RU2601258C1 - Многопозиционная машина трения - Google Patents

Многопозиционная машина трения Download PDF

Info

Publication number
RU2601258C1
RU2601258C1 RU2014149009/28A RU2014149009A RU2601258C1 RU 2601258 C1 RU2601258 C1 RU 2601258C1 RU 2014149009/28 A RU2014149009/28 A RU 2014149009/28A RU 2014149009 A RU2014149009 A RU 2014149009A RU 2601258 C1 RU2601258 C1 RU 2601258C1
Authority
RU
Russia
Prior art keywords
sample
loading
counter
holders
samples
Prior art date
Application number
RU2014149009/28A
Other languages
English (en)
Inventor
Виталий Матвеевич Сорокин
Владимир Владимирович Глебов
Алексей Юрьевич Шурыгин
Нина Михайловна Тудакова
Александр Владимирович Михеев
Станислав Сергеевич Танчук
Вера Александровна Зотова
Максим Евгеньевич Егоров
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ)
Priority to RU2014149009/28A priority Critical patent/RU2601258C1/ru
Application granted granted Critical
Publication of RU2601258C1 publication Critical patent/RU2601258C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к испытательной технике, а именно к устройствам для трибологических испытаний наружных и внутренних цилиндрических поверхностей образцов, и может быть использовано при испытаниях на износ, например, гильз цилиндров, валов и т.п. Многопозиционная машина трения содержит корпус, держатели образцов и контробразцов, привод вращения и механизмы нагружения. Механизм нагружения выполнен в виде автономных узлов для каждой пары трения, установленных на Г-образных держателях, при этом держатели расположены по разные стороны параллельно оси держателя образцов и смещены относительно друг друга на величину, равную половине расстояния l между осями установки узлов механизмов нагружения, создавая тем самым только одну пару трения в плоскости контакта образец - контробразец, а каждый узел нагружения содержит гидроцилиндр одностороннего действия, шток которого через силоизмеритель соединен с узлом прижима шарнирно закрепленного в стакане подпружиненного контробразца к образцу; при этом выход и вход гидроцилиндра соединены трубопроводами соответственно с входом и выходом гидростанции, к которой подключены узел подачи электроэнергии и станция управления системой с выходом и входом на ЭВМ или персональный компьютер через блок усилителя сигналов аналого-цифрового и цифроаналогового преобразователя. Технический результат: расширение функциональных возможностей при проведении многофакторного эксперимента, повышение производительности, точности и достоверности результатов испытаний. 3 ил.

Description

Изобретение относится к испытательной технике, а именно к устройствам для трибологических испытаний наружных и внутренних цилиндрических поверхностей образцов, и может быть использовано при испытаниях на износ, например, гильз цилиндров, валов и т.п.
Известна машина трения для испытания образцов [1], содержащая основание, узел нагружения, узел трения, состоящий из держателя контробразца, установленного на штанге, шарнирно прикрепленной к основанию, причем узел нагружения состоит из П-образного упругого элемента, установленного в рамке, в верхней части которой выполнена резьба, взаимодействующая с винтом, имеющим для создания точечного нагружения сферический конец, упирающийся в П-образный упругий элемент, индикатора, закрепленного на одном конце упругого элемента и упирающегося в другой его конец, а также шарика, расположенного между П-образным упругим элементом и штангой соосно с винтом.
К недостаткам данной машины трения относятся: небольшая по величине нагрузка, прикладываемая к испытываемому образцу узлом нагружения, ограничивает возможность применения некоторых методов испытаний, например на задиростойкость; низкая производительность испытаний при проведении многофакторных экспериментов (МФЭ); отсутствие устройства обратной связи при испытании образца.
В качестве прототипа принята многопозиционная машина трения (ММТ) для исследования задира тел [2], содержащая корпус, держатели образца и контробразцов, привод вращения образца, механизм нагружения и датчик момента трения. Идентичность условий испытаний для всех пар трения, участвующих в одном цикле, обеспечивается механизмом нагружения, выполненным в виде каретки с шарнирно закрепленным на ней рычагом с роликом, взаимодействующим с контробразцом выбираемой пары трения, и взаимодействующего с рычагом нагружающего привода с силоизмерителем, а держатели контробразцов выполнены в виде коромысел, шарнирно установленных на плавающей штанге, взаимодействующей с датчиком момента трения.
Недостатками многопозиционной машины трения для исследования задира тел являются: невозможность проведения испытаний по времени в одном цикле одновременно нескольких пар трения, что вызвано особенностями конструкции механизма нагружения контробразцов; конструктивные особенности и принцип работы механизма нагружения пар трения требуют постоянной переналадки и регулировки усилий при переходе испытаний от одной пары трения к другой, а также могут привести к деформациям вала (образца) при нагружении и испытаниях; отсутствие механизма обратной связи при испытаниях. Все это существенно снижает производительность испытаний, влияет на точность и достоверность результатов испытаний, особенно при проведении МФЭ.
Технический результат - расширение функциональных возможностей при проведении МФЭ, повышение производительности, точности и достоверности результатов испытаний.
Технический результат достигается тем, что в многопозиционной машине трения, содержащей корпус, держатели образцов и контробразцов, привод вращения и механизмы их нагружения, механизм нагружения выполнен в виде автономных узлов для каждой пары трения, установленных на Г-образных держателях, при этом держатели расположены по разные стороны параллельно оси держателя образцов и смещены относительно друг друга на величину, равную половине расстояния l между осями установки узлов механизмов нагружения, создавая тем самым только одну пару трения в плоскости контакта образец - контробразец, а каждый узел нагружения содержит гидроцилиндр одностороннего действия, шток которого через силоизмеритель соединен с узлом прижима шарнирно закрепленного в стакане подпружиненного контробразца к образцу; при этом выход и вход гидроцилиндра соединены трубопроводами соответственно с входом и выходом гидростанции, к которой подключены узел подачи электроэнергии и станция управления системой с выходом и входом на ЭВМ или персональный компьютер через блок усилителя сигналов аналого-цифрового и цифроаналогового преобразователя.
Повышение производительности достигается тем, что предложенная ММТ позволяет одновременно по времени в одном цикле проводить испытания нескольких пар трения за счет применения независимых друг от друга, автономных механизмов нагружения для каждой испытываемой пары трения. Кроме того, предложенная система нагружения пар трения не требует постоянной остановки ММТ, переналадки и регулировки механизма нагружения при переходе испытаний от одной пары трения к другой в отличие от машины-прототипа и ее механизма нагружения.
Повышение точности результатов испытаний достигается тем, что механизмы нагружения пар трения расположены равномерно в Г-образных держателях, установленных с двух сторон вдоль оси вращающегося держателя образцов, что обеспечивает уравновешивающее воздействие от усилий нагружения и, следовательно, исключает деформацию держателя образцов при нагружении и испытаниях.
Повышение достоверности результатов испытаний путем регистрации мгновенных значений возникающих сил нагружения достигается тем, что ММТ снабжена измерителями сил нагружения, выполненными в виде тензометрических датчиков-мостов, жестко соединенных со штоками гидроаккумуляторов и толкателями узлов прижима контробразцов, передающих сигналы, пропорциональные возникающим силам, на усилители аналоговых сигналов и затем в аналого-цифровой преобразователь, и далее в цифровом виде через согласующее устройство на управляющий компьютер, который обрабатывает поступающие данные в соответствии с программой управления.
Расширение функциональных возможностей путем реализации динамического управления параметрами нагружения и вращательного движения испытываемых образцов достигается тем, что ММТ снабжена управляющим компьютером, согласующим устройством, блоками управления механизмами нагружения, блоком управления приводом вращения держателя образцов. Программа управления процессом испытания с помощью управляющего компьютера осуществляет управление приводами ММТ путем передачи импульсов управления через согласующее устройство (интерфейсную плату, установленную на системной шине компьютера) к блокам управления приводами нагружения пар трения и вращения держателя образцов. Использование данной системы управления приводами ММТ обеспечивает динамическое регулирование параметрами нагружения пар трения и вращения держателя образцов (по времени, частоте вращения и т.д.), позволяет избежать временного рассогласования приводов при длительных циклических испытаниях, а также реализовать более сложные режимы испытания особенно при проведении МФЭ.
На чертежах показана предлагаемая ММТ. На фиг. 1 изображена принципиальная схема предлагаемой ММТ, на фиг. 2 - сечение А-А на фиг. 1, на фиг. 3 - блок-схема.
ММТ содержит корпус 1, на котором закреплены опоры 2, обеспечивающие свободное вращение от привода 3 держателя 4 образцов 5, к которым поджимаются узлом прижима 6 контробразцы 7, шарнирно установленные в профрезерованные гнезда в стаканах 8, закрепленных с помощью гаек 9 и стопорных винтов 10 в отверстиях, равномерно расположенных с шагом l вдоль по длине на вертикальных стенках держателей 11, установленных по обе стороны от держателя 4 образцов 5 строго параллельно его продольной оси.
Держатели 11 смещены относительно друг друга вдоль оси держателя 4 образцов 5 на величину l/2, создавая тем самым только одну пару трения в плоскости контакта образцов 5 и контробразцов 7.
Каждая пара трения состоит из образца 5 в виде кольца (втулки), неподвижно установленного на держателе 4, и контробразца 7, представляющего собой вырезанную по форме образца площадку в виде вогнутой пластины. Поверхности трения каждой пары (образец - контробразец) могут быть обработаны разными заданными методами и режимами и, следовательно, иметь различное заданное состояние по параметрам шероховатости, микротвердости, напряженному состоянию и др. При этом нагружение каждой пары выполняется автономно, независимо друг от друга и может осуществляться с разной нагрузкой и отличаться условиями смазывания.
Узел прижима 6 (фиг. 2), содержащий толкатель 12, выполненный ступенчатым с цилиндрическим пояском, пружину 13 и оправку 14, установлен в стаканах 8 с возможностью поджатия и фиксации винтом 15, обеспечивая при этом предварительный поджим сферическим концом толкателя 12 испытываемых образцов 5 и контробразцов 7 друг к другу перед началом нагружения и испытаний. Другим концом толкатель 12 соединен с силоизмерителем 16 и гидроцилиндром 17 штоком 18, входящим в систему нагружения и управления ММТ.
Механизм нагружения для каждой пары трения выполнен автономным (фиг. 3) и содержит гидроцилиндр 17 со штоком 18 одностороннего действия, соединенный трубопроводами 19 с гидростанцией 20 (ГС) через блок станции управления системой 21 (СУС). Шток 18 гидроцилиндра 17 шарнирно связан с силоизмерителем 16, содержащим тензодатчики Т1-Т4, включенные по мостовой схеме, для измерения сил нагружения пары трения и отслеживания изменений в процессе испытаний. Любые изменения сил нагружения фиксируются тензодатчиками силоизмерителя 16 и поступают через переключатели 22 (П), смонтированные на СУС 21, на блок усилителя 23 (БУ) аналогового сигнала, затем в аналого-цифровой/цифроаналоговый преобразователь 24 (АЦП/ЦАП) и через согласующее устройство 25 (СУ) на ЭВМ (управляющий компьютер) 26, которая обрабатывает поступающие данные в соответствии с программой управления эксперимента. Нагружение и отслеживание изменений силы нагружения на испытуемый образец (обратная связь) производится от ЭВМ 26 через СУ 25, ГС 20, связанную трубопроводами 19 с гидроцилиндром 17, шток 18 которого упирается в силоизмеритель 16, и затем через толкатель 12 узла прижима 6 контробразцов 7 передается на образцы 5.
Электропитание систем ММТ осуществляется от электросети через блок подачи электроэнергии 27.
СУ 25 обеспечивает необходимое количество каналов ввода-вывода для подключения внешних блоков-устройств ММТ и выполняет функции согласования уровней выходных сигналов, поступающих на ЭВМ 26 с АЦП/ЦАП 24, а также выходных сигналов, поступающих из ЭВМ 26 на блоки управления приводом вращения 3 и гидроцилиндром 17.
В нашей конкретной ММТ применили следующие компоненты: управляющий компьютер класса Pentium; согласующее устройство выполнено в виде интерфейсной платы, устанавливаемой на системной шине компьютера управления, построенной на микросхеме портов ввода-вывода КР580 ВВ55А, имеющей 24 канала программного ввода-вывода; для измерения нагрузки применили датчики-мосты на базе тензорезисторов типа 2ПКП-15-120Х, усилители аналогового сигнала типа ТА-5 и АЦП типа Ф7077/1; в системе управления применили двигатели AEG S026/48 и модули управления MI06 немецкой фирмы Kemo electronic.
Устройство работает следующим образом.
Перед началом испытания ММТ находится в исходном состоянии. Шток 18 гидроцилиндра 17 находится в крайнем верхнем положении.
Производится установка держателя 4 с закрепленными образцами 5 в центрах опор 2 и контробразцов 7 в гнезда стаканов 8.
Дальнейшая работа ММТ осуществляется в автоматическом режиме в соответствии с алгоритмом испытания, обеспечение которого возлагается на программу управления, функционирующую на ЭВМ 26.
Первым шагом алгоритма испытания является тарировка силоизмерителя 16, которая производится перед каждым испытанием и заключается в определении нулевой точки отсчета измерителя силы нагружения.
Вторым шагом алгоритма испытания является приведение образцов 5 и контробразцов 7 в контакт и установка силы нагружения, для чего ЭВМ 26 формирует и передает через интерфейсную плату СУ 25 сигналы управления модулю управления гидростанцией 20, обеспечивающей подачу жидкости в гидроцилиндр 17, поршень 18 которого сжимает пружину в цилиндре (не показана), шток 18, перемещаясь, воздействует на силоизмеритель 16 толкателем 12 и обеспечивает заданное усилие на образцах пары трения. Затем от блока подачи электроэнергии 27 через СУС 21 подается напряжение на привод вращения 3 держателя 4 образцов 5.
Изменение силы нагружения в процессе испытаний из-за износа образцов 5 и контробразцов 7 фиксируется тензометрическим силоизмерителем 16, аналоговый сигнал с которого поступает на блок усилителя 23, преобразуется АЦП/ЦАП 24 и поступает в цифровом виде через СУ 25 на ЭВМ 26, на которой функционирует программа управления экспериментом.
Далее программным путем осуществляется анализ достигнутого значения нагружающей силы и производится включение ГС 20 для восстановления нагружающей силы или увеличения ее в случае необходимости.
После окончания программы испытания производится возврат рабочих органов ММТ в исходное состояние, для чего ЭВМ 26 формирует управляющие сигналы, передаваемые через СУ 25, для модулей, обеспечивающих работу гидроцилиндра 17 и приводы вращения 3, которые управляют нагружением и движением образцов 5 и контробразцов 7.
Источники информации
1. Патент на изобретение РФ №2442135, МПК 7 G01N 19/02. Машина для испытания образцов.
2. Авторское свидетельство СССР №369469 СССР, МПК 6 G01N 19/02, G01N 3/56. Многопозиционная машина трения для исследования задира тел.

Claims (1)

  1. Многопозиционная машина трения, содержащая корпус, держатели образцов и контробразцов, привод вращения и механизмы нагружения, отличающаяся тем, что механизм нагружения выполнен в виде автономных узлов для каждой пары трения, установленных на Г-образных держателях, при этом держатели расположены по разные стороны параллельно оси держателя образцов и смещены относительно друг друга на величину, равную половине расстояния l между осями установки узлов механизмов нагружения, создавая тем самым только одну пару трения в плоскости контакта образец - контробразец, а каждый узел нагружения содержит гидроцилиндр одностороннего действия, шток которого через силоизмеритель соединен с узлом прижима шарнирно закрепленного в стакане подпружиненного контробразца к образцу; при этом выход и вход гидроцилиндра соединены трубопроводами соответственно с входом и выходом гидростанции, к которой подключены узел подачи электроэнергии и станция управления системой с выходом и входом на ЭВМ или персональный компьютер через блок усилителя сигналов аналого-цифрового и цифроаналогового преобразователя.
RU2014149009/28A 2014-12-04 2014-12-04 Многопозиционная машина трения RU2601258C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014149009/28A RU2601258C1 (ru) 2014-12-04 2014-12-04 Многопозиционная машина трения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014149009/28A RU2601258C1 (ru) 2014-12-04 2014-12-04 Многопозиционная машина трения

Publications (1)

Publication Number Publication Date
RU2601258C1 true RU2601258C1 (ru) 2016-10-27

Family

ID=57216483

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014149009/28A RU2601258C1 (ru) 2014-12-04 2014-12-04 Многопозиционная машина трения

Country Status (1)

Country Link
RU (1) RU2601258C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769587A (zh) * 2017-02-28 2017-05-31 上海核工程研究设计院 一种多试样磨损试验装置
RU2650047C1 (ru) * 2016-12-06 2018-04-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Брянский государственный аграрный университет" Способ проведения ускоренных сравнительных испытаний полимерных самотвердеющих дисперсно-упрочненных композиционных материалов на изнашивание в не жестко закрепленном абразиве
RU178654U1 (ru) * 2017-11-28 2018-04-16 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" Устройство для трибологических исследований материалов пар трения
RU2695042C1 (ru) * 2017-07-05 2019-07-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Машина для испытания на трение и изнашивание
RU199337U1 (ru) * 2020-04-29 2020-08-28 Общество с ограниченной ответственной "ВМПАВТО" Машина трения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2163013C2 (ru) * 1999-03-03 2001-02-10 Томский политехнический университет Испытательная камера машины трения
RU2165077C2 (ru) * 1999-03-03 2001-04-10 Томский политехнический университет Автоматизированный комплекс для испытания трибосопряжений на трение и износ в статическом и динамическом режимах
US6776048B2 (en) * 2002-02-08 2004-08-17 C.R.F. Societa Consortile Per Azioni Tribological test apparatus
RU43974U1 (ru) * 2004-10-11 2005-02-10 Государственное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ГОУ ВПО "ТГАСУ") Устройство нагружения к машине трения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2163013C2 (ru) * 1999-03-03 2001-02-10 Томский политехнический университет Испытательная камера машины трения
RU2165077C2 (ru) * 1999-03-03 2001-04-10 Томский политехнический университет Автоматизированный комплекс для испытания трибосопряжений на трение и износ в статическом и динамическом режимах
US6776048B2 (en) * 2002-02-08 2004-08-17 C.R.F. Societa Consortile Per Azioni Tribological test apparatus
RU43974U1 (ru) * 2004-10-11 2005-02-10 Государственное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ГОУ ВПО "ТГАСУ") Устройство нагружения к машине трения

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2650047C1 (ru) * 2016-12-06 2018-04-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Брянский государственный аграрный университет" Способ проведения ускоренных сравнительных испытаний полимерных самотвердеющих дисперсно-упрочненных композиционных материалов на изнашивание в не жестко закрепленном абразиве
CN106769587A (zh) * 2017-02-28 2017-05-31 上海核工程研究设计院 一种多试样磨损试验装置
RU2695042C1 (ru) * 2017-07-05 2019-07-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Машина для испытания на трение и изнашивание
RU178654U1 (ru) * 2017-11-28 2018-04-16 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" Устройство для трибологических исследований материалов пар трения
RU199337U1 (ru) * 2020-04-29 2020-08-28 Общество с ограниченной ответственной "ВМПАВТО" Машина трения

Similar Documents

Publication Publication Date Title
RU2601258C1 (ru) Многопозиционная машина трения
US9581533B2 (en) Modular hardness testing machine
AU2020102029A4 (en) Sliding friction and wear tester
US10078026B2 (en) Multi-component force-torque sensing device with reduced cross-talk for twist-compression testing machine
CN102944472B (zh) 滚珠丝杠副轴向静刚度测量装置及其方法
CN107179252B (zh) 一种变重力取向典型摩擦副滑动磨损实验机及试验方法
CN106017915A (zh) 一种能精确预紧和加载的滚珠丝杠副精度保持性试验装置
CN110207981B (zh) 一种无损滚珠丝杠副静刚度测量装置
CN107860504B (zh) 姿控发动机的准动态推力测量校准一体化装置
CZ2015420A3 (cs) Indentační hlavice, instrumentovaný měřící systém a způsob stanovení mechanických vlastností materiálů indentační metodou
CN109085079B (zh) 一种多功能内燃机缸套活塞环摩擦磨损试验机
AU2021102459A4 (en) Observable micro-nano mechanical testing apparatus and method
CN105158057A (zh) 多场耦合下原位三轴拉伸疲劳测试装置及方法
CN203178071U (zh) 滚珠丝杠动态特性参数的测试装置
CN204679401U (zh) 一种研究湿度对摩擦试验影响的实验设备
CN106002481A (zh) 评估进给系统丝杠预拉伸力动态性能测试系统及测试方法
CN106123939A (zh) 一种磁悬浮传感器刚度测试系统及测试方法
CN203941016U (zh) 一种伺服进给机构性能测试试验装置
CN108645366B (zh) 一种测量岩石两端面不平行度的实验装置
CN104297158A (zh) 可调式激光裂纹扩展速率记录仪
CN104006982A (zh) 一种伺服进给机构性能测试试验装置及测试方法
CN105699232B (zh) 可控磨损载荷的试验装置
CN109406143A (zh) 基于真实工况的滚珠丝杠副精度保持性试验装置及方法
RU204892U1 (ru) Устройство для определения коэффициента трения смазочных материалов
RU205033U1 (ru) Устройство для определения коэффициента трения смазочных материалов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161218