RU2599624C1 - Многозонный преобразователь постоянного тока в переменный - Google Patents

Многозонный преобразователь постоянного тока в переменный Download PDF

Info

Publication number
RU2599624C1
RU2599624C1 RU2015119732/07A RU2015119732A RU2599624C1 RU 2599624 C1 RU2599624 C1 RU 2599624C1 RU 2015119732/07 A RU2015119732/07 A RU 2015119732/07A RU 2015119732 A RU2015119732 A RU 2015119732A RU 2599624 C1 RU2599624 C1 RU 2599624C1
Authority
RU
Russia
Prior art keywords
capacitor
converter
controlled
cathode
valve
Prior art date
Application number
RU2015119732/07A
Other languages
English (en)
Inventor
Александр Геннадиевич Волков
Геннадий Степанович Зиновьев
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority to RU2015119732/07A priority Critical patent/RU2599624C1/ru
Application granted granted Critical
Publication of RU2599624C1 publication Critical patent/RU2599624C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/501Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by the combination of several pulse-voltages having different amplitude and width

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Многозонный преобразователь постоянного тока в переменный, то есть инвертор тока, относится к электротехнике и необходим для питания регулируемых электродвигателей переменного тока. Многозонный преобразователь постоянного тока в переменный содержит источник постоянного тока, конденсаторный делитель напряжения и 3n параллельных групп последовательно включенных управляемых однонаправленных вентилей, причем каждая такая группа подключена анодом верхнего вентиля к «+» источника тока, а катодом - к верхней обкладке соответствующего конденсатора в конденсаторном делителе напряжения. Катод нижнего управляемого вентиля подключен к «-» источника тока, а анод соединен с катодом верхнего вентиля и с верхней обкладкой соответствующего конденсатора в конденсаторном делителе. Предлагаемый многоуровневый трехфазный преобразователь постоянного тока в переменный характеризуется меньшим количеством полупроводниковых элементов, что ведет к уменьшению массогабаритных параметров преобразователя. 4 ил.

Description

Предлагаемое изобретение относится к полупроводниковым преобразователям электрической энергии, предназначенным для преобразования постоянного тока в регулируемый переменный, и может быть использовано в регулируемых электроприводах переменного тока и в качестве регулируемого второго преобразователя в преобразователях частоты с промежуточным звеном постоянного напряжения.
Известен многозонный преобразователь постоянного тока в переменный (Максимов Евгений Андреевич, «Автономный инвертор тока», патент №2045812, Н02М 7/515 от 28.06.1993), который содержит источник тока, к выводам которого подключены управляемые вентили с последовательно соединенными диодами, образующие анодную (катодную) группу вентилей преобразователя постоянного тока в переменный, то есть инвертора тока.
Поскольку инвертор собран по мостовой схеме, то при больших напряжениях питания обратное напряжение на вентилях достигает величины двойного значения амплитуды выходного напряжения, а также увеличивается количество последовательно включенных управляемых вентилей, если используются вентили низкого класса.
Кроме того, известен многозонный преобразователь постоянного тока в переменный (Волков Александр Геннадьевич, Зиновьев Геннадий Степанович, «Многозонный преобразователь постоянного тока в переменный», патент №2523001, Н02М 7/217 от 20.07.2014), являющийся прототипом, содержащий источник тока и 3-фазную мостовую схему, в котором каждое плечо моста выполнено из 2 групп n последовательно включенных управляемых однонаправленных вентилей, к точкам соединения которых в каждом плече моста присоединены дополнительно две группы неуправляемых вентилей, причем одна группа n управляемых вентилей подключена катодом крайнего вентиля к нагрузке, а анодом другого крайнего вентиля группы - к «+» источника тока, вторая группа управляемых вентилей подключена анодом крайнего вентиля к нагрузке, а катодом - к «-» источника тока, при этом между анодом последовательно включенных управляемых вентилей первой группы и нагрузкой включены неуправляемые вентили первой дополнительной группы катодами к нагрузке, аналогично, между катодами управляемых вентилей второй группы и нагрузкой также включены неуправляемые вентили второй дополнительной группы анодами к нагрузке.
Недостатком преобразователя является невысокие значения массогабаритных показателей преобразователя, что обусловлено большим количеством полупроводниковых неуправляемых вентилей.
Задачей (техническим результатом) предлагаемого изобретения является создание многозонного преобразователя постоянного тока в переменный с улучшенными массогабаритными показателями преобразователя.
Поставленная задача достигается тем, что в многозонный преобразователь постоянного тока в переменный, содержащий источник постоянного тока на входе, конденсаторный делитель напряжения на выходе, включенный параллельно с нагрузкой, и включенную между ними 3-фазную мостовую схему, имеющий одну группу последовательно включенных полностью управляемых однонаправленных вентилей в каждом плече моста, дополнительно к имеющейся группе последовательно включенных полностью управляемых однонаправленных вентилей введены еще (n-1) параллельных групп последовательно включенных полностью управляемых однонаправленных вентилей (транзисторов или GTO-тиристоров), причем каждая такая группа подключена коллектором (анодом) верхнего вентиля к «+» источника постоянного тока, а эмиттером (катодом) - к верхней обкладке соответствующего конденсатора в конденсаторном делителе напряжения. Эмиттер (катод) нижнего управляемого вентиля подключен к «-» источника постоянного тока, а коллектор (анод) соединен с эмиттером (катодом) верхнего управляемого вентиля и с верхней обкладкой соответствующего конденсатора в конденсаторном делителе напряжения.
На фиг. 1 приведена схема предлагаемого преобразователя на примере трехфазного двухзонного режима, на фиг. 2 приведена осциллограммы выходного тока и напряжения для первого (верхнего по уровню напряжения) поддиапазона регулирования. На фиг. 3 приведена диаграмма выходного тока и напряжения для второго (нижнего по уровню напряжения) поддиапазона регулирования. На фиг. 4 приведен ток фазы А преобразователя до выходного фильтра.
Многозонный преобразователь постоянного тока в переменный на примере трехфазного (фиг. 1) содержит источник постоянного тока 1, блоки вентилей 2, 3, 4, образующие три фазы преобразователя, а для каждой фазы выходного тока существует n параллельных одинаковых групп последовательно включенных управляемых однонаправленных вентилей (5, 6, 7 для фазы А), конденсаторный делитель напряжения 8, подключенный к соответствующим выходам преобразователя совместно с трехфазной (в примере) активно-индуктивной нагрузкой 9. Каждая группа вентилей (5, 6, 7) содержит по два плеча, состоящих каждое из последовательно включенного управляемого вентиля (транзистора или GTO-тиристора) и диода (для рассматриваемой фиг. 1 с n=2 уровнями), это управляемый вентиль 10 и диод 11 для верхнего плеча группы вентилей 5 и управляемый вентиль 12 и диод 13 для нижнего плеча группы вентилей 5, управляемый вентиль 14 и диод 15 для верхнего плеча группы вентилей 6 и управляемый вентиль 16 и диод 17 для нижнего плеча группы вентилей 6, управляемый вентиль 18 и диод 19 для верхнего плеча группы вентилей 7 и управляемый вентиль 20 и диод 21 для нижнего плеча группы вентилей 7, при этом подключенных коллекторами (анодами) вентилей 10, 14, 18 - к «+» источника постоянного тока 1, а их эмиттерами (катодами) - к соответствующей верхней обкладке конденсатора конденсаторного делителя. Эмиттеры (катоды) нижних управляемых вентилей 12, 16, 20 подключены к «-» источника постоянного тока 1, а коллекторы (аноды) подключены к соответствующей верхней обкладке конденсатора в конденсаторном делителе. В двух других блоках вентилей 3, 4 других фаз нагрузки параллельные одинаковые группы последовательно включенных однонаправленных вентилей соединены с выходными конденсаторами конденсаторного делителя напряжения соответствующей фазы.
Устройство работает следующим образом. Весь диапазон регулирования выходного тока разделен на n поддиапазонов, в рассматриваемом случае на n=2 поддиапазона.
В первом поддиапазоне регулирования импульсы управления, сгенерированные по принципу синусоидальной ШИМ, подаются на управляемые однонаправленные вентили 10, 12 вентильных групп 2, 3, 4 соответственно. На ключи 14, 16 импульсы управления не подаются. Мгновенное значение выходного напряжения на нагрузке возрастает до максимального значения, как показано на фиг. 2
Во втором поддиапазоне импульсы управления, сгенерированные по принципу синусоидальной широтно-импульсной модуляции, подаются на управляемые однонаправленные вентили 14, 16 вентильных групп 2, 3, 4 соответственно. Мгновенное значение выходного напряжения на нагрузке уменьшаются примерно в 2 раза по сравнению со значением напряжения в первом поддиапазоне, как показано на фиг. 3, где наряду с выходным напряжением показаны фазные токи нагрузки.
Результирующая частота коммутации при ШИМ выходного тока слагается из частот коммутации вентилей параллельных плеч моста и может превосходить частоту коммутации плеча моста прототипа, что приведет к улучшению качества выходного напряжения преобразователя.
Таким образом, создан новый многозонный преобразователь постоянного тока в переменный, имеющий улучшенные массогабаритные показатели. Это достигнуто за счет уменьшения количества полупроводниковых элементов преобразователя и независимого управления вентилями плеч моста.
Кроме того, независимое управление вентилями плеч моста позволяет улучшить качество выходного напряжения преобразователя.

Claims (1)

  1. Многозонный преобразователь постоянного тока в переменный, содержащий источник постоянного тока на входе, конденсаторный делитель напряжения на выходе, включенный параллельно с нагрузкой, и включенную между ними 3-фазную мостовую схему на полностью управляемых однонаправленных вентилях (транзисторах или GTO-тиристорах), имеющий одну группу последовательно включенных полностью управляемых однонаправленных вентилей в каждом плече моста, отличающийся тем, что в каждое плечо моста дополнительно к имеющейся группе последовательно включенных полностью управляемых однонаправленных вентилей введены еще (n-1) параллельных групп последовательно включенных полностью управляемых однонаправленных вентилей, причем каждая такая группа подключена коллектором (анодом) верхнего вентиля к «+» источника постоянного тока, а эмиттером (катодом) - к верхней обкладке соответствующего конденсатора в конденсаторном делителе напряжения, эмиттер (катод) же нижнего управляемого вентиля подключен к «-» источника постоянного тока, а коллектор (анод) соединен с эмиттером (катодом) верхнего вентиля и с верхней обкладкой соответствующего конденсатора в конденсаторном делителе напряжения.
RU2015119732/07A 2015-05-25 2015-05-25 Многозонный преобразователь постоянного тока в переменный RU2599624C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015119732/07A RU2599624C1 (ru) 2015-05-25 2015-05-25 Многозонный преобразователь постоянного тока в переменный

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015119732/07A RU2599624C1 (ru) 2015-05-25 2015-05-25 Многозонный преобразователь постоянного тока в переменный

Publications (1)

Publication Number Publication Date
RU2599624C1 true RU2599624C1 (ru) 2016-10-10

Family

ID=57127748

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119732/07A RU2599624C1 (ru) 2015-05-25 2015-05-25 Многозонный преобразователь постоянного тока в переменный

Country Status (1)

Country Link
RU (1) RU2599624C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU817932A1 (ru) * 1975-02-17 1981-03-30 Предприятие П/Я М-5644 Инвертор напр жени
US4685043A (en) * 1984-04-21 1987-08-04 Mitec Moderne Industrietechnik Gmbh Inverter for generating a staircase-shaped a.c. voltage on each of the phase conductors of a multiphase system
RU2525863C1 (ru) * 2010-07-13 2014-08-20 Ниссан Мотор Ко., Лтд. Система преобразования мощности

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU817932A1 (ru) * 1975-02-17 1981-03-30 Предприятие П/Я М-5644 Инвертор напр жени
US4685043A (en) * 1984-04-21 1987-08-04 Mitec Moderne Industrietechnik Gmbh Inverter for generating a staircase-shaped a.c. voltage on each of the phase conductors of a multiphase system
RU2525863C1 (ru) * 2010-07-13 2014-08-20 Ниссан Мотор Ко., Лтд. Система преобразования мощности

Similar Documents

Publication Publication Date Title
US9325252B2 (en) Multilevel converter systems and sinusoidal pulse width modulation methods
Zamiri et al. A new cascaded switched-capacitor multilevel inverter based on improved series–parallel conversion with less number of components
US9479075B2 (en) Multilevel converter system
US9071165B2 (en) 2N+1 level voltage inverter
US8400793B2 (en) Method in a cascaded two-level converter, control device and computer program products
US9252681B2 (en) Power converter with a first string having controllable semiconductor switches and a second string having switching modules
US10396681B1 (en) Multilevel inverters with increased number of output steps
WO2013135277A1 (en) A clamped modular power converter
US9680376B2 (en) Power conversion electronics having conversion and inverter circuitry
EP3381117A1 (en) Four-level power converter
US20180241321A1 (en) Voltage source converter and control thereof
EP2993777A1 (en) Multilevel converter
WO2014154265A1 (en) Hybrid power converter with modular multilevel strings (m2lc) in neutral point clamping topology
CN106787891B (zh) 一种五电平逆变器
Devi et al. Comparative study on different five level inverter topologies
RU2668416C1 (ru) Трехуровневый преобразователь частоты
WO2013135300A1 (en) Arrangement for conversion between ac and dc
RU2599624C1 (ru) Многозонный преобразователь постоянного тока в переменный
Dahmen et al. Reduced capacitor size and on-state losses in advanced mmc submodule topologies
US11601046B2 (en) Three-phase double t-type four-level rectifier
RU2713389C2 (ru) Многозонный преобразователь постоянного тока в переменный
KR101312589B1 (ko) 멀티레벨 인버터 및 그 인버터의 구동 방법
Bakas et al. Hybrid alternate-common-arm converter with director thyristors—Impact of commutation time on the active-power capability
RU2523001C2 (ru) Многозонный преобразователь постоянного тока в переменный
KR101287444B1 (ko) 멀티레벨 인버터 및 그 인버터의 구동 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180526