RU2599389C1 - Способ изготовления электродов электронных приборов - Google Patents

Способ изготовления электродов электронных приборов Download PDF

Info

Publication number
RU2599389C1
RU2599389C1 RU2015119861/07A RU2015119861A RU2599389C1 RU 2599389 C1 RU2599389 C1 RU 2599389C1 RU 2015119861/07 A RU2015119861/07 A RU 2015119861/07A RU 2015119861 A RU2015119861 A RU 2015119861A RU 2599389 C1 RU2599389 C1 RU 2599389C1
Authority
RU
Russia
Prior art keywords
electrodes
discharge
gas
electrode
neon
Prior art date
Application number
RU2015119861/07A
Other languages
English (en)
Inventor
Олег Николаевич Крютченко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет"
Priority to RU2015119861/07A priority Critical patent/RU2599389C1/ru
Application granted granted Critical
Publication of RU2599389C1 publication Critical patent/RU2599389C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и др.). Способ изготовления электродов электронных приборов включает в себя облучение их поверхности потоком ионов инертного газа, получаемым из плазмы газового разряда, при этом объем прибора наполняется неоном до давления (1,5-5,0)·101 Па, к требуемому электроду подводится отрицательный потенциал и возбуждается аномальный тлеющий разряд между данным электродом и каким-либо другим конструкционным элементом прибора, при этом обработку поверхности электрода прекращают после стабилизации напряжения поддержания разряда. Технический результат - упрощение технологии обработки электродов. 2 ил.

Description

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и др.).
К важным проблемам, имеющим место при эксплуатации электронных приборов, относится изменение состояния поверхности их конструкционных элементов (электродов), участвующих в создании и поддержании электрического тока. Одна из наиболее распространенных причин наблюдаемого явления заключается в образовании на поверхности электродов полимерных углеводородных пленок. Формирование таких пленок происходит при облучении поверхности электродов потоками электронов или ионов, сопровождающих работу приборов, в случае наличия в их наполнении паров органических соединений (Christy R.W. J. Appl. Phys.,1960, vol. 31, №9, p. 1680; Филатов B.H., Сысоев A.A. Химия высоких энергий, 1981, т. 15, №5, с. 474). Органические соединения присутствуют в наполнении приборов вследствие их масляной откачки, химической обработки конструкционных элементов или нахождении в атмосфере.
Образование полимерных покрытий под действием электронной или ионной бомбардировки обусловлено диссоциацией молекул органических веществ, находящихся в конденсированном состоянии на поверхности электродов. При диссоциации многоатомных молекул происходит образование радикалов - осколков молекул. Они представляют собой валентно ненасыщенные частицы, проявляющие высокую химическую активность. Радикалы вступают в реакции взаимодействия друг с другом и с молекулами недиссоциированных веществ, стимулируя рост полимерных покрытий.
Полимерные углеводородные покрытия обладают электрическим сопротивлением порядка 1014 Ом·см и пробивным напряжением до 105 В/см. В результате в процессе эксплуатации приборов изменяются электрофизические параметры поверхности электродов. Из-за зарядки полимерных покрытий на них возникают нестационарные «блуждающие» потенциалы и изменяется исходное распределение электрического поля. Данные обстоятельства приводят к неконтролируемому изменению эксплуатационных характеристик приборов.
В связи с этим особое значение при изготовлении электронных приборов приобретает разработка технологических приемов, позволяющих исключить или минимизировать процессы образования полимерных углеводородных покрытий и их влияние на свойства поверхности электродов.
Известен способ удаления полимерных покрытий с поверхности электродов химическим травлением (Шеретов Э.П., Самодуров В.Ф., Евдокимова М.И. Способ удаления полимерных углеводородных пленок с поверхностей электродных систем анализаторов масс-спектрометров и электронно- и ионно-оптических систем. - АС СССР №1362352, 1985 г.).
Однако использование этого способа предполагает вскрытие приборов и демонтаж электродных систем. Данная процедура трудоемка, а в большинстве случаев просто неприемлема.
Известен способ удаления полимерных покрытий с поверхности электродов путем предварительного нанесения на нее легкоплавкого металла (например, индия) с последующим периодическим нагревом электродных систем приборов до температуры, превышающей его температуру плавления (Шеретов Э.П., Самодуров В.Ф., Овчинников С.П. Способ изготовления и обработки электродных систем анализаторов масс-спектрометров и электронно- и ионно-оптических систем. - АС СССР №1521163, 1988 г.).
В этом случае не требуется вскрытие приборов, а удаление полимерных покрытий обеспечивается за счет их разрушения силами поверхностного натяжения расплавленного металла.
Однако данный способ имеет ограниченное применение и не может использоваться, например, в газоразрядной технике. Кроме того, при нагреве приборов происходит активная диффузия индия внутрь электродов, что приводит к прогрессирующей потере эффективности используемого технологического приема.
Наиболее близким способом того же назначения к заявляемому объекту по совокупности признаков является способ изготовления электродов электронных приборов, включающий облучение их поверхности потоком ионов инертного газа, получаемым из плазмы газового разряда (Плешивцев Н.В. Способ ионной обработки деталей машин и инструментов и устройство для его осуществления. - Патент РФ №2078847, опубл. 10.05.1997 г. - прототип).
К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, принятого за прототип, относится то, что обрабатываемые материалы облучаются ионами аргона при давлении 0,7-4,7 Па в специальной газоразрядной камере.
В результате способ позволяет осуществлять обработку поверхности электродов только на стадии их изготовления на специальном оборудовании, оснащенном газоразрядной камерой, обеспечивающей возбуждение и поддержание высоковольтного разряда. Возбуждение данного типа разряда в электронных приборах произвольной конструкции не представляется возможным.
Задачей данного изобретения является упрощение технологии обработки электродов.
Данный технический результат достигается при осуществлении изобретения тем, что в известном способе изготовления электродов электронных приборов, включающем облучение их поверхности потоком ионов инертного газа, получаемым из плазмы газового разряда, объем прибора наполняется неоном до давления (1,5-5,0)·101 Па, к требуемому электроду подводится отрицательный потенциал и возбуждается аномальный тлеющий разряд между данным электродом и каким-либо другим металлическим конструкционным элементом прибора, при этом обработку поверхности электрода прекращают после стабилизации напряжения поддержания разряда.
Вышеизложенный технический результат достигается за счет использования в качестве инертного газа неона и выбора оптимального режима обработки поверхности электродов в аномальном тлеющем разряде. При этом происходит удаление с поверхности электродов углеводородных островковых образований, выполняющих функцию центров роста углеводородных полимерных покрытий. После полного удаления центров роста полимерные покрытия на поверхности электродов не образуются, несмотря на присутствие в наполнении приборов паров органических соединений.
Указанный эффект наблюдается только при использовании в качестве инертного газа неона. Попытки применять для обработки поверхности электродов ионы аргона, гелия и ксенона не обеспечивали достижение положительного эффекта. Данное обстоятельство, вероятно, связано с эффективным разрушением углеводородов при их облучении именно ионами неона.
При давлении неона, меньшем 1,5·101 Па, затруднительно возбуждение аномального высоковольтного тлеющего разряда в приборах произвольной конструкции. При давлении неона, большем 5,0·101 Па, значительно падает эффективность очистки поверхности электродов. В этом случае в потоке ионов, поступающих на поверхность электродов в разряде, падает доля «быстрых» ионов с энергией, превышающей пороговые значения, необходимые для разрушения углеводородов (десятки электрон-вольт).
Положительный эффект от использования изобретения обусловлен возможностью формирования поверхности электродов со стабильными электрофизическими свойствами непосредственно внутри разных типов электронных приборов, в объеме которых присутствуют пары органических соединений, без их разгерметизации и демонтажа.
Таким образом, сопоставительный анализ предложенного технического решения и уровня техники позволил установить, что заявленное изобретение соответствует требованию «новизна» и «изобретательский уровень» по действующему законодательству.
Один из вариантов реализации предложенного способа изготовления электродов со стабильными электрофизическими свойствами выполнен на экспериментальных макетах диодной конструкции. Каждый макет представлял собой стеклянную колбу, внутри которой располагались алюминиевый цилиндрический 1 и штыревой молибденовый 2 электроды (фиг. 1). Первый выполнял роль катода, второй - анода газоразрядного промежутка. Макеты проходили стандартную термовакуумную обработку (использовались масляные средства откачки), включающую окисление поверхности катода, и наполнялись неоном. После этого между катодом и анодом возбуждалась требуемая разновидность тлеющего разряда в инертном газе.
На фиг. 2 приведены зависимости напряжения поддержания разряда (Uпр) от времени воздействия на электрод (катод) тлеющего разряда, снятые в различных условиях:
- кривая 1 получена непосредственно после изготовления макетов при давлении неона 4·102 Па и плотности тока на катоде 0,3 мА/см2;
- кривая 2 получена при давлении неона 4·101 Па;
- кривая 3 контролировалась после обработки поверхности катода предлагаемым способом при давлении неона 4·102 Па и плотности тока на катоде 0,3 мА/см2.
Способ реализуется следующим образом.
Изготовленные макеты проходили полный цикл термовакуумной обработки и наполнялись неоном до давления 4·102 Па. Затем при токе разряда, равном 0,3 мА/см2, контролировались зависимости Uпр от времени воздействия на поверхность катода (электрод прибора) разряда (кривая 1 на фиг. 2). Эти зависимости характеризуют исходное состояние катода. Монотонный рост Uпр вызван образованием на поверхности катода полимерных углеводородных образований.
При использованном давлении в потоке ионов неона, поступающих на поверхность катода, отсутствуют «быстрые» ионы, способные разрушать данное покрытие.
Макеты, прошедшие первичные тестовые испытания, откачивались до давления остаточных газов 6·10-3 Па и наполнялись неоном до давления 4·101 Па. Последующая обработка катодов в аномальном тлеющем разряде приводила к достаточно быстрому уменьшению Uпр, которое затем стабилизировалось на постоянном уровне (кривая 2 на фиг. 2). Ток разряда при этом был нестабилен и поддерживался в диапазоне 0,2-0,4 мА/см2.
Наблюдаемые закономерности свидетельствуют о достижении условий удаления с поверхности катодов полимерных образований. Данное обстоятельство связано с тем, что уменьшение давления неона до 4·101 Па приводит к обогащению потока ионов ускоренными составляющими, которые эффективно разрушают инородные включения на поверхности катода.
Далее макеты, прошедшие обработку предлагаемым способом, откачивались до давления остаточных газов 6·10-3 Па, наполнялись неоном до давления 4·102 Па и на них при токе разряда, равном 0,3 мА/см2, контролировались зависимости Uпр от времени воздействия на поверхность катода разряда (кривая 3 на фиг. 2).
Анализ полученных экспериментальных зависимостей показывает, что, во-первых, Uпр устанавливается на минимально возможном для данного типа катодов уровне, во-вторых, Uпр остается стабильным в пределах ±2 В в течение 1000 часов (далее эксперименты не проводились).
Таким образом, приведенный пример реализации предлагаемого способа демонстрирует его высокую эффективность, экспрессность и повторяемость.
Использование предлагаемого технического решения позволит получить экономический эффект за счет возможности получения электродов с долговременно стабильными свойствами поверхности непосредственно в изготовленных электронных приборах без их разгерметизации и демонтажа.

Claims (1)

  1. Способ изготовления электродов электронных приборов, включающий облучение их поверхности потоком ионов инертного газа, получаемым из плазмы газового разряда, отличающийся тем, что с целью упрощения технологии обработки объем прибора наполняется неоном до давления (1,5-5,0)·101 Па, к требуемому электроду подводится отрицательный потенциал и возбуждается аномальный тлеющий разряд между данным электродом и каким-либо другим конструкционным элементом прибора, при этом обработку поверхности электрода прекращают после стабилизации напряжения поддержания разряда.
RU2015119861/07A 2015-05-26 2015-05-26 Способ изготовления электродов электронных приборов RU2599389C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015119861/07A RU2599389C1 (ru) 2015-05-26 2015-05-26 Способ изготовления электродов электронных приборов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015119861/07A RU2599389C1 (ru) 2015-05-26 2015-05-26 Способ изготовления электродов электронных приборов

Publications (1)

Publication Number Publication Date
RU2599389C1 true RU2599389C1 (ru) 2016-10-10

Family

ID=57127671

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119861/07A RU2599389C1 (ru) 2015-05-26 2015-05-26 Способ изготовления электродов электронных приборов

Country Status (1)

Country Link
RU (1) RU2599389C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2078847C1 (ru) * 1993-07-22 1997-05-10 Николай Васильевич Плешивцев Способ ионной обработки деталей машин и инструментов и устройство для его осуществления
RU2098206C1 (ru) * 1993-03-17 1997-12-10 Игорь Николаевич Зорин Способ и устройство для изготовления металлической проволоки
RU2165474C2 (ru) * 1999-05-27 2001-04-20 Всероссийский научно-исследовательский институт авиационных материалов Способ обработки поверхности металлических изделий
WO2008145456A1 (de) * 2007-05-25 2008-12-04 Schaeffler Kg Federbeinlager sowie federbein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2098206C1 (ru) * 1993-03-17 1997-12-10 Игорь Николаевич Зорин Способ и устройство для изготовления металлической проволоки
RU2078847C1 (ru) * 1993-07-22 1997-05-10 Николай Васильевич Плешивцев Способ ионной обработки деталей машин и инструментов и устройство для его осуществления
RU2165474C2 (ru) * 1999-05-27 2001-04-20 Всероссийский научно-исследовательский институт авиационных материалов Способ обработки поверхности металлических изделий
WO2008145456A1 (de) * 2007-05-25 2008-12-04 Schaeffler Kg Federbeinlager sowie federbein

Similar Documents

Publication Publication Date Title
KR102465137B1 (ko) 붕소 이온 주입 동안의 이온 빔 전류 및 성능을 개선하기 위한 붕소-함유 도펀트 조성물, 시스템 및 그의 사용 방법
JP6480222B2 (ja) イオンビーム装置、イオン注入装置、イオンビーム放出方法
JP5775551B2 (ja) イオン注入プロセスにおいて同位体的に富化されたレベルのドーパントガス組成物を用いる方法
TWI659456B (zh) 在非質量分析離子佈植系統中的離子束品質的改進方法
DE102012024340A1 (de) Plasmaquelle
EP2677057A1 (en) Methods for extending ion source life and improving ion source performance during carbon implantation
RU2599389C1 (ru) Способ изготовления электродов электронных приборов
US9734991B2 (en) Negative ribbon ion beams from pulsed plasmas
US9576767B2 (en) Focused ion beam systems and methods of operation
CN103515173B (zh) 用于在碳注入期间延长离子源寿命和改善离子源性能的组合物
EP2087503B1 (de) Vorrichtung zum vorbehandeln von substraten
US11776819B2 (en) Point etching module using annular surface dielectric barrier discharge apparatus and method for control etching profile of point etching module
Hasaani Magnetic Field Effect on the Characteristics of Large-Volume Glow Discharge in Argon at Low Pressure
JP4915957B2 (ja) 真空装置における水分除去方法及び装置
RU2581610C1 (ru) Способ создания анодной окисной плёнки холодного катода газового лазера в тлеющем разряде постоянного тока
RU57511U1 (ru) Ионный источник
RU2496283C1 (ru) Генератор широкоаппертурного потока газоразрядной плазмы
RU2562615C1 (ru) Способ ионно-плазменной очистки внутренней поверхности резонатора газового лазера
Bussiahn et al. Ac operation of low-pressure He–Xe lamp discharges
RU2433081C1 (ru) Способ ионно-лучевой обработки
Melnyk Simulation of time of current increasing in impulse triode high voltage glow discharge electron guns
KR20160089490A (ko) 주입 생산성 향상을 위한 방법
RU2544830C1 (ru) Способ реставрации мощных вакуумных свч-приборов гиротронного типа
JP2006261066A (ja) ドーピング装置およびドーピング方法
Anand et al. On the purity of atmospheric glow-discharge plasma

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170527