RU2597905C1 - Стеклокристаллический материал - Google Patents

Стеклокристаллический материал Download PDF

Info

Publication number
RU2597905C1
RU2597905C1 RU2015133897/03A RU2015133897A RU2597905C1 RU 2597905 C1 RU2597905 C1 RU 2597905C1 RU 2015133897/03 A RU2015133897/03 A RU 2015133897/03A RU 2015133897 A RU2015133897 A RU 2015133897A RU 2597905 C1 RU2597905 C1 RU 2597905C1
Authority
RU
Russia
Prior art keywords
tio
glass
temperature
zro
mgo
Prior art date
Application number
RU2015133897/03A
Other languages
English (en)
Inventor
Марина Владимировна Воропаева
Людмила Александровна Алексеева
Людмила Алексеевна Орлова
Елена Евгеньевна Строганова
Иван Александрович Северенков
Original Assignee
Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" filed Critical Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина"
Priority to RU2015133897/03A priority Critical patent/RU2597905C1/ru
Application granted granted Critical
Publication of RU2597905C1 publication Critical patent/RU2597905C1/ru

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

Изобретение относится к производству высокотемпературных радиопрозрачных стеклокристаллических материалов в бесщелочной магнийалюмосиликатной системе с оксидами титана и циркония в качестве катализатора кристаллизации. Технический результат изобретения - повышение температуры деформации при сохранении высокой радиопрозрачности, низкого значения ТКЛР и температуры варки. Стеклокристаллический материал, включающий SiO2, Al2O3, MgO, TiO2, дополнительно содержит нанопорошок или гидрозоль бинарного соединения TiO2·ZrO2 при следующем соотношении компонентов, мас.%: SiO2 - 42,0-52,5; Al2O3 - 24,0-30,4; MgO - 9,0-12,0; TiO2 - 4,8-12,9; TiO2·ZrO2 в виде нанопорошка или гидрозоля TiO2·ZrO2 - 1,7-8,2. Температура варки стекла составляет (1550±10)°C, максимальная температура кристаллизации (1250-1320)°C. 2 табл.

Description

Изобретение относится к производству радиопрозрачных стеклокристаллических материалов (ситаллов) в бесщелочной магнийалюмосиликатной системе с повышенной температурой деформации (выше 1300°C), низким тепловым расширением и термостабильностью свойств в рабочем интервале температур эксплуатации изделий для авиакосмической и ракетной техники.
Известны стеклокристаллические материалы, используемые для аналогичных целей, в частности, стронцийаннортитовые ситаллы (Патент RU 2440936, МПК C03C 10/14. Радиопрозрачный стеклокристаллический материал для авиационной техники. П.Д. Саркисов, Л.А. Орлова, Н.Ю. Михайленко и др. РХТУ им. Д.И. Менделеева). Данные материалы характеризуются повышенной температурой деформации, термостабильностью свойств в диапазоне температур 20-1200°C. Недостатком стронцийанортитовых ситаллов является высокое значение диэлектрической проницаемости (более 8 на частоте 1010 Гц) и высокий ТКЛР (49-54·10-7К-1).
В работе G. Carl, T. Hoche. Crystallisation behavior of a MgO-Al2O3-SiO2-TiO2-ZrO2 glass // Phys. and Chem. of Glasses. 2002. V.43C. P. 256-258 приведены стеклокристаллические материалы в магнийалюмосиликатной системе, в составе которых проведена частичная замена катализатора TiO2 на ZrO2, поскольку комбинация этих оксидов оказывает эффективное воздействие на процессы нуклеации и кристаллизации стекол, обеспечивая при термообработке получение материалов с объемной тонкодисперсной кристаллизацией и повышенными термическими и механическими свойствами. Недостатком этих составов являются повышенные температуры варки (выше 1580°C) и сложность формования изделий из-за повышенной температуры верхнего предела кристаллизации.
Наиболее близкими к заявляемому изобретению по химическому составу являются кордиеритовые стеклокристаллические материалы на основе системы SiO2-Al2O3-MgO-TiO2 (Патент RU 2374190, МПК C03C 10/08. Стеклокристаллический материал. ФГУП «Технология»), содержащие следующие компоненты, мас.%: SiO2 - 43,8-52,5; Al2O3 - 24,6-30,2; MgO - 9,3-11,9; TiO2 - 8,8-12,9; As2O3 - 0,1-1,9; ZnO - 0-1,5, CeO2 - 0-2,5, фторопол - 0,1-7,5. Данный материал характеризуется низкими значениями диэлектрической проницаемости и ТКЛР: 8 на частоте 1010 Гц - 6,3-7,6; ТКЛР в интервале температур 20-900°C - 20-30·10-7 К-1 и термостабильностью основных параметров во всем диапазоне рабочих температур.
Недостатками прототипа являются относительно низкая рабочая температура, не превышающая 1200°C, наличие в составе экологически нежелательного фторсодержащего компонента - фторопола в количестве 0,1-7,5 мас.% и высокотоксичного оксида мышьяка в количестве 0,1-1,9 мас.%.
Техническим результатом настоящего изобретения является создание высокотемпературных радиопрозрачных стеклокристаллических материалов, имеющих низкие значения ТКЛР, высокую радиопрозрачность на СВЧ частотах и повышенную по сравнению с прототипом температуру деформации (1300-1350)°C при сохранении температуры варки, не превышающей 1550°C, и высокой стабильности основных свойств в рабочем интервале температур.
Технический результат достигается тем, что стеклокристаллический материал, включающий SiO2, Al2O3, MgO, TiO2, дополнительно содержит бинарное соединение TiO2·ZrO2 при следующем соотношении компонентов, мас.%: SiO2 - 42,0-52,5; Al2O3 - 24,0-30,4; MgO - 9,0-12,0; TiO2 - 4,8-12,9; TiO2 ZrO2 - 1,7-8,2, причем бинарное соединение TiO2·ZrO2 вводят в шихту в виде нанопорошка или гидрозоля.
Исследование каталитического воздействия TiO2+ZrO2 на природу первично выделяющихся кристаллических фаз показало, что при концентрации ZrO2 3-5% на начальной стадии выделяется твердый раствор на основе шрилан-кита TiO2 ZrO2, катализирующий выделение основных силикатных фаз. В связи с этим целесообразно было вводить в шихту нанопорошок или гидрозоль бинарного соединения TiO2·ZrO2, выступающего в роли инициатора объемной тонкодисперсной кристаллизации.
Авторами установлено, что сочетание компонентов в заявляемом соотношении и введение в состав шихты каталитических добавок оксидов титана и циркония в виде нанопорошка или водного высококонцентрированного золя двойного соединения TiO2·ZrO2, обеспечивает получение радиопрозрачного стеклокристаллического материала с повышенной температурой деформации и низкими значениямИ ТКЛР и диэлектрической проницаемости.
Причина повышения температуры деформации заявляемого стеклокристаллического материала объясняется частичной заменой оксида титана на более высокотемпературный оксид циркония. Снижение температуры варки кордиеритового стекла, несмотря на присутствие в нем ZrO2, определяется введением его в шихту в виде наноразмерного порошка или гидрозоля, что активирует процессы стеклообразования. Применение нанопорошка или гидрозоля бинарного соединения TiO2·ZrO2 в качестве сырьевого компонента обеспечивает также, при исключении его агломерации и соблюдении условий равномерного перемешивания с шихтой, получение стеклокристаллического материала с однородной тонкодисперсной структурой и однородным фазовым составом, что является залогом высоких физико-механических и диэлектрических свойств по всему изделию. Кроме того, повышается трещиностойкость (K1c=2,2 МПа·м-1/2) по сравнению с трещиностойкостью ситалла того же состава, но полученного на традиционном сырье (оксидов титана и циркония), для которого величина K1c находится на уровне 1,2 МПа·м-1/2, в результате чего образцы склонны к растрескиванию при механических обработках.
В таблицах 1 и 2 приведены конкретные примеры составов стеклокристаллического материала и их термические, механические и диэлектрические характеристики.
Figure 00000001
Figure 00000002
Сочетание приведенных составов и выбранного режима термообработки с максимальной температурой кристаллизации (1250-1320)°C позволило повысить температуру деформации до (1300-1360)°C, обеспечить получение высокой радиопрозрачности, низкого ТКЛР и их термостабильности во всем диапазоне рабочих температур. Кроме того, применение нанопорошка бинарного соединения TiO2·ZrO2 в качестве сырьевого компонента позволяет проводить варку при температуре, не превышающей 1550°C, и получать материал с высокой трещиностойкостью.
Предлагаемые составы радиопрозрачных стеклокристаллических материалов обеспечат надежность работы авиационных, ракетных и аэрокосмических систем и достижение ими заданной цели.
Используемая литература
1. Патент Патент RU 2440936, МПК C03C 10/14 от 09.11.2010 г.
2. G. Carl, T. Hoche. Crystallisation behavior of a MgO-Al2O3-SiO2-TiO2-ZrO2 glass // Phys. and Chem. of Glasses. 2002. V. 43 C. P. 256-258.
3. Патент RU 2374190, МПК C03C 10/08 от 22.04.2008 г.

Claims (1)

  1. Стеклокристаллический материал, включающий SiO2, Al2O3, MgO, TiO2, отличающийся тем, что он дополнительно содержит бинарное соединение TiO2·ZrO2 при следующем соотношении компонентов, мас.%: SiO2 - 42,0-52,5; Al2O3 - 24,0-30,4; MgO - 9,0-12,0; TiO2 - 4,8-12,9; TiO2·ZrO2 - 1,7-8,2, причем бинарное соединение TiO2·ZrO2 вводят в шихту в виде нанопорошка или гидрозоля.
RU2015133897/03A 2015-08-12 2015-08-12 Стеклокристаллический материал RU2597905C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015133897/03A RU2597905C1 (ru) 2015-08-12 2015-08-12 Стеклокристаллический материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015133897/03A RU2597905C1 (ru) 2015-08-12 2015-08-12 Стеклокристаллический материал

Publications (1)

Publication Number Publication Date
RU2597905C1 true RU2597905C1 (ru) 2016-09-20

Family

ID=56937991

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015133897/03A RU2597905C1 (ru) 2015-08-12 2015-08-12 Стеклокристаллический материал

Country Status (1)

Country Link
RU (1) RU2597905C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780182A1 (en) * 2005-10-25 2007-05-02 Ohara Inc. Glass ceramics and a method for manufacturing the same
US7300696B2 (en) * 2002-05-23 2007-11-27 Treofan Germany Gmbh & Co. Kg Transparent polyolefin film having a UV barrier
RU2314272C1 (ru) * 2006-06-30 2008-01-10 Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" Стеклокристаллический материал
RU2374190C1 (ru) * 2008-04-22 2009-11-27 Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" Стеклокристаллический материал
RU2440936C1 (ru) * 2010-11-09 2012-01-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Радиопрозрачный стеклокристаллический материал для авиационной техники

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300696B2 (en) * 2002-05-23 2007-11-27 Treofan Germany Gmbh & Co. Kg Transparent polyolefin film having a UV barrier
EP1780182A1 (en) * 2005-10-25 2007-05-02 Ohara Inc. Glass ceramics and a method for manufacturing the same
RU2314272C1 (ru) * 2006-06-30 2008-01-10 Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" Стеклокристаллический материал
RU2374190C1 (ru) * 2008-04-22 2009-11-27 Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" Стеклокристаллический материал
RU2440936C1 (ru) * 2010-11-09 2012-01-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Радиопрозрачный стеклокристаллический материал для авиационной техники

Similar Documents

Publication Publication Date Title
Kim THERMAL STABILITY OF Al 2 TiO 5 CERAMICS FOR NEW DIESEL PARTICULATE FILTER APPLICATIONS- A LITERATURE REVIEW
JP2011529846A5 (ru)
Violini et al. Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5-3Al2O3. 2SiO2-ZrTiO4 composite materials. Processing, initial zircon proportion effect, and properties
Shin et al. Synthesis of porous ceramic with well-developed mullite whiskers in system of Al2O3-Kaolin-MoO3
Bernardo et al. Sintered feldspar glass–ceramics and glass–ceramic matrix composites
RU2597905C1 (ru) Стеклокристаллический материал
Chandra et al. Studies on the reaction sintered zirconia-mullite-alumina composites with titania as additive
RU2458022C1 (ru) Наномодифицированная кварцевая керамика с повышенной высокотемпературной прочностью
RU2374190C1 (ru) Стеклокристаллический материал
Chandra et al. Comparison of the Role of M g O and C a O Additives on the Microstructures of Reaction‐Sintered Zirconia–Mullite Composite
Wang et al. Phase evolution and dynamics of cerium-doped mullite whiskers synthesized by sol–gel process
JP2014012627A (ja) 透光性ジルコニア焼結体及びその製造方法
Bača et al. Kinetic analysis crystallization of α-Al2O3 by dynamic DTA technique
Vitkalova et al. Lanthanum oxide application for modifying the properties of chemically resistant ceramics produced with Galvanic Sludge additive
Shao et al. Preparation and properties of CaO–SiO2–B2O3 glass-ceramic at low temperature
Navarro et al. Microwave sintering of mullite-Al2O3 from kaolin precursor
JPH0261082B2 (ru)
JPH11171639A (ja) アルミナ基焼結体及びその製造方法
RU2564330C1 (ru) Состав для изготовления легковесного огнеупора
RU2589137C2 (ru) Способ получения прозрачной алюмомагниевой шпинели
US9416056B2 (en) Isolated pseudobrookite phase composites and methods of making
RU2585954C1 (ru) Композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов
CN106747434A (zh) 耐磨氧化锆陶瓷及其制备方法
RU2522550C1 (ru) Способ изготовления стеклокерамического материала кордиеритового состава
Sharafeev et al. Fluorinated Talc Based Ceramic Materials