grinding biomass, feeding biomass into the pyrolysis furnace while spraying low-temperature superheated water vapor in the pyrolysis furnace, regulating the pyrolysis furnace in the range of operating temperature 500-800 ° C, contacting the biomass with low-temperature superheated steam to conduct the pyrolysis reaction with the release of crude synthetic gas and ash containing coke;

b) охлаждение золы и отделение кокса от золы;b) cooling the ash and separating the coke from the ash;

c) подачу неочищенного синтетического газа и кокса в газификатор, распыление высокотемпературного перегретого водяного пара в газификаторе, регулирование газификатора в интервале рабочей температуры 1200-1600°C, контактирование биомассы с высокотемпературным перегретым водяным паром для проведения реакции газификации с выходом первичного синтетического газа; иc) supplying the crude synthetic gas and coke to the gasifier, spraying the high temperature superheated water vapor in the gasifier, regulating the gasifier in the range of the working temperature of 1200-1600 ° C, contacting the biomass with the high temperature superheated water vapor to conduct the gasification reaction with the release of the primary synthetic gas; and

d) охлаждение, удаление пыли, раскисление и осушку первичного синтетического газа с получением чистого синтетического газа (патент RU 2526387, опубл. 20.08.2014. Бюл. №23) - аналог. Недостатком этого способа является сложность и высокая стоимость процесса, его низкая объемная производительность, необходимость фильтрации и очистки водорода и диоксида углерода как конечных продуктов, большие потери энергии, связанные с необходимостью подачи большого расхода перегретого водяного пара, используемого как теплоноситель.d) cooling, dust removal, deoxidation and drying of the primary synthetic gas to obtain pure synthetic gas (patent RU 2526387, publ. 08.20.2014. Bull. No. 23) - analogue. The disadvantage of this method is the complexity and high cost of the process, its low volumetric productivity, the need for filtration and purification of hydrogen and carbon dioxide as final products, large energy losses associated with the need to supply a large flow rate of superheated water vapor used as a coolant.

Известен также способ получения синтез-газа из биомассы путем пиролиза, включающий:There is also a method of producing synthesis gas from biomass by pyrolysis, including:

1) предварительную обработку сырья биомассы, включающую измельчение сырья биомассы до получения частиц размером 1-6 мм и высушивание сырья до влажности 10-20 вес.%;1) pre-treatment of biomass feedstock, including grinding of biomass feedstock to obtain particles 1-6 mm in size and drying the feedstock to a moisture content of 10-20 wt.%;

2) пиролиз сырья биомассы, использующий технологию быстрого пиролиза биомассы, при этом продукт слоя пиролиза является пиролизным газом и угольным порошком, где температура слоя пиролиза составляет 400-600°C, а время пребывания газовой фазы на слое пиролиза составляет 0.5-5 с;2) the pyrolysis of biomass feedstock using fast biomass pyrolysis technology, wherein the product of the pyrolysis layer is pyrolysis gas and coal powder, where the temperature of the pyrolysis layer is 400-600 ° C and the residence time of the gas phase on the pyrolysis layer is 0.5-5 s;

3) отделение пиролизного газа от угольного порошка и твердого теплоносителя с помощью циклонного сепаратора;3) the separation of the pyrolysis gas from coal powder and solid coolant using a cyclone separator;

4) разделение угольного порошка и твердого теплоносителя в сепараторе для разделения твердых фаз, загрузку угольного порошка в бункер угольного порошка для накопления, нагревание твердого теплоносителя в камере нагревания кипящего слоя и подачу твердого теплоносителя к слою пиролиза для повторного использования;4) separation of the coal powder and the solid coolant in the separator for separating solid phases, loading the coal powder into the coal powder hopper for storage, heating the solid coolant in the fluidized bed heating chamber and supplying the solid coolant to the pyrolysis layer for reuse;

5) подачу образованного пиролизного газа к конденсатосборнику для конденсации аэрозоля, конденсацию конденсируемой части пиролизного газа для образования бионефти, нагнетание образовавшейся бионефти нефтяным насосом высокого давления и подачу к газификационной печи на газификацию; и5) supplying the formed pyrolysis gas to the condensate collector for aerosol condensation, condensation of the condensed part of the pyrolysis gas to form biooil, injecting the resulting biooil with a high pressure oil pump, and supplying it to the gasification furnace for gasification; and

6) подачу одной части неконденсируемого пиролизного газа на слой сжигания для сжигания с воздухом, подачу другой части неконденсируемого пиролизного газа на слой пиролиза в качестве псевдоожижающей среды (патент RU 2519441, опубл. 10.06.2014. Бюл. №16) - прототип. Недостатком этого способа также является сложность и высокая стоимость процесса, его низкая объемная производительность, необходимость фильтрации и очистки водорода и диоксида углерода как конечных продуктов, большие потери энергии, связанные с необходимостью конвективного нагрева твердого теплоносителя.6) the supply of one part of non-condensable pyrolysis gas to the combustion layer for combustion with air, the supply of another part of non-condensable pyrolysis gas to the pyrolysis layer as a fluidizing medium (patent RU 2519441, publ. 06/10/2014. Bull. No. 16) - prototype. The disadvantage of this method is the complexity and high cost of the process, its low volumetric productivity, the need for filtration and purification of hydrogen and carbon dioxide as final products, large energy losses associated with the need for convective heating of a solid coolant.

Цель настоящего изобретения состоит в том, чтобы создать новый способ получения водорода и диоксида углерода, которые могут использоваться и как отдельные продукты и в качестве основных компонентов синтез-газа, позволяющий снизить тепловые затраты на процесс получения водорода, а также эффективно производить различные энергоносители из различной биомассы при отсутствии потребления кислорода из атмосферы.The purpose of the present invention is to create a new method for producing hydrogen and carbon dioxide, which can be used both as separate products and as the main components of the synthesis gas, which allows to reduce the heat costs of the hydrogen production process, as well as efficiently produce various energy carriers from various biomass in the absence of oxygen consumption from the atmosphere.

Поставленная задача решается тем, что предложен способ получения водорода из биомассы, включающий измельчение и сушку биомассы, ее последующий пиролиз с помощью нагретого твердого теплоносителя и перегретого водяного пара, разделение водородсодержащих газов пиролиза и пиролизной массы, которую подвергают высокотемпературной газификации, в качестве твердого теплоносителя используют карбонаты, образующие оксиды при высокотемпературной газификации, нагрев твердого теплоносителя производят путем сжигания пиролизной массы в кислороде, получаемом при электролизе воды, образующейся в процессе сушки биомассы.The problem is solved in that a method for producing hydrogen from biomass is proposed, including grinding and drying of biomass, its subsequent pyrolysis using heated solid heat carrier and superheated water vapor, separation of hydrogen-containing pyrolysis gases and pyrolysis mass, which is subjected to high-temperature gasification, using solid heat carrier carbonates forming oxides during high-temperature gasification; heating of a solid heat carrier is carried out by burning pyrolysis mass into oxygen Was prepared by the electrolysis of water generated during the drying of the biomass.

Кроме того:Besides:

- пиролиз ведут в кипящем слое, создаваемом потоком перегретого водяного пара, нагреваемого за счет утилизации тепловой энергии, отбираемой от водородсодержащих газов пиролиза и диоксида углерода, образующегося при высокотемпературной газификации пиролизной массы,- pyrolysis is carried out in a fluidized bed created by a stream of superheated water vapor, heated by the utilization of heat energy taken from hydrogen-containing pyrolysis gases and carbon dioxide generated during high-temperature gasification of the pyrolysis mass,

- часть водорода отделяют от водородсодержащих газов пиролиза как дополнительный целевой продукт, добавляемый к водороду, производимому электролизом воды,- part of the hydrogen is separated from the hydrogen-containing pyrolysis gases as an additional target product added to the hydrogen produced by electrolysis of water,

- давление при пиролизе биомассы поддерживают на уровне 0.2-0.8 МПа, а температуру - не выше 550°С,- the pressure during the pyrolysis of biomass is maintained at a level of 0.2-0.8 MPa, and the temperature is not higher than 550 ° C,

- нагрев твердого теплоносителя производят при температуре 800-1000°С в режиме кипящего слоя,- heating of the solid heat carrier is carried out at a temperature of 800-1000 ° C in a fluidized bed mode,

- электролиз воды ведут при повышенном давлении в периоды снижения электрической нагрузки энергосистемы, питающей электролизер,- electrolysis of water is carried out at elevated pressure during periods of lowering the electrical load of the power system supplying the electrolyzer,

- диоксид углерода, образующийся при высокотемпературной газификации пиролизной массы, выделяют в газообразном, жидком или твердом виде, в качестве отдельного продукта, направляемого для захоронения или реализации,- carbon dioxide formed during the high-temperature gasification of the pyrolysis mass is isolated in gaseous, liquid or solid form, as a separate product sent for burial or sale,

- при нагреве твердого теплоносителя производят его разложение с образованием оксида,- when heating a solid coolant, it is decomposed with the formation of oxide,

- отбор кислорода, производимого при электролизе воды, ведут в смеси с водяным паром,- the selection of oxygen produced during the electrolysis of water is carried out in a mixture with water vapor,

- электролиз воды ведут в периоды снижения электрической нагрузки энергосистемы, питающей электролизер.- electrolysis of water lead during periods of lowering the electrical load of the power system supplying the electrolyzer.

На чертеже дана схема реализации способа, где 1 - подача биомассы, 2 - аппарат сушки и измельчения биомассы, 3 - поток измельченной биомассы, 4 - пиролизер, 5 - поток твердой фазы, 6 - кислород, 7 - электролизер, 8 - подвод электроэнергии, 9 - водородсодержащие газы, 10 - установка отделения водорода и диоксида углерода и нагрева воды, 11 - водород, 12-1 - неочищенный диоксид углерода, 12-2 - продуктовый диоксид углерода, 13 - водяной пар, 14 - газификатор, 15 - твердый теплоноситель, 16 - поток водорода, 17 - хранилище водорода, 18 - потребитель водорода. Примером реализации изобретения служит способ получения водорода из биомассы, описанный ниже.The drawing shows a diagram of the implementation of the method, where 1 is a biomass feed, 2 is a drying and grinding apparatus for biomass, 3 is a flow of crushed biomass, 4 is a pyrolyzer, 5 is a solid phase flow, 6 is oxygen, 7 is an electrolyzer, 8 is electricity supply, 9 - hydrogen-containing gases, 10 - unit for the separation of hydrogen and carbon dioxide and water heating, 11 - hydrogen, 12-1 - crude carbon dioxide, 12-2 - product carbon dioxide, 13 - water vapor, 14 - gasifier, 15 - solid heat carrier , 16 - hydrogen flow, 17 - hydrogen storage, 18 - hydrogen consumer. An example implementation of the invention is the method of producing hydrogen from biomass, described below.

Предпочтительный материал твердой биомассы согласно настоящему изобретению представляет собой отходы и побочные продукты деревоперерабатывающей промышленности, такие как отходы лесозаготовок, городские древесные отходы, отходы пиломатериалов, древесную щепу, опилки, солому, дрова, древесные материалы, побочные продукты процессов производства бумаги или строительных пиломатериалов, культуры короткой ротации и т.п. В излагаемом примере осуществления изобретения в качестве биомассы применяются древесину, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам выработки водорода и диоксида углерода из отходов древесины, которые могут быть использованы в рамках концепции альтернативной энергетики, используя современные энерготехнологии.A preferred solid biomass material according to the present invention is waste and by-products of the wood processing industry, such as logging waste, urban wood waste, lumber waste, wood chips, sawdust, straw, firewood, wood materials, by-products of paper or building lumber processes, crops short rotation, etc. In the described embodiment of the invention, wood is used as biomass, which allows us to characterize the features of the invention as applied to the processes of hydrogen and carbon dioxide production from wood waste, which can be used as part of the alternative energy concept using modern energy technologies.

Ежегодный прирост биомассы растений на Земле составляет от 170 до 200 млрд т, считая на сухое вещество, что в пересчете на нефтяной эквивалент соответствует примерно 70-80 млрд т, что примерно на порядок превышает мировые потребности на перспективу.The annual increase in plant biomass on Earth is from 170 to 200 billion tons, counting on dry matter, which in terms of the oil equivalent corresponds to about 70-80 billion tons, which is about an order of magnitude higher than the world’s needs for the future.

Россия имеет огромный биоэнергетический потенциал. Прежде всего, это лес, занимающий 60% территории страны и производящий ежегодно почти четверть мирового прироста биомассы.Russia has a huge bioenergy potential. First of all, it is a forest that occupies 60% of the country's territory and annually produces almost a quarter of the world biomass growth.

С использованием солнечной энергии выращивают или собирают на естественных угодьях биомассу, затем осуществляют подачу биомассы 1, производят подготовку биомассы (сушку с помощью солнечной энергии или теплоносителя и измельчение) в аппарате сушки и измельчения биомассы 2, после чего поток измельченной биомассы 3 направляют в пиролизер 4, в котором биомассу подвергают реакции каталитического пиролиза за счет нагрева с помощью твердого теплоносителя 15 с получением продуктов реакции, включающих газообразную фазу (водородсодержащие газы) - 9, содержащую водород и диоксид углерода, и поток твердой фазы 5, состоящей из твердого теплоносителя с осажденными на нем продуктами пиролиза. Поток твердой фазы 5 направляют на процесс газификации продуктов пиролиза, который проводят в газификаторе 14 в среде водяного пара при подводе кислорода 6 из электролизера 7, к которому осуществляют подвод электроэнергии 8 преимущественно в периоды падения нагрузки питающей энергосистемы, что снижает затраты на получение водорода. Получаемые в пиролизере 4 водородсодержащие газы 9 направляют в установку отделения водорода и диоксида углерода и нагрева воды 10, из которой выводят водород 11, продуктовый диоксид углерода 12-2, а также водяной пар 13, получаемый из воды за счет отвода тепла как от водородсодержащих газов 9, так и от потока неочищенного диоксида углерода 12-1, отводимого из газификатора 14. Водяной пар подается из аппарата сушки и измельчения биомассы 2, из которого водяной пар подают также на электролиз в электролизере 7. В газификаторе 14 за счет реакции продуктов пиролиза с кислородом 6 осуществляется нагрев твердого теплоносителя 15 с образованием неочищенного диоксида углерода 12-1, подаваемого в установку отделения водорода и диоксида углерода и нагрева воды 10. Из электролизера 7 поток водорода 16 направляют в хранилище водорода 17, из которого выдают потребителю водорода 18. В хранилище водорода 17 подают также водород 11, отделяемый в установке отделения водорода и диоксида углерода и нагрева воды 10, из которой также выводят как отдельный продукт продуктовый диоксид углерода 12-2, преобразованный в необходимую форму (в сжатом, жидком или твердом виде).Using solar energy, biomass is grown or harvested on natural lands, then biomass 1 is supplied, biomass is prepared (dried using solar energy or a heat carrier and milled) in a drying and milling apparatus for biomass 2, after which the flow of milled biomass 3 is sent to the pyrolyzer 4 , in which the biomass is subjected to a catalytic pyrolysis reaction by heating with a solid coolant 15 to obtain reaction products, including a gaseous phase (hydrogen-containing gases) - 9, containing hydrogen and carbon dioxide, and a solid phase stream 5, consisting of a solid coolant with pyrolysis products deposited on it. The flow of solid phase 5 is directed to the gasification of the pyrolysis products, which is carried out in a gasifier 14 in a water vapor environment with oxygen 6 supplied from an electrolyzer 7, to which electricity 8 is supplied, mainly during periods of falling load of the power supply system, which reduces the cost of producing hydrogen. Hydrogen-containing gases obtained in the pyrolyzer 4 are sent to a unit for separating hydrogen and carbon dioxide and heating water 10, from which hydrogen 11, product carbon dioxide 12-2, and water vapor 13 obtained from water by removing heat as from hydrogen-containing gases are removed 9, as well as from the stream of crude carbon dioxide 12-1 discharged from the gasifier 14. Water vapor is supplied from the drying and grinding apparatus of biomass 2, from which water vapor is also supplied to the electrolysis in the electrolyzer 7. In the gasifier 14 due to the reaction of products pyrolysis with oxygen 6, heating of the solid heat carrier 15 is carried out with the formation of crude carbon dioxide 12-1 supplied to the unit for the separation of hydrogen and carbon dioxide and heating water 10. From the electrolyzer 7, the hydrogen stream 16 is directed to a hydrogen storage 17, from which hydrogen 18 is supplied to the consumer 18. Hydrogen 11 is also fed to the hydrogen storage 17, which is separated in a unit for separating hydrogen and carbon dioxide and heating water 10, from which product carbon dioxide 12-2, converted into n, is also removed as a separate product crawled form (a compressed, liquid or solid form).

Подачу биомассы 1 в аппарат сушки и измельчения биомассы 2 осуществляют в виде, например, сырой гранулированной древесины с размерами гранул 10-20 мм через первый шлюзовой бункер (не показан). Давление в пиролизере 4 повышено, например, до 2-8 МПа, и поэтому второй шлюзовой бункер с затвором используют также и для повышения давления в аппарате сушки и измельчения биомассы 2, по меньшей мере, до давления в пиролизере 4. Теплоносителем, используемым для нагрева биомассы до 100-150°C в аппарате сушки и измельчения биомассы 2, предпочтительно, но не обязательно, является диоксид углерода, подаваемый в теплообменные элементы аппарата сушки и измельчения биомассы 2.The supply of biomass 1 to the drying and grinding apparatus of biomass 2 is carried out in the form, for example, of raw granular wood with a grain size of 10-20 mm through the first lock hopper (not shown). The pressure in the pyrolyzer 4 is increased, for example, to 2-8 MPa, and therefore a second lock hopper with a shutter is also used to increase the pressure in the drying and grinding apparatus for biomass 2, at least to a pressure in the pyrolyzer 4. The heat carrier used to heat biomass up to 100-150 ° C in the apparatus for drying and grinding biomass 2, preferably, but not necessarily, is carbon dioxide supplied to the heat exchange elements of the apparatus for drying and grinding biomass 2.

В сыром состоянии большинство хвойных пород содержит 52-65%, мягких лиственных 45-55%, твердых 38-45% воды. Средний состав воздушно-сухой древесины в % мас. (кг/кг): 43,8 углерода, 5,3 водорода, 0,2 азота, 38,2 кислорода, 12,0 гидратной воды, 0,5 золы. При высушивании биомассы происходит не только выделение воды при высокой температуре, но и изменение некоторых составных частей древесины. При нагревании древесины до 100-150°C и выделении из нее воды легко происходит растрескивание гранул, что увеличивает их реакционную способность. В аппарате сушки и измельчения биомассы 2 проводят предварительную обработку сырья биомассы: измельчение сырья биомассы до получения частиц размером 2-8 мм и высушивание сырья до влажности в 10-20 вес.% с отводом водяного пара в электролизер 7 и для нагрева и получения водяного пара 13, подаваемого в пиролизер 4. Отбор кислорода 6, производимого при электролизе воды, ведут в смеси с водяным паром, что позволяет резко снизить технические риски, связанные с повышенной опасностью кислорода, и упростить аппаратурное оформление процесса.In the wet state, most conifers contain 52-65%, soft hardwood 45-55%, hard 38-45% water. The average composition of air-dried wood in% wt. (kg / kg): 43.8 carbon, 5.3 hydrogen, 0.2 nitrogen, 38.2 oxygen, 12.0 hydrated water, 0.5 ash. When drying biomass, not only water is released at high temperature, but also a change in some of the components of wood. When wood is heated to 100-150 ° C and water is released from it, cracking of granules easily occurs, which increases their reactivity. In the apparatus for drying and grinding biomass 2, preliminary processing of biomass raw materials is carried out: grinding of biomass raw materials to obtain particles of 2-8 mm and drying of the raw materials to a moisture content of 10-20 wt.% With the removal of water vapor in the electrolytic cell 7 and for heating and obtaining water vapor 13 supplied to the pyrolyzer 4. The selection of oxygen 6 produced during the electrolysis of water is carried out in a mixture with water vapor, which can dramatically reduce the technical risks associated with the increased danger of oxygen, and simplify the hardware design of the process.

Биомасса, подаваемая в пиролизер 4, обычно содержит 80 вес.% летучих компонентов и 20 вес.% углерода, в ее составе значительное содержание клетчатки C6H10O5 (целлюлозы). Нагрев указанной биомассы до подходящей температуры в обедненной кислородом или в бескислородной среде приводит к пиролизу при температуре обычно не выше 800°C. Пиролиз летучих компонентов приводит к образованию водородсодержащих газов 9, которые содержат СО, H2, СН4, СО2.The biomass fed to the pyrolyzer 4 usually contains 80 wt.% Volatile components and 20 wt.% Carbon, it contains a significant content of fiber C 6 H 10 O 5 (cellulose). Heating said biomass to a suitable temperature in an oxygen-depleted or oxygen-free environment leads to pyrolysis at a temperature usually not higher than 800 ° C. The pyrolysis of volatile components leads to the formation of hydrogen-containing gases 9, which contain CO, H 2 , CH 4 , CO 2 .

Реакцию пиролиза биомассы ведут в реакторе пиролиза - пиролизере 4 - при подводе тепловой энергии с помощью твердого теплоносителя при повышенной температуре и давлении конверсии биомассы не ниже 0.2-0.8 МПа. Возможно и целесообразно вести процесс в присутствии катализатора на основе металлов, выбранных из группы железо, никель, родий, платина, иридий, палладий, их смеси или соединения. С учетом необходимости повысить выход водорода в пиролизер 4 подают преимущественно водяной пар 13 высокого давления, который нагревают при отборе тепла от водородсодержащих газов 9 в установке отделения водорода и диоксида углерода и нагрева воды 10. В этой же установке 10 проводят разделение водорода и диоксида углерода за счет адсорбции или мембранного разделения газов. Из установки 10 продуктовый диоксид углерода 12-2 выводят как отдельный продукт, преобразованный в необходимую форму (в сжатом, жидком или твердом виде). Часть диоксида углерода 12-2 (не показано) в нагретом до 100-150°C газообразном виде подают в аппарат сушки и измельчения биомассы 2.The pyrolysis reaction of biomass is carried out in a pyrolysis reactor - pyrolyzer 4 - with the supply of thermal energy using a solid heat carrier at an elevated temperature and pressure of biomass conversion of at least 0.2-0.8 MPa. It is possible and advisable to conduct the process in the presence of a catalyst based on metals selected from the group of iron, nickel, rhodium, platinum, iridium, palladium, their mixtures or compounds. Taking into account the need to increase the hydrogen output, pyrolyzer 4 is predominantly supplied with high-pressure water vapor 13, which is heated during heat removal from hydrogen-containing gases 9 in a unit for separating hydrogen and carbon dioxide and heating water 10. In the same unit 10, hydrogen and carbon dioxide are separated due to adsorption or membrane separation of gases. From installation 10, product carbon dioxide 12-2 is withdrawn as a separate product, converted to the desired form (in compressed, liquid, or solid form). Part of carbon dioxide 12-2 (not shown) in a gaseous form heated to 100-150 ° C is fed to the drying and grinding apparatus of biomass 2.

Известно [С. Vincent, "Carbonisation des bois en vases clos." (1873)], что при 260-280°C из древесного сырья получают, главным образом, водный дистиллят, содержащий уксусную кислоту C2H4O2, и другие летучие органич. кислоты, метиловый спирт CH4O, ацетон C3H6O, фурфурол C5H4O2, метиламин CH3NH2 и др., т.е. преимущественно кислородные органические вещества, неконденсирующиеся газы и смолистые вещества выделяются в этом периоде в ограниченном количестве; общее количество летучих продуктов - около 60%, остаток бурого цвета (см. Таблицу - выход продуктов при пиролизе):It is known [S. Vincent, "Carbonization des bois en vases clos." (1873)] that at 260-280 ° C, mainly aqueous distillate containing acetic acid C 2 H 4 O 2 and other volatile organic compounds are obtained from wood raw materials. acids, methyl alcohol CH 4 O, acetone C 3 H 6 O, furfural C 5 H 4 O 2 , methylamine CH 3 NH 2 , etc., i.e. predominantly oxygen organic substances, non-condensable gases and resinous substances are released in this period in a limited amount; the total amount of volatile products is about 60%, the remainder is brown (see table - product yield during pyrolysis):

ТаблицаTable Температура пиролизаPyrolysis temperature Выход, % мас.Yield,% wt. В сухом остатке пиролизной массы содержание, %In the dry residue of the pyrolysis mass,% Летучих продуктовVolatile products УгляCoal УглеродаCarbon ВодородаHydrogen Кислорода и азотаOxygen and nitrogen ЗолыAsh 260°260 ° 59,7759.77 40,2340,23 67,8967.89 6,046.04 26,5726.57 0,560.56 280°280 ° 63,8463.84 36,1636.16 72,6472.64 4,704.70 22,0922.09 0,570.57 330°330 ° 68,2368,23 31,7731.77 73,5573.55 4,634.63 21,3421.34 0,480.48 432°432 ° 81,1381.13 18,8718.87 81,9781.97 2,302,30 14,1314.13 1,601,60

Процесс пиролиза биомассы в пиролизере 4 ведут за счет нагрева с помощью твердого теплоносителя 15 в среде водяного пара 13. В качестве твердого теплоносителя 15 используют оксид металла, например оксид кальция, который в процессе пиролиза соединяется с получаемым из продуктов пиролиза биомассы диоксидом углерода с образованием карбоната кальция и выделением тепловой энергии, компенсирующей эндотермическую реакцию водяного пара с биомассой.The process of pyrolysis of biomass in the pyrolyzer 4 is carried out by heating with a solid heat carrier 15 in a medium of water vapor 13. As a solid heat carrier 15, metal oxide, for example calcium oxide, is used, which during pyrolysis is combined with carbon dioxide obtained from biomass pyrolysis products to form carbonate calcium and the release of thermal energy that compensates for the endothermic reaction of water vapor with biomass.

Паровой конверсии в пиролизере 4 подвергают все летучие соединения, образуемые при пиролизе, суммарная реакция может быть записана как:All volatile compounds formed during pyrolysis are subjected to steam conversion in the pyrolyzer 4, the total reaction can be written as:

Figure 00000001
Figure 00000001

Важную роль играет реакция сдвига:An important role is played by the shift reaction:

Figure 00000002
Figure 00000002

которая, по сути, является реакцией паровой конверсии моноксида углерода. Именно эту реакцию [2] и используют в настоящем изобретении для получения основного количества водорода, для чего в пиролизер 4 подают в качестве нагретого твердого теплоносителя 15 оксид кальция, который образует с диоксидом углерода карбонат кальция согласно реакции:which, in essence, is a carbon monoxide vapor conversion reaction. It is this reaction [2] that is used in the present invention to obtain the main amount of hydrogen, for which purpose calcium oxide, which forms calcium carbonate with carbon dioxide according to the reaction, is fed into the pyrolyzer 4 as heated solid heat carrier 15:

Figure 00000003
Figure 00000003

что приводит в реакции [2] к сдвигу процесса в сторону получения водорода 11 согласно принципу Ле-Шателье.which leads in the reaction [2] to a shift of the process towards hydrogen 11 according to the Le Chatelier principle.

Ранее этот подход был предложен применительно к паровой конверсии метана за счет тепла ВТГР [Столяревский А.Я., Михайлова С.А., Брун-Цеховой А.Р., Кацобашвили Я.Р. и др. Об одном из перспективных направлений совершенствования процесса паровой конверсии углеводородов // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып. 2(9). - М., 1981, с. 96-98].Previously, this approach was proposed in relation to steam methane conversion due to heat from HTGR [Stolyarevsky A.Ya., Mikhailova SA, Brun-Tsekhovoy AR, Katsobashvili Ya.R. et al. On one of the promising directions for improving the process of steam conversion of hydrocarbons // Issues of Atomic Science and Technology, ser .: Hydrogen and Atomic Energy and Technology, vol. 2 (9). - M., 1981, p. 96-98].

Таким образом, при пиролизе биомассы предложено использовать сорбент с высокой и стабильной емкостью на основе СаО. Показано, что прокаливание порошкообразного карбоната кальция при температуре 1150°C и выше позволяет получать поглотители с емкостью до 25 мас. %, стабильной на протяжении нескольких тысяч циклов [А.И. Лысиков, Б.Н. Лукьянов, А.Г. Окунев. Абсорбционно-каталитическая конверсия углеводородов: реакторы, сорбенты и катализаторы // Химия в интересах устойчивого развития, 18 (2010), 691-704].Thus, it was proposed to use a sorbent with a high and stable capacity based on CaO when pyrolyzing biomass. It was shown that calcination of powdered calcium carbonate at a temperature of 1150 ° C and above allows to obtain absorbers with a capacity of up to 25 wt. %, stable over several thousand cycles [A.I. Lysikov, B.N. Lukyanov A.G. Okunev. Absorption-catalytic conversion of hydrocarbons: reactors, sorbents and catalysts // Chemistry in the interests of sustainable development, 18 (2010), 691-704].

Помимо снижения температуры в газификаторе 14, где производят термолиз карбоната кальция и получение СаО в качестве нагретого твердого теплоносителя 15, до 800°C, уменьшения спекания СаО можно достичь при использовании текстурных промоторов, снижающих скорость этого процесса. Температурная обработка смеси 80-90 мас. % СаО с SiO2 позволяет получить прочный материал, пригодный для использования в кипящем слое. В ходе температурной обработки смешанных оксидов и последующей сорбции СО2 образуется стабильная в условиях газификатора 14 фаза взаимодействия состава Ca5(SiO4)2CO3. Поглощение углекислого газа происходит с участием несвязанного оксида кальция, в то время как носитель определяет высокую механическую прочность хемосорбента. Емкость этой системы достигает до 50 мас. % в пересчете на несвязанный оксид кальция и 40 мас. % в пересчете на полную массу хемосорбента. Вместе с тем, использование материалов, содержащих SiO2, в условиях паровой конверсии углеводородов нежелательно вследствие образования при температуре выше 500°C летучего гидроксида кремния, что приводит к разрушению материала и пылеобразованию. В качестве другой добавки может быть использован оксид алюминия. Оксид кальция, нанесенный на Al2O3, обладает высокой прочностью благодаря сходству его состава с цементом [Li Ζ.S., Cai N.S. and Yang J.В. // Ind. Eng. Chem. Res. 2006. Vol.45, No. 26. P. 8788]. В то же время для 75 мас. % СаО/Ca12Al14O33 наблюдается падение емкости более чем в два раза за 56 циклов сорбции/регенерации, кроме того, при регенерации в условиях газификатора 14 из-за ускоренной реакции СаО с носителем нельзя допускать перегревы выше 1000°C [Ibid.].In addition to lowering the temperature in the gasifier 14, where the thermolysis of calcium carbonate is carried out and CaO is produced as a heated solid heat carrier 15 to 800 ° C, a decrease in CaO sintering can be achieved by using texture promoters that reduce the speed of this process. The temperature treatment of the mixture of 80-90 wt. % CaO with SiO 2 allows to obtain a durable material suitable for use in a fluidized bed. During the heat treatment of mixed oxides and subsequent sorption of CO 2 , a phase of interaction of the composition Ca 5 (SiO 4 ) 2 CO 3 is stable under gasifier 14 conditions. The absorption of carbon dioxide occurs with the participation of unbound calcium oxide, while the carrier determines the high mechanical strength of the chemisorbent. The capacity of this system reaches up to 50 wt. % in terms of unbound calcium oxide and 40 wt. % in terms of the total mass of chemisorbent. At the same time, the use of materials containing SiO 2 under conditions of steam conversion of hydrocarbons is undesirable due to the formation of volatile silicon hydroxide at temperatures above 500 ° C, which leads to the destruction of the material and dust formation. Alumina may be used as another additive. Calcium oxide supported on Al 2 O 3 has high strength due to its similarity with the cement composition [Li Ζ.S., Cai NS and Yang published by JB // Ind. Eng. Chem. Res. 2006. Vol. 45, No. 26. P. 8788]. At the same time, for 75 wt. % CaO / Ca 12 Al 14 O 33 , a drop in capacity is more than doubled during 56 sorption / regeneration cycles, in addition, when regenerating under conditions of gasifier 14, overheating above 1000 ° C cannot be allowed due to the accelerated reaction of CaO with the carrier [Ibid .].

Возможно применять смешанные оксиды, однако устойчивость смешанных оксидов к спеканию ниже по сравнению с устойчивостью исходного СаО. Исключение составляет термостойкий оксид магния, который не образует фаз взаимодействия с СаО. Значительное количество работ посвящено получению высокотемпературного хемосорбента CO2 с помощью прокаливания доломитов, представляющих собой смешанный карбонат кальция и магния (СаСО3·MgCO3). Разложение доломита при прокаливании происходит ступенчато: сначала разлагается карбонат магния, который при высоких температурах образует химически инертную и стабильную фазу периклаза, затем - карбонат кальция. Таким путем образуется хемосорбент на основе СаО, нанесенного на MgO. Благодаря каркасу из периклаза, обладающего высокой механической прочностью и стойкостью к истиранию, такой поглотитель можно использовать в реакторах с кипящим слоем применительно к пиролизеру 4. Емкость прокаленного доломита по CO2 несколько ниже, чем у чистого СаО, вследствие значительного количества балластного MgO. Несмотря на наличие инертного носителя в системе CaO/MgO также наблюдается спекание активного компонента и один из путей повышения емкости состоит в регенерации поглотителя паром при повышенном давлении в условиях газификатора 14, что позволяет переводить карбонат кальция не в оксид, а в более легко карбонизующийся гидроксид. Реакция карбонизации гидроксида кальция протекает практически без изменения молярного объема поглотителя (критерий Пиллинга-Бедвордса для этой реакции равен 1.12), благодаря чему удается достичь более высокой динамической емкости поглотителя.It is possible to use mixed oxides, however, the resistance of the mixed oxides to sintering is lower compared to the stability of the initial CaO. An exception is heat-resistant magnesium oxide, which does not form phases of interaction with CaO. A significant amount of work has been devoted to the production of high-temperature chemisorbent CO 2 by calcining dolomites, which are mixed calcium and magnesium carbonate (CaCO 3 · MgCO 3 ). The decomposition of dolomite during calcination occurs in steps: first, magnesium carbonate decomposes, which at high temperatures forms a chemically inert and stable periclase phase, then calcium carbonate. In this way, a chemosorbent based on CaO supported on MgO is formed. Due to the periclase framework, which has high mechanical strength and abrasion resistance, such an absorber can be used in fluidized bed reactors for pyrolyzer 4. The calcined dolomite capacity for CO 2 is slightly lower than for pure CaO, due to the significant amount of ballast MgO. Despite the presence of an inert support in the CaO / MgO system, sintering of the active component is also observed, and one of the ways to increase the capacity is to regenerate the absorber by steam at elevated pressure under conditions of gasifier 14, which makes it possible to convert calcium carbonate not to oxide, but to more easily carbonized hydroxide. The reaction of carbonization of calcium hydroxide proceeds with virtually no change in the molar volume of the absorber (the Pilling-Bedwards criterion for this reaction is 1.12), due to which it is possible to achieve a higher dynamic capacity of the absorber.

Как пиролиз биомассы в пиролизере 4, так и высокотемпературную газификацию пиролизной массы в газификаторе 14 целесообразно проводить в кипящем (псевдоожиженном) слое, значительно улучшающем массообмен и повышающем производительность реакторов.Both the pyrolysis of biomass in the pyrolyzer 4 and the high-temperature gasification of the pyrolysis mass in the gasifier 14 are expediently carried out in a fluidized bed, which significantly improves mass transfer and increases the productivity of reactors.

В газификаторе 14 поступающий из пиролизера 4 поток твердой фазы включает в себя как карбонат кальция СаСО3, так и пиролизную массу, осажденную на карбонат кальция, которая представляет из себя нелетучие углеродные соединения. С помощью кислорода 6, поступающего из электролизера 7, удается провести высокотемпературную газификацию пиролизной массы в газификаторе 14, используя выделяющуюся в этом процессе тепловую энергию для термолиза СаСО3 и его нагрева с образованием оксида кальция СаО в качестве нагретого твердого теплоносителя 15, подаваемого в пиролизер 4. Используемый газификатор 14 представляет собой газификатор с псевдоожиженным слоем, в котором флюидизация слоя осуществляется с использованием флюидизирующих агентов, которые подают в объем газификатора 14 снизу. Аналогично строится и конструкция пиролизера 4. В обоих аппаратах в качестве флюидизирующего агента может быть использован водяной пар 13 или кислород 6 соответственно. Водородсодержащие газы 9, содержащие водород и диоксид углерода, подают в установку отделения водорода и диоксида углерода и нагрева воды 10, в которой получают продуктовый водород 11, направляемый в хранилище водорода 17, откуда по мере необходимости он выдается потребителю водорода 18. В хранилище водорода 17 направляют также поток водорода 16, производимый при подводе электроэнергии 8 в электролизере 7, в котором получают также кислород 6, направляемый в газификатор 14. Основной реакцией в газификаторе 14, наряду с окислением пиролизной массы, входящей в твердую фазу 5, до диоксида углерода является также термохимическое разложение карбоната кальция, используемого в качестве твердого теплоносителя 15, с образованием оксида кальция и диоксида углерода. Поток неочищенного диоксида углерода 12-1 направляют на очистку в установку отделения водорода и диоксида углерода и нагрева воды 10.In the gasifier 14, the solid phase flow from the pyrolyzer 4 includes both calcium carbonate CaCO 3 and a pyrolysis mass deposited on calcium carbonate, which is a non-volatile carbon compound. Using oxygen 6 coming from the electrolyzer 7, it is possible to carry out high-temperature gasification of the pyrolysis mass in gasifier 14, using the heat energy released in this process for thermolysis of CaCO 3 and its heating with the formation of calcium oxide CaO as a heated solid heat carrier 15 supplied to the pyrolyzer 4 The gasifier 14 used is a fluidized bed gasifier in which the fluidization of the bed is carried out using fluidizing agents that feed the gasifier into the bulk. 14 below. The construction of the pyrolyzer 4 is similarly constructed. In both devices, water vapor 13 or oxygen 6, respectively, can be used as the fluidizing agent. Hydrogen-containing gases 9 containing hydrogen and carbon dioxide are fed to a unit for separating hydrogen and carbon dioxide and heating water 10, in which product hydrogen 11 is sent to the hydrogen storage 17, from where it is supplied to the hydrogen consumer 18 as needed. In the hydrogen storage 17 also direct the hydrogen stream 16 produced by supplying electricity 8 in the electrolyzer 7, which also receive oxygen 6, sent to the gasifier 14. The main reaction in the gasifier 14, along with the oxidation of the pyrolysis mass, odyaschey the solid phase 5 until carbon dioxide is also the thermochemical decomposition of calcium carbonate used as the solid heat carrier 15, to form calcium oxide and carbon dioxide. The stream of crude carbon dioxide 12-1 is sent for cleaning to the installation of the separation of hydrogen and carbon dioxide and heating water 10.

Водородсодержащие газы 9 представляют собой смеси оксидов углерода и водорода с небольшими количествами метана и других углеводородов: 2-4% (об.) СО, СО2, 93-95% (об.) Н2, СН4 - остальное. Нелетучие продукты пиролиза высаживают на керамические частицы карбоната кальция, используемого в качестве твердого теплоносителя 15, и в виде потока твердой фазы 5 направляют в газификатор 14. В варианте применения твердых катализаторов в процессе пиролиза используют сепараторы для отделения катализатора от потока твердой фазы 5.Hydrogen-containing gases 9 are mixtures of carbon oxides and hydrogen with small amounts of methane and other hydrocarbons: 2-4% (vol.) СО, СО 2 , 93-95% (vol.) Н 2 , СН 4 - the rest. Non-volatile pyrolysis products are planted on ceramic particles of calcium carbonate used as solid heat carrier 15, and are sent to a gasifier 14 as a solid phase stream. In the case of using solid catalysts in the pyrolysis process, separators are used to separate the catalyst from the solid phase stream 5.

Таким образом, в предложенном изобретении удалось создать новый способ получения водорода, позволяющий снизить тепловые затраты на процесс получения водорода, а также эффективно производить различные энергоносители из различной биомассы при отсутствии потребления кислорода из атмосферы.Thus, in the proposed invention, it was possible to create a new method for producing hydrogen, which allows to reduce the heat costs of the hydrogen production process, as well as to efficiently produce various energy carriers from different biomass in the absence of oxygen consumption from the atmosphere.

Claims (10)

1. Способ получения водорода из биомассы, включающий измельчение и сушку биомассы, ее последующий пиролиз с помощью нагретого твердого теплоносителя и перегретого водяного пара, разделение водородсодержащих газов пиролиза и пиролизной массы, которую подвергают высокотемпературной газификации, отличающийся тем, что в качестве твердого теплоносителя используют карбонаты, образующие оксиды при высокотемпературной газификации, нагрев твердого теплоносителя производят путем сжигания пиролизной массы в кислороде, получаемом при электролизе воды, образующейся в процессе сушки биомассы.1. A method of producing hydrogen from biomass, including grinding and drying the biomass, its subsequent pyrolysis using a heated solid heat carrier and superheated water vapor, separation of hydrogen-containing pyrolysis gases and pyrolysis mass, which is subjected to high-temperature gasification, characterized in that carbonates are used as a solid heat carrier forming oxides during high-temperature gasification, heating of the solid heat carrier is carried out by burning the pyrolysis mass in oxygen obtained by electro Ys water formed in the process of drying the biomass. 2. Способ получения водорода из биомассы по п.1, отличающийся тем, что пиролиз ведут в кипящем слое, создаваемом потоком перегретого водяного пара, нагреваемого за счет утилизации тепловой энергии, отбираемой от водородсодержащих газов пиролиза и диоксида углерода, образующегося при высокотемпературной газификации пиролизной массы.2. The method of producing hydrogen from biomass according to claim 1, characterized in that the pyrolysis is carried out in a fluidized bed created by a stream of superheated water vapor, heated by the utilization of heat energy taken from hydrogen-containing pyrolysis gases and carbon dioxide generated during high-temperature gasification of the pyrolysis mass . 3. Способ получения водорода из биомассы по п.1, отличающийся тем, что часть водорода отделяют от водородсодержащих газов пиролиза как дополнительный целевой продукт, добавляемый к водороду, производимому электролизом воды.3. The method of producing hydrogen from biomass according to claim 1, characterized in that a part of the hydrogen is separated from the hydrogen-containing pyrolysis gases as an additional target product added to the hydrogen produced by electrolysis of water. 4. Способ получения водорода из биомассы по п.1, отличающийся тем, что давление при пиролизе биомассы поддерживают на уровне 0,2-0,8 МПа, а температуру - не выше 550°С.4. The method of producing hydrogen from biomass according to claim 1, characterized in that the pressure during the pyrolysis of biomass is maintained at 0.2-0.8 MPa, and the temperature is not higher than 550 ° C. 5. Способ получения водорода из биомассы по п.1, отличающийся тем, что нагрев твердого теплоносителя производят при температуре 800-1000°С в режиме кипящего слоя.5. The method of producing hydrogen from biomass according to claim 1, characterized in that the heating of the solid heat carrier is carried out at a temperature of 800-1000 ° C in a fluidized bed mode. 6. Способ получения водорода из биомассы по п.1, отличающийся тем, что электролиз воды ведут при повышенном давлении в периоды снижения электрической нагрузки энергосистемы, питающей электролизер.6. The method of producing hydrogen from biomass according to claim 1, characterized in that the electrolysis of water is carried out at elevated pressure during periods of lowering the electrical load of the power system supplying the electrolyzer. 7. Способ получения водорода из биомассы по п.1, отличающийся тем, что диоксид углерода, образующийся при высокотемпературной газификации пиролизной массы, выделяют в газообразном, жидком или твердом виде в качестве отдельного продукта, направляемого для захоронения или реализации.7. The method of producing hydrogen from biomass according to claim 1, characterized in that the carbon dioxide generated during the high-temperature gasification of the pyrolysis mass is isolated in gaseous, liquid or solid form as a separate product sent for disposal or sale. 8. Способ получения водорода из биомассы по п.1, отличающийся тем, что при нагреве твердого теплоносителя производят его разложение с образованием оксида.8. The method of producing hydrogen from biomass according to claim 1, characterized in that when the solid coolant is heated, it decomposes with the formation of oxide. 9. Способ получения водорода из биомассы по п.1, отличающийся тем, что отбор кислорода, производимого при электролизе воды, ведут в смеси с водяным паром.9. The method of producing hydrogen from biomass according to claim 1, characterized in that the selection of oxygen produced during the electrolysis of water is carried out in a mixture with water vapor. 10. Способ получения водорода из биомассы по п.1, отличающийся тем, что электролиз воды ведут в периоды снижения электрической нагрузки энергосистемы, питающей электролизер. 10. The method of producing hydrogen from biomass according to claim 1, characterized in that the electrolysis of water is carried out in periods of lowering the electrical load of the power system supplying the electrolyzer.
RU2015104766/05A 2015-02-12 2015-02-12 Method of producing hydrogen from biomass RU2602150C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015104766/05A RU2602150C2 (en) 2015-02-12 2015-02-12 Method of producing hydrogen from biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015104766/05A RU2602150C2 (en) 2015-02-12 2015-02-12 Method of producing hydrogen from biomass

Publications (2)

Publication Number Publication Date
RU2015104766A RU2015104766A (en) 2016-08-27
RU2602150C2 true RU2602150C2 (en) 2016-11-10

Family

ID=56851875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015104766/05A RU2602150C2 (en) 2015-02-12 2015-02-12 Method of producing hydrogen from biomass

Country Status (1)

Country Link
RU (1) RU2602150C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059008A1 (en) * 2016-11-24 2018-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR TREATING BIOMASS POWDER BY WET GRANULATION FOR INTRODUCING IT TO A REACTOR, BIOMASS POWDER THEREOF, APPLICATION TO BIOMASS GASIFICATION
CN109019699A (en) * 2018-09-30 2018-12-18 东北农业大学 A kind of rodlike ferroso-ferric oxide particle loads the preparation method of biological carbon composite
GB2615574A (en) * 2022-02-11 2023-08-16 Wild Hydrogen Ltd Method and apparatus for gasification of biogenic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131909A1 (en) * 2005-11-04 2007-06-14 Alexandre Rojey Process for the production of synthesis gas from carbon-containing material and electrical energy
JP2007270212A (en) * 2006-03-30 2007-10-18 Ebara Corp Hydrogen production device and fuel cell power-generating apparatus
RU2516533C2 (en) * 2008-07-08 2014-05-20 Карл-Хайнц ТЕТЦЛАФ Method and device for obtaining synthesis-gas with low content of resins from biomass
RU2519441C1 (en) * 2010-03-23 2014-06-10 Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. Technology and device for obtaining synthesis gas from biomass by pyrolysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131909A1 (en) * 2005-11-04 2007-06-14 Alexandre Rojey Process for the production of synthesis gas from carbon-containing material and electrical energy
JP2007270212A (en) * 2006-03-30 2007-10-18 Ebara Corp Hydrogen production device and fuel cell power-generating apparatus
RU2516533C2 (en) * 2008-07-08 2014-05-20 Карл-Хайнц ТЕТЦЛАФ Method and device for obtaining synthesis-gas with low content of resins from biomass
RU2519441C1 (en) * 2010-03-23 2014-06-10 Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. Technology and device for obtaining synthesis gas from biomass by pyrolysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059008A1 (en) * 2016-11-24 2018-05-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR TREATING BIOMASS POWDER BY WET GRANULATION FOR INTRODUCING IT TO A REACTOR, BIOMASS POWDER THEREOF, APPLICATION TO BIOMASS GASIFICATION
WO2018096056A1 (en) * 2016-11-24 2018-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for processing a biomass powder by wet granulation with a view to introducing same into a reactor, associated biomass powder, application to biomass gasification
CN109019699A (en) * 2018-09-30 2018-12-18 东北农业大学 A kind of rodlike ferroso-ferric oxide particle loads the preparation method of biological carbon composite
CN109019699B (en) * 2018-09-30 2020-08-18 东北农业大学 Preparation method of rod-like ferroferric oxide particle-loaded biochar composite material
GB2615574A (en) * 2022-02-11 2023-08-16 Wild Hydrogen Ltd Method and apparatus for gasification of biogenic material

Also Published As

Publication number Publication date
RU2015104766A (en) 2016-08-27

Similar Documents

Publication Publication Date Title
Ren et al. Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification
US10653995B2 (en) Sorption enhanced methanation of biomass
CN102786994B (en) Method for preparing methane-rich gas through autocatalytic gasification of biomass
US8541637B2 (en) Process and system for thermochemical conversion of biomass
US20100270505A1 (en) Integrated, high-efficiency processes for biomass conversion to synthesis gas
NL2019552B1 (en) Process to prepare a char product and a syngas mixture
CN102977927A (en) Apparatus for preparing synthesis gas based on dual fluidized bed biomass gasification and preparation method thereof
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
CN106336879A (en) Biomass pyrolysis-reforming hydrogen production method
US11760948B2 (en) Process to prepare an activated carbon product and a syngas mixture
US20210140054A1 (en) Methods and systems for the generation of high purity hydrogen with co2 capture from biomass and biogenic wastes
RU2602150C2 (en) Method of producing hydrogen from biomass
Li et al. Production of hydrogen-rich syngas from absorption-enhanced steam gasification of biomass with conch shell-based absorbents
CN110951508A (en) Device and process for preparing methane by coal chemical-looping catalytic gasification based on calcium oxide
Yuan et al. In-chamber thermocatalytic tar cracking and syngas reforming using char-supported NiO catalyst in an updraft biomass gasifier
SHI et al. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming
Li et al. Preparation of hydrogen-rich gas by catalytic pyrolysis of straw-plastic mixture with nickel-based honeycomb cinder
CN108726833A (en) A kind of municipal sludge situ catalytic vaporizing system for high-purity hydrogen new process
JPWO2020166659A1 (en) Biomass gas production method, hydrogen production method, biomass gas production system and hydrogen production system
Jie et al. Synthesis of DME via catalytic conversion of biomass
Encinar et al. Pyrolysis and catalytic steam gasification of olive oil waste in two stages
CN104099114A (en) Carbonization method for coal

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200213