RU2597204C1 - Нанокомпозиционный электроконтактный материал и способ его получения - Google Patents

Нанокомпозиционный электроконтактный материал и способ его получения Download PDF

Info

Publication number
RU2597204C1
RU2597204C1 RU2015130328/07A RU2015130328A RU2597204C1 RU 2597204 C1 RU2597204 C1 RU 2597204C1 RU 2015130328/07 A RU2015130328/07 A RU 2015130328/07A RU 2015130328 A RU2015130328 A RU 2015130328A RU 2597204 C1 RU2597204 C1 RU 2597204C1
Authority
RU
Russia
Prior art keywords
nanocomposite
sintering
copper
particles
minutes
Prior art date
Application number
RU2015130328/07A
Other languages
English (en)
Inventor
Наталья Федоровна Шкодич
Сергей Георгиевич Вадченко
Кирилл Васильевич Кусков
Дмитрий Олегович Московских
Александр Сергеевич Рогачев
Александр Сергеевич Мукасьян
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2015130328/07A priority Critical patent/RU2597204C1/ru
Application granted granted Critical
Publication of RU2597204C1 publication Critical patent/RU2597204C1/ru

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к области электротехники и нанотехнологии, в частности к нанокомпозитному материалу на основе меди (Cu) для производства силовых разрывных электрических контактов в переключателях мощных электрических сетей и вакуумных дугогасительных камерах и способу его получения. Нанокомпозиционный электроконтактный материал на основе меди состоит из частично разупорядоченной матрицы на основе меди, в которой распределены кластеры тугоплавких частиц размером менее 5 нм, при этом содержание тугоплавких частиц составляет от 20 до 80 мас.%. В качестве тугоплавких частиц могут быть использованы частицы хрома или вольфрама или молибдена. Способ получения нанокомпозиционного электроконтактного материала включает механическую обработку смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси. Высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут. Спекание полученных нанокомпозионных частиц с размером тугоплавкого металла менее 5 нм осуществляют методом искрового плазменного спекания, при этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 A под нагрузкой до 50 МПа. Температура спекания образцов не превышает 1000°C при продолжительности процесса не более 15 минут. Повышение твердости, снижение пористости и удельного электросопротивления образцов является техническим результатом изобретения. 2 н. и 1 з.п. ф-лы, 1 ил., 3 пр.

Description

Изобретение относится к области электротехники и нанотехнологии, в частности к разработке нанокомпозиционных электроконтактных, жаропрочных, электроэрозионностойких, электротехнических, наноструктурированных материалов на основе меди (Cu), которые могут быть использованы в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и вакуумных дугогасительных камерах.
При изготовлении указанных материалов необходимо получить сочетание высокой электропроводности, для чего в качестве основы используют Cu, и высокой износостойкости при воздействии электрической дуги, для чего необходимо вводить в состав композиционного материала тугоплавкие металлы с высокой температурой плавления и испарения, таких как вольфрам (W), хром (Cr) и молибден (Мо). Медь не смешивается и не взаимодействует с вольфрамом, хромом и молибденом, образуя при спекании псевдосплавы различного состава: Cu-Cr, Cu-W, Cu-Mo.
Известен материал и способ изготовления электрических контактов на основе Cr и Cu, включающий приготовление шихты механическим смешиванием порошков Cr и Cu, прессование и предварительное восстановление в атмосфере остроосушенного водорода с выдержкой при температуре 250-700°C, жидкофазное спекание при температуре 1100-1250°C в атмосфере остроосушенного водорода или твердофазное спекание при температуре не выше 1050°C в атмосфере водорода или в вакууме, дополнительный нагрев изделий до температуры 300-950°C в атмосфере водорода и осадку в закрытом штампе, при этом перед смешиванием порошков Cr и Cu проводят обкатку шарами частиц порошка хрома выполняют в течение 25-27 часов в медном барабане валковой мельницы в режиме «перекатывания» при соотношении массы шаров или обкатывающих тел и порошка 1:2 (RU 2369935, H01H 1/02, 10.10.2009).
Недостатком известного материала и способа его получения является длительность процесса измельчения порошка хрома (не менее 25 часов), крупный размер частиц хрома, средний диаметр которых после механической обработки составляет 53,2-57,9 мкм, высокая пористость материала для контактов (до 2%).
Известен способ получения псевдосплава Cu-Cr с дисперсной структурой, включающий активацию путем смешивания исходных порошков Cu и Cr в качестве тугоплавкого металла в смесителе со смещенной осью вращения, прессование активированных порошков и их спекание в вакууме при температуре 1000-1100°C в течение 2 часов, при этом активацию исходных порошков шихты в смесителе осуществляют мелющими телами в виде металлических шариков диаметром 8-10 мм, при соотношении массы мелющих тел и исходных порошков 15:1, продолжительности смешивания шихты 3-3,5 часа и скорости вращения смесителя 60 об/мин (RU 2344189, C22C 1/04, B22F 3/12, C22C 9/00, 10.02.2008).
Изобретение позволяет получать компактный псевдосплав Cu-Cr с дисперсной структурой, с размерами частиц 40 мкм, твердостью по Бринеллю до 85 НВ, пределом прочности при растяжении до 290 МПа, с объемной усадкой при спекании при 1100°C, равной 8-10%.
Недостатком способа является продолжительность процесса (общее время не менее 6 часов), низкие механические свойства конечного материала, крупный размер частиц.
Наиболее близким аналогом к заявляемому способу является способ получения Cu-Mo композиционного материала (20-30 мас.% Cu), который включает приготовление смеси из промышленных порошков молибдена в качестве тугоплавкого металла и меди, путем размола и перемешивания в высокоэнергетической шаровой планетарной мельнице, обеспечивающей центростремительное ускорение мелющих тел не менее 40 g, в течение не менее 10 минут, прессование активированной смеси при усилии не более 150 МПа, поэтапное спекание в среде водорода, при этом первоначальный нагрев осуществляют до температуры восстановительной выдержки не менее 800°C, выдержке при этой температуре не менее одного часа и последующий нагрев до окончательной температуры спекания со скоростью не более 10°C в минуту, выдержку при этой температуре в течение не менее 30 минут (RU 2292988, B22F 3/12, C22C 1/04, 10.02.2007).
Недостатком известного способа является продолжительность процесса (не менее 2 часов), получение материала с пористостью до 2% и размером частиц более 30 нм.
Недостаточно высокие свойства описанных материалов ограничивают их использование в производстве силовых разрывных и дугогасительных контактов в переключателях мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.
В первом и втором объектах изобретения достигается технический результат, заключающийся в упрощении способа, повышении твердости, снижении пористости и удельного электросопротивления материалов при размере частиц не более 10 нм.
Технический результат в первом объекте достигается следующим образом.
Нанокомпозиционный электроконтактный материал на основе меди состоит из частично разупорядоченной матрицы на основе меди, в которой распределены кластеры тугоплавких частиц размером менее 5 нм. При этом содержание тугоплавких частиц от 20 до 80 мас.%.
В качестве тугоплавких частиц используют хром или вольфрам или молибден.
Технический результат во втором объекте достигается следующим образом.
Способ получения нанокомпозиционного электроконтактного материала включает высокоэнергетическую механическую обработку (ВЭМО) смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси. Высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут.
Затем проводят спекание полученных нанокомпозионных частиц с размером тугоплавкого металла менее 5 нм, которое осуществляют методом искрового плазменного спекания. При этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000A под нагрузкой до 50 МПа. При этом температура спекания не превышает 1000°C при продолжительности процесса не более 15 минут.
Изобретение поясняется чертежом, где на фиг. 1 изображена микроструктура псевдосплавов после искрового плазменного спекания (ИПС), где
а - псевдосплав Cu-Cr, без ВЭМО, спеченный методом ИПС (900°C, 100°C/мин, 10 мин, 50 МПа);
б - псевдосплав Cu-Cr, с ВЭМО (694 об/мин, K=1.0, 60 мин, 1:20) +ИПС (700°C, 100°C/мин, 10 мин, 50 МПа);
в - псевдосплав Cu-Cr, с ВЭМО (900 об/мин, K=1.0, 60 мин, 1:20) +ИПС (700°C, 100°C/мин, 5 мин, 50 МПа);
г - псевдосплав Cu-Cr, с ВЭМО (900 об/мин, K=1.0, 60 мин, 1:40) +ИПС (700°C, 100°C/мин, 5 мин, 50 МПа);
д - псевдосплав Cu-Cr, с ВЭМО (900 об/мин, K=1.0, 90 мин, 1:20) +ИПС (700°C, 100°C/мин, 5 мин, 50 МПа).
Нанокомпозиционный электроконтактный материала, полученный согласно способу, представляет собой нанокомпозит, состоящий из кластеров на основе тугоплавких частиц размером менее 5 нм, распределенных в частично разупорядочной матрице, характеризующийся тем, что имеет плотность до 99%, твердость по Виккерсу 2,5-11 ГПа, электросопротивление 7-10 мкОм·см.
В качестве основных исходных компонентов для получения экспериментальных образцов нанокомпозитных материалов на основе псевдосплавов Cu-Cr, Cu-W, Cu-Mo для электрических контактов используются порошки металлов: Cu (порошок медный электролитический) марки ПМС-В (ГОСТ 4960-75); Cr (порошок хрома восстановленный) марки ПХ1М; Мо (молибденовый порошок) марки ПМ99,95 (ТУ 48-19-316-80); W (вольфрамовый порошок) марки ПВ2 (ТУ 14-22-143-2000).
Размол и перемешивание смеси исходных порошков меди и тугоплавкого металла проводят в высокоэнергетической планетарной шаровой мельнице «Активатор-28» мелющими стальными шарами в течение не более 1 часа. За счет интенсивной механической обработки порошков в мельнице происходит их активация и измельчение до наноразмеров не более 10 нм. Этот первый этап способа принято обозначать как ВЭМО.
После ВЭМО исходных порошков в мельнице «Активатор-28», полученные активированные нанокомпозитные смеси порошков Cu-Cr, Cu-W, Cu-Mo спекают на установке ИПС (Spark Plasma Sintering - Labox 650, SinterLand, Япония), второй этап способа.
ИПС - это один из способов спекания (консолидации) порошка в присутствии электрического поля, в котором применяются низковольтные источники импульсов тока.
Сущность способа заключается в следующем.
Смесь исходных порошков меди и тугоплавкого металла загружают в барабан мельницы «Активатора 2S», затем крышка барабана плотно закручивается. Клапан на крышке подсоединяется к вакуумному шлангу и производится вакуумирование барабана с помощью форвакуумного насоса до остаточного давления 0,01 Па. Через этот же клапан барабан заполняется инертным газом (аргоном) до атмосферного давления. После этого барабан отсоединяется от вакуумного шланга и устанавливается в полость на корпусе редуктора установки «Активатор 2S».
ВЭМО порошковых смесей Cu-Cr, Cu-Mo и Cu-W проводят при скорости вращения барабанов 694-900 об/мин и продолжительности активации не более 60 минут.
Затем полученные активированные нанокомпозитные смеси порошков Cu-Cr, Cu-W, Cu-Mo спекают на установке ИПС (Spark Plasma Sintering - Labox 650, SinterLand, Япония). Это второй этап способа.
Для проведения ИПС готовят навески активированных порошковых смесей Cu-Cr, Cu-Mo или Cu-W, одну из смесей помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 A под нагрузкой 20-50 МПа, при этом спекание осуществляют при температуре не выше 1000°C в течение не более 15 минут. Скорость нагрева до температуры спекания 700-1000°C составляет 100-500°C/мин. Образец выдерживают при заданной температуре в течение 5-15 минут. Короткие импульсы тока высокой энергии порождают искры на поверхности спекаемого образца зерен Cu и тугоплавкого металла, благодаря этому нагрев образца производится равномерно, при минимальном воздействии на микроструктуру.
После чего образец охлаждают до комнатной температуры и отделяют от пуансонов механическим способом.
Контроль качества образцов проводится на каждой технологическом этапе и осуществляется как визуальным осмотром, так и с использованием аппаратурных методик.
В комплексном исследовании микроструктуры и фазового состава были использованы методы порошковой рентгеновской дифракции (рентгеноструктурный анализ), растровой (сканирующей) электронной микроскопии, просвечивающей электронной микроскопии, дифракции электронов и другие. Исследованию подвергались не только образцы псевдосплавов, полученные согласно предлагаемому способу, но и коммерческие образцы аналогичных материалов, представленные Индустриальным партнером. Это необходимо для проведения сравнительного анализа структуры, химического и фазового составов и определения «точки отсчета» в создании новых материалов. Для спеченных образцов Cu-Cr, Cu-W, Cu-Mo осуществляется также контроль прочностных характеристик, пористости, электросопротивления и микроструктуры.
Сущность изобретения подтверждается примерами
Пример 1.
Получение нанокомпозиционного электроконтактного материала Cu-Cr (Фиг. 1 б-г).
Порошки Cu и Cr смешивают при соотношении 55 мас.% Cu и 45 мас.% Cr. Приготовленную смесь подвергают ВЭМО (измельчению и перемешиванию) в планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 694 об/мин. Соотношение шаров к смеси порошка составляет 20:1. Использовались стальные шары 7 мм в диаметре. Время обработки 60 минут.
Полученный активированный композитный порошок подвергают ИПС, для этого порошок помещают в графитовую цилиндрическую пресс-форму, фиксируют ее между электродами, являющимися одновременно пуансонами пресса, помещают пресс-форму в камеру, в камере создают вакуум, через спекаемый образец пропускают импульсный электрический ток 1000 A под нагрузкой 50 МПа и спекают образец при температуре 700°C в течение 10 мин со скоростью подъема температуры 100°C/мин. В результате получают образцы в форме дисков диаметром 15-50 мм и толщиной 2-6 мм.
Нанокомпозиционный электроконтактный материал имеет следующие характеристики: гомогенную практически беспористую наноструктуру, Пористость 1%, твердость по Виккерсу - 3,8 ГПа, удельное электросопротивление - 7 мкОм·м (24% ICAS).
Твердость данного материала в 3 раза выше твердости всех исследуемых промышленных образцов. Значение удельного сопротивления возрастает примерно на 25-50% по сравнению со значением промышленных образцов, что позволяет использовать его для электроконтактных материалов.
При повышении скорости оборотов до значения 900 на первом этапе и повышении скорости нагрева до 500°C/мин на втором этапе удается повысить твердость до 5 ГПа (Фиг. 1в). Увеличение продолжительности ВЭМО до 90 минут на первой стадии процесса позволяет повысить твердость конечного материала до 5,2 ГПа (Фиг. 1д). Снижение соотношения количества смеси к количеству шаров 1:20 или 1:40 не влияет на твердость (Фиг. 1в и Фиг. 1г).
Исследования на просвечивающем электронном микроскопе со сверхвысоким разрешением (увеличение до 2000000 раз) показали, что материал представляет собой нанокомпозит, состоящий из кластеров на основе хрома размером 4-5 нм, распределенных в частично разупорядоченной матрице на основе Cu.
Микроструктура псевдосплавов после ИПС показана на фиг. 1 а-д, где светлые частицы - Cu, темные - Cr.
Пример 2.
Получение нанокомпозиционного электроконтактного материала Cu-W
Порошки Cu и W смешивают с соотношением 20 мас.% Cu и 80 мас.% W. Приготовленную смесь подвергают ВЭМО измельчению и перемешиванию в высокоэнергетической планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 900 об/мин. Соотношение шаров к смеси порошка составляет 40:1. Использовались стальные шары 7 мм в диаметре. Время обработки 60 минут.
Полученный активированный композиционный порошок подвергают спеканию методом ИПС при 900°C, 950°C и 1000°C со скоростью 100°C/мин в атмосфере аргона, через спекаемый образец пропускают импульсный электрический ток 5000A под нагрузкой 50 МПа и проводят спекание при указанных температурах в течение 10 мин.
Микроструктура образцов для Cu-W схожа с микроструктурой материала по примеру 1.
Нанокомпозиционный электроконтактный материал имеет следующие характеристики: пористость 1%, твердость по Виккерсу от 2,5 до 11 ГПа, удельное электросопротивление - 8 мкОм·см (19% ICAS).
Пример 3.
Получение нанокомпозиционного электроконтактного материала Cu-Mo
Порошки Cu и Mo смешивают с соотношением 50 мас.% Cu и 50 мас.% Mo. Приготовленную смесь подвергают измельчению и перемешиванию в высокоэнергетической планетарной шаровой мельнице в атмосфере аргона при скорости вращения шаровой мельницы 900 об/мин. Соотношение шаров к смеси порошка составляет 20:1. Использовались стальные шары диаметром 7 мм. Продолжительность обработки 60 минут.
Полученный активированный композиционный порошок подвергают ИПС в атмосфере аргона, через спекаемый образец пропускают импульсный электрический ток 1000 A под нагрузкой 50 МПа и проводят спекание при температуре 900°C в течение 10 мин. В результате получают образцы в форме дисков диаметром 15-50 мм и толщиной 2-6 мм.
Микроструктура образца схожа с микроструктурой материала по примеру 1.
Нанокомпозиционный электроконтактный материал Cu-Mo имеет следующие характеристики: пористость 1%; твердость по Виккерсу - 3,4-3,9 ГПа, удельное электросопротивление - 9,3 мкОм·см (18,5% ICAS).
Как следует из примеров описания, предлагаемый инновационный способ отличается простотой выполнения, так как позволяет проводить компактирование порошковых материалов при относительно низких температурах 700-1000°C, сохраняя тем самым наноструктуру активированных порошков. Кроме того, общая продолжительность получения целевого материала не превышает 2 часа (для известных способов продолжительность составляет более 10 часов), что в значительной мере снижает расход электроэнергии.
Нанокомпозиционный электроконтактный материал, полученный предлагаемым способом состоит из кластеров металла с размерами от нескольких нанометров до нескольких десятков нанометров, разделенных между собой каркасом Cu фазы, которые в свою очередь, состоят из округлых нанометровых зерен тугоплавкого металла (меньше 100 нм), окруженных матрицей Cu. Такая структура предлагаемого материала обладает повышенными эксплуатационными свойствами по сравнению с материалами аналогов и промышленными материалами для контактов, например, ОАО "ПОЛЕМА" и компаний Китая и Германии.
Потенциальными потребителями материала, полученного по предлагаемому способу являются: электротехническая промышленность, где необходимы высокая электрическая проводимость, высокие механические, физические и эксплуатационные свойства, такие как прочность, твердость при комнатной и повышенной температурах, термическая стабильность, дугостойкость, для применения в производстве силовых разрывных и вакуумных дугогасительных контактов в переключателях (размыкателях) мощных электрических сетей, работающих в условиях больших токов и высоких напряжений.

Claims (3)

1. Нанокомпозиционный электроконтактный материал на основе меди, состоящий из частично разупорядоченной матрицы на основе меди, в которой распределены кластеры тугоплавких частиц размером менее 5 нм, при этом содержание тугоплавких частиц от 20 до 80 мас.%.
2. Нанокомпозиционный электроконтактный материал по п. 1, в котором в качестве тугоплавких частиц используют хром, или вольфрам, или молибден.
3. Способ получения нанокомпозиционного электроконтактного материала, включающий механическую обработку смесей металлов в высокоэнергетической шаровой планетарной мельнице с последующим твердофазным спеканием полученной активированной смеси, отличающийся тем, что высокоэнергетическую обработку проводят в атмосфере аргона при соотношении масс шаров и исходных порошков 20:1-40:1, при скорости вращения планетарного диска планетарной мельницы 694-900 об/мин и продолжительности обработки не более 90 минут, спекание полученных нанокомпозионных частиц с размером кристаллитов тугоплавкого металла менее 5 нм осуществляют методом искрового плазменного спекания, при этом в камере создают вакуум или атмосферу инертного газа и через спекаемый образец пропускают импульсный электрический ток 1000-5000 А под нагрузкой до 50 МПа, при этом температура спекания не превышает 1000°C при продолжительности процесса не более 15 минут.
RU2015130328/07A 2015-07-23 2015-07-23 Нанокомпозиционный электроконтактный материал и способ его получения RU2597204C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130328/07A RU2597204C1 (ru) 2015-07-23 2015-07-23 Нанокомпозиционный электроконтактный материал и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130328/07A RU2597204C1 (ru) 2015-07-23 2015-07-23 Нанокомпозиционный электроконтактный материал и способ его получения

Publications (1)

Publication Number Publication Date
RU2597204C1 true RU2597204C1 (ru) 2016-09-10

Family

ID=56892611

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130328/07A RU2597204C1 (ru) 2015-07-23 2015-07-23 Нанокомпозиционный электроконтактный материал и способ его получения

Country Status (1)

Country Link
RU (1) RU2597204C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718910A (zh) * 2018-12-28 2019-05-07 中国科学院长春光学精密机械与物理研究所 一种耐高温表面无序纳米材料的制备方法
RU2706013C2 (ru) * 2016-12-19 2019-11-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами
RU2739493C1 (ru) * 2020-06-29 2020-12-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения композиционного электроконтактного материала Cu-SiC
RU2769344C1 (ru) * 2021-08-04 2022-03-30 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Материал для дугогасительных и разрывных электрических контактов на основе меди и способ его изготовления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2292988C1 (ru) * 2005-07-05 2007-02-10 Российская Федерация, от имени которой выступает Государственный заказчик - Федеральное агентство по атомной энергии Способ получения молибден-медного композиционного материала
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
RU2344189C2 (ru) * 2006-07-27 2009-01-20 Федеральное государственное научное учреждение "Научный центр порошкового материаловедения" Способ получения псевдосплава медь-хром с дисперсной структурой
RU2369935C2 (ru) * 2007-08-22 2009-10-10 Федеральное государственное унитарное предприятие "НПП "Контакт" Способ изготовления электрических контактов на основе хрома и меди
CN102828059A (zh) * 2012-09-27 2012-12-19 北京科技大学 纳米颗粒充填钨骨架特种结构电触头合金的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
RU2292988C1 (ru) * 2005-07-05 2007-02-10 Российская Федерация, от имени которой выступает Государственный заказчик - Федеральное агентство по атомной энергии Способ получения молибден-медного композиционного материала
RU2344189C2 (ru) * 2006-07-27 2009-01-20 Федеральное государственное научное учреждение "Научный центр порошкового материаловедения" Способ получения псевдосплава медь-хром с дисперсной структурой
RU2369935C2 (ru) * 2007-08-22 2009-10-10 Федеральное государственное унитарное предприятие "НПП "Контакт" Способ изготовления электрических контактов на основе хрома и меди
CN102828059A (zh) * 2012-09-27 2012-12-19 北京科技大学 纳米颗粒充填钨骨架特种结构电触头合金的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706013C2 (ru) * 2016-12-19 2019-11-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами
CN109718910A (zh) * 2018-12-28 2019-05-07 中国科学院长春光学精密机械与物理研究所 一种耐高温表面无序纳米材料的制备方法
CN109718910B (zh) * 2018-12-28 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种耐高温表面无序纳米材料的制备方法
RU2739493C1 (ru) * 2020-06-29 2020-12-24 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения композиционного электроконтактного материала Cu-SiC
RU2769344C1 (ru) * 2021-08-04 2022-03-30 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Материал для дугогасительных и разрывных электрических контактов на основе меди и способ его изготовления

Similar Documents

Publication Publication Date Title
Shkodich et al. Bulk Cu–Cr nanocomposites by high-energy ball milling and spark plasma sintering
RU2597204C1 (ru) Нанокомпозиционный электроконтактный материал и способ его получения
Zhang et al. Arc erosion behaviors of AgSnO2 contact materials prepared with different SnO2 particle sizes
Wang et al. The sintering behavior of ultra-fine Mo–Cu composite powders and the sintering properties of the composite compacts
Ćosović et al. Comparison of properties of silver-metal oxide electrical contact materials
JP5880789B1 (ja) 固溶体粒子を成形した成形体にCuを溶浸した複合金属
Shkodich et al. Preparation of copper–molybdenum nanocrystalline pseudoalloys using a combination of mechanical activation and spark plasma sintering techniques
Tsakiris et al. Nanostructured W-Cu electrical contact materials processed by hot isostatic pressing
RU2645855C2 (ru) Способ получения электроконтактного композитного материала на основе меди, содержащего кластеры на основе частиц тугоплавкого металла
JP6311325B2 (ja) 電極材料及び電極材料の製造方法
RU2706013C2 (ru) Нанокомпозитные материалы на основе металлических псевдосплавов для контактов переключателей мощных электрических сетей с повышенными физико-механическими свойствами
Guo et al. Relationship between the MgOp/Cu interfacial bonding state and the arc erosion resistance of MgO/Cu composites
Tsakiris et al. W-Cu composite materials for electrical contacts used in vacuum contactors
Shkodich et al. Nanostructured gradient material based on the Cu–Cr–W pseudoalloy fabricated by high-energy ball milling and spark plasma sintering
Gao et al. Influence of MoSi2 content on the microstructure and properties of MoSi2–RSiC composites
RU2739493C1 (ru) Способ получения композиционного электроконтактного материала Cu-SiC
Hu et al. Arc erosion behavior of La-doping titanium-zirconium-molybdenum alloy
JP6015725B2 (ja) 電極材料の製造方法
CN111670261B (zh) 电触点及使用该电触点的真空阀
Liang et al. Investigation of submicron powder fabricated Cr50Cu50 alloys using various vacuum hot-press sintering temperatures
Hashemi et al. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders
Rosiński et al. Nanocrystalline NiAl-TiC composites sintered by the pulse plasma method
RU2344189C2 (ru) Способ получения псевдосплава медь-хром с дисперсной структурой
JP5506873B2 (ja) 接点材料およびその製造方法
Kuskov et al. Study of structure of copper-based composite materials during the spark plasma sintering

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200110

Effective date: 20200110