RU2597019C2 - Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках - Google Patents

Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках Download PDF

Info

Publication number
RU2597019C2
RU2597019C2 RU2013150666/28A RU2013150666A RU2597019C2 RU 2597019 C2 RU2597019 C2 RU 2597019C2 RU 2013150666/28 A RU2013150666/28 A RU 2013150666/28A RU 2013150666 A RU2013150666 A RU 2013150666A RU 2597019 C2 RU2597019 C2 RU 2597019C2
Authority
RU
Russia
Prior art keywords
measuring
separator
sampling
flow rate
multiphase
Prior art date
Application number
RU2013150666/28A
Other languages
English (en)
Other versions
RU2013150666A (ru
Inventor
Стефано БОСХИ
Паоло Андреусси
Original Assignee
Эни С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эни С.П.А. filed Critical Эни С.П.А.
Publication of RU2013150666A publication Critical patent/RU2013150666A/ru
Application granted granted Critical
Publication of RU2597019C2 publication Critical patent/RU2597019C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/08Air or gas separators in combination with liquid meters; Liquid separators in combination with gas-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics (AREA)
  • Measuring Volume Flow (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Настоящее изобретение относится к устройству и способу 1 для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков (С), при прохождении каждого через соответствующий основной трубопровод (2). Устройство (1) включает блок для измерения (3) для каждого трубопровода (2). Каждый блок для измерения (3) включает устройство для отбора проб (4). Каждый блок для измерения (3) включает первые и вторые средства для измерения (5) перепада давления, расположенные ниже по технологической линии соответствующего устройства для отбора проб (4). Устройство (1) включает сепаратор фаз (8), соединенный с блоком для измерения (3). Устройство (1) включает средства отбора (18), расположенные между блоком для измерения (3) и сепаратором (8), для обеспечения последнего сообщением с одним из предусмотренных устройств для отбора проб (4). Устройство (1) включает третьи средства для измерения (12), соединенные с сепаратором (8), для измерения выходящего дебита различных отделенных текучих сред, и средства обработки данных, подходящие для получения и обработки данных, полученных при использовании устройств для измерения (5, 7, 12). Технический результат - точное измерение дебита фаз в многофазных потоках; обеспечение отвода значительных масс многофазных потоков; сокращение дебита отделяемого многофазного потока, и, следовательно, снижение общих трудозатрат. 2 н. и 4 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к устройству для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков, при прохождении каждого через соответствующий основной трубопровод, не являющийся частью этого устройства.
Также объект настоящего изобретения относится к способу измерения дебита каждой из различных фаз многофазных потоков, которые протекают по соответствующим различным основным трубопроводам.
Объект настоящего изобретения относится к нефтяной промышленности, и, в частности, он подходит для измерения дебита фаз многофазных потоков при прохождении по соответствующим трубопроводам, которые сосредоточены на шельфе или шельфовых платформах с кустом скважин.
Как известно, в процессе добычи нефти и газа в трубопроводе, транспортирующем углеводороды, проводят измерения для определения дебита многофазного потока и отдельных фаз, многофазный поток состоит из бифазной или трехфазной комбинации нефть-вода-газ.
Измерение дебита различных фаз в соответствующем трубопроводе, транспортирующем нефть/углеводороды, необходимо для контроля и регулирования добычи углеводородов, и также для оценки содержания воды и газа в многофазном потоке.
Для точного определения дебита течения различных фаз в многофазном потоке нефть-вода-газ может быть использовано многофазное устройство для измерения (MPFM), которое может работать в различных режимах течения.
Некоторые из многофазных устройств для измерения дебита используются только в нефтяной промышленности, некоторые базируются на ионизирующем излучении, некоторые базируются на использовании микроволнового излучения. Однако эти устройства характеризуются значительной неточностью измерений.
Традиционные способы измерения многофазных текучих сред предполагают разделение текучей среды при использовании бифазного или трехфазного сепаратора и измерение дебита каждой выходящей фазы.
Поскольку эти сепараторы по существу дорогие, громоздкие, а также тяжелые, как правило, для измерения различных линий или расположенных рядом друг с другом трубопроводов используют только один трехфазный сепаратор.
При использовании подходящей комбинации клапанов, названной манифольдом, любая из линий или многофазных трубопроводов может иметь сообщение по текучей среде с трехфазным сепаратором для осуществления измерений потока, выходящего из конкретной скважины, при этом все другие многофазные трубопроводы остаются в режиме эксплуатации скважины. Измерение, проводимое в соответствии с этим процессом, не является непрерывным измерением дебита фаз анализируемых многофазных потоков. Другими словами, это измерение проводят на пробах потока, забираемых непосредственно из соответствующих линий или многофазных трубопроводов.
Дополнительно к манифольду для сообщения с сепаратором эта система также обеспечена дополнительным эксплуатационным манифольдом, к которому идут все линии и трубопроводы, выходящие из соответствующих скважин.
В документах WO 2005/031311 и WO 2007/060386 описываются и приводятся иллюстрации многофазных устройств для измерения дебита, которые используют изокинетический отбор проб, в паре с устройством для измерения общего дебита. Устройство для измерения общего дебита работает независимо от изокинетического отбора проб, позволяя охарактеризовать дебит жидкости и газа многофазной смеси.
Также известны устройство и способ простого измерения дебита многофазной текучей среды, основанный на изокинетическом отборе проб, позволяет работать с жидкостями с высокой объемной долей фракций, то есть (LVF)>10%, в любом режиме течения, таком как ламинарный, с пузырьками, глобулярный и тому подобное.
Как правило, эту систему применяют для каждой линии или трубопровода, выходящих из скважин, чтобы проводить непрерывное измерение нефти, газа и воды только из одной скважины.
Хотя различные технологии измерения многофазных потоков имеют конкретные преимущества, заявитель обнаружил, что они не лишены недостатков, и многие аспекты могут быть улучшены, главным образом, в отношении точности проводимых измерений, выделения значительных масс многофазных потоков, требуемым устройством трудозатрат дополнительно к общей стоимости последнего.
В частности, заявитель обнаружил, что традиционные многофазные способы измерения с использованием группировки линий предусматривают общий сбор дебита каждой линии. Таким образом, весь собранный многофазный поток отправляют в трехфазный сепаратор, который должен иметь подходящие размерные параметры, что вызывает значительные трудозатраты и характеризуется значительной стоимостью.
В качестве альтернативы, известен способ перемещения всего многофазного потока в многофазное измеряющее устройство известного типа. Способ подразумевает такие размерные параметры многофазного устройства для измерения, которые полностью покрывают возможные пределы измерений в течение срока эксплуатации всех скважин, чей поток текучей среды должен быть измерен при использовании устройства для измерения известного типа, условие, которое трудно достижимо без большой потери в точности измерения.
Другие способы, с другой стороны, предусматривают непрерывное измерение дебита многофазной текучей среды, требующее измерительную систему для каждой линии. Конечно, стоимость и трудозатраты, требуемые для каждой системы, должны быть умножены на каждую предусмотренную линию потока.
Основной объект настоящего изобретения относится к устройству и способу измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков, позволяющим решить проблемы предшествующего уровня техники.
Объект настоящего изобретения гарантирует точное измерение дебита фаз многофазных потоков.
Дополнительно, объект настоящего изобретения позволяет оптимальное полунепрерывное измерение многофазных потоков в группированных линиях с многофазными потоками.
Другой объект настоящего изобретения относится к сокращению разделяемых дебитов многофазных потоков.
Другой объект настоящего изобретения относится к упрощению устройства для измерения.
Дополнительный объект настоящего изобретения относится к снижению общих трудозатрат, требуемых устройством для измерения.
Дополнительный объект настоящего изобретения относится к снижению общих затрат на устройство для измерения.
Указанные выше объекты и другие по существу достигаются при использовании устройства и способа для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков, как изложено в приложенной формуле изобретения.
Далее настоящее изобретение будет описано со ссылкой на предпочтительные, но неограничивающие варианты воплощения устройства и способа по настоящему изобретению для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков. Ниже описание приведено со ссылкой на приложенную Фигуру только для целей иллюстрации и не ограничивает объем притязаний настоящего изобретения, где на Фигуре 1 приведено схематическое изображение устройства для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков по настоящему изобретению.
Как схематично представлено на приложенной Фигуре 1, устройство 1 функционально соединено со множеством основных трубопроводов 2 или линий с многофазным потоком, выходящих, например, из соответствующей добывающей углеводородной скважины (не показано).
В частности, устройство 1 представлено функционально соединенным с четырьмя основными трубопроводными линиями 2, предназначенными для транзита соответствующих многофазных потоков С, выходящих из соответствующих добывающих скважин.
Указанное выше число основных трубопроводов течения 2 является естественной группировкой труб, которая может варьировать в зависимости от конкретных случаев от минимум 2 до максимального установленного числа N, например от 5 до 15.
Согласно конфигурации, приведенной на Фигуре 1, устройство 1 подходит для проведения измерения дебита различных текучих сред, в частности, воды, нефти и газа, присутствующих во множестве различных многофазных потоков С, во время транзита каждого по соответствующему основному трубопроводу 2.
Как видно из Фигуры 1, устройство 1 включает по меньшей мере один блок для измерения 3, функционально соединенный с каждым основным трубопроводом 2.
Согласно решению, приведенному на Фигуре 1, каждый блок для измерения 3 коаксиально пересечен первой частью 2а и последующей второй частью соответствующего основного трубопровода 2.
Каждый блок для измерения 3 преимущественно включает устройство для отбора проб 4, в частности изокинетически, для отбора проб заранее заданного количества соответствующего многофазного потока С, транспортируемого по соответствующему основному трубопроводу 2.
Устройство для изокинетического отбора проб 4 имеет функцию сбора дебита Р каждого многофазного потока С при транспортировке по соответствующему основному трубопроводу 2, выделяя аликвоту Q дебита Р указанного многофазного потока С на входе соответствующего основного трубопровода 2.
Первые средства для измерения 5, в частности, устройство для измерения перепада давления известного типа расположено в соответствии с устройством для изокинетического отбора проб 4, для измерения перепада давления после отбора проб между аликвотами или отобранными пробами фракции Р, и многофазным потоком С или фракцией с неотобранными пробами. Этот перепад давления должен быть равен нулю для гарантии того, что отбор проб является изокинетическим.
Каждый блок для измерения 3 также включает вдоль соответствующего основного трубопровода 2 и ниже по технологической линии соответствующего устройства для изокинетического отбора проб 4 ограничение потока 6, которое таково, чтобы создать падение давления, необходимое для проведения заданного отбора проб.
Вторые средства измерения 7, которые могут быть предусмотрены в соответствии с ограничением потока 6, преимущественно представляют устройство для измерения перепада давления известного типа, подходящее для измерения падения давления при прохождении потока через ограничение потока 6.
Могут быть использованы известные альтернативные способы измерения, такие как, например, ультразвуковые, вихревые устройства для измерения или устройства для измерения объемной скорости, используемые для определения объемной скорости течения. Также приведенное на Фигуре 1 устройство 1 включает по меньшей мере один сепаратор 8, предпочтительно компактный сепаратор, еще более предпочтительно обладающий высокой эффективностью, функционально соединенный с блоком для измерения 3 для разделения фаз воды, нефти и газа, присутствующих в соответствующих отобранных пробах фракций Р, собранных при использовании соответствующих устройств для отбора проб 4.
В частности, устройство для изокинетического отбора проб 4 каждого блока для измерения 3 сообщается по текучей среде с указанным выше сепаратором 8, в который подают с помощью общего подающего канала 9 собранный дебит соответствующей фракции Р, для разделения на жидкие и газообразные компоненты.
Жидкие фазы выходят из дна сепаратора 8 по меньшей мере через одну трубу 10, а газообразная фаза выходит из верхней части сепаратора 8 через по меньшей мере одну трубу 11.
Также для выгрузки жидких фаз могут быть предусмотрены две нижние отводящие трубы, каждая относится к соответствующему типу жидкости, присутствующей в указанных выше многофазных потоках, то есть, воде и нефти.
Также приведенное на Фигуре 1 устройство 1 включает третьи средства для измерения 12, преимущественно устройства для измерения 12а дебита жидкости известного типа, и устройство для измерения 12b дебита газа известного типа, функционально соединенные с сепаратором 8, для соответствующего измерения дебита выходящих различных текучих сред, присутствующих в соответствующих отобранных пробах фракции Р.
Устройство для измерения дебита 12а преимущественно функционально расположено между сепаратором 8 и соединением 13 для объединения разделенных текучих сред. В таком случае трубопровод 10 выполнен таким образом, чтобы подать жидкости, параметры дебита которых измерены, в трубу 11 газовой фазы через указанное выше соединение 13 для объединения.
Как видно на Фигуре 1, соединение 13 для объединения жидкой и газообразной фаз расположено выше по технологической линии соответствующего соединения на участке 2b соответствующего основного трубопровода 2 и ниже по технологической линии соответствующего блока для измерения 3.
Клапан 14, который может быть закрыт, для проведения непрерывных измерений преимущественно функционально расположен между соединением 13 для объединения и устройством для измерения дебита жидкостей 12а третьих средств для измерения 12.
По меньшей мере одно устройство для измерения уровня 15, предпочтительно дифференциального типа, преимущественно соединено с сепаратором 8.
Также приведенная на Фигуре 1 труба 11, относящаяся к газообразной фазе, пересечена выше по технологической линии соединением 13 для объединения при использовании устройства для измерения дебита газа 12b третьих средств для измерения 12.
Также устройство включает средства регуляции 16, функционально расположенные ниже по технологической линии соединения 13 для объединения разделенных текучих сред на выходе из сепаратора 8, для контроля проб дебита, отобранных при использовании соответствующего устройства для отбора проб 4, соответствующего блока для измерения 3.
Также приведенное на Фигуре 1 устройство 1 обеспечивает для каждого предусмотренного основного трубопровода 2 соответствующий транспортирующий канал 17, который по текучей среде сообщается с соединением 13 для объединения. Каждый транспортирующий канал 17 преимущественно снабжен по меньшей мере одним клапаном 16а, предпочтительно двумя, расположенными последовательно, образуя часть регулирующих средств 16, указанных выше.
Каждый клапан 16а является изменяемым в зависимости от условий, в закрытых условиях он блокирует соответствующий транспортирующий канал 17, а в открытых условиях он позволяет проходить текучим средам, выходящим из указанного соединения 13 для объединения, по направлению к соответствующему основному трубопроводу 2.
Согласно преимущественному аспекту настоящего изобретения устройство 1 также снабжено средствами отбора 18, функционально расположенными между каждым из предусмотренных блоков для измерения 3 и сепаратором 8, обеспечивая последнему сообщение по текучей среде с выбранным устройством для отбора проб 4 по меньшей мере одного выбранного блока для измерения 3.
В частности, средства отбора 18 зависят от условий: условий выключения, в которых устройство для отбора проб 4 каждого блока для измерения 3 не сообщается по текучей среде с сепаратором 8, и условий включения отбора, в которых устройство для отбора проб 5 по меньшей мере одного блока для измерения 3 сообщается по текучей среде с сепаратором 8, при этом устройство для отбора проб 4 другого блока для измерения 3 не сообщается по текучей среде с сепаратором 8.
Согласно альтернативному варианту воплощения настоящего изобретения потоки, собранные из основного трубопровода 2, не подают повторно обратно, а подают в общую линию транспортировки добываемого сырья (не показано на Фигуре), в которую осуществляют подачу основные трубопроводы 2.
Согласно такой конфигурации каждый основной трубопровод 2 напрямую сообщается по текучей среде с общей линией транспортировки добываемого сырья.
Соединение 13 для сепаратора 8 также напрямую по текучей среде сообщается с общей линией транспортировки добываемого сырья ниже по технологической линии соединения между основными трубопроводами 2 и общей линией транспортировки добываемого сырья 2.
Может быть предусмотрен один или более клапан, прерывающий прохождение потока между соединением 13 для сепаратора 8 и общей линией транспортировки добываемого сырья, который может быть главным образом использован для изолирования сепаратора 8 от всей системы, когда требуется проведение указанной технологической операции.
Средства отбора 18 преимущественно функционально расположены вдоль сливной трубы 19, которая расположена между устройством для отбора проб 4 каждого предусмотренного блока для измерения 3 и подающим каналом 9 сепаратора 8.
В частности, средства отбора 18 включают для каждой сливной трубы 19 по меньшей мере один клапан подачи 18а, расположенный выше по течению соответствующего соединения соответствующей сливной трубы 19 с подающим каналом 9 сепаратора 8.
Устройство 1 преимущественно включает средства обработки данных (не показаны, поскольку они уже известны), подходящие для получения по определенным электрокабелям 20 и электрическим разъемным соединителям 21 данных, полученных первыми средствами измерения 5 каждого блока для измерения 3, вторыми средствами измерения 7 каждого блока для измерения 3, третьими средствами для измерения 12 сепаратора 8 и средствами для регулирования 16, расположенными ниже по технологической линии соединения 13 для объединения.
Средства обработки данных также подходят для передачи по соответствующим электрокабелям 20 и электрическим разъемным соединителям 21 соответствующих рабочих сигналов на средства регулирования 16 для варьирования дебита отобранных проб фракции Р в устройстве для отбора проб 4 каждого блока для измерения 3.
Средства обработки данных преимущественно контролируют также путем использования электрокабеля 20 и электрических разъемных соединителей 21, средств отбора 18 между условиями выключения/включения для проверки, проводимой в основных трубопроводах 2 и соответственно в определенных добывающих скважинах.
Дополнительно, выше по технологической линии блока для измерения 3, соединенного с каждым из основных трубопроводов 2, устройство 1 может включать по меньшей мере одно устройство для измерения абсолютного давления (не показано) и устройство для измерения температуры (не показано) для соответствующего мониторинга давления Р и температуры Т многофазного потока С, который проходит внутри соответствующего основного трубопровода 2.
Также объект настоящего изобретения относится к способу измерения дебита каждой фазы, присутствующей в каждом из потоков С, который проходит по указанному выше основному трубопроводу 2.
Способ по настоящему изобретению включает фазу отбора блока для измерения 3, сообщающегося по текучей среде с сепаратором 8.
В частности, фазу отбора проводят, обеспечивая устройство для отбора проб 4 блока для измерения 3, соединенного с основным трубопроводом 2, в котором проводят измерение дебита, сообщением по текучей среде, при использовании подходящего гидравлического соединения с сепаратором 8 для разделения фаз собранного дебита Р соответствующего многофазного потока С. Когда выбрано соединение между устройством для отбора проб 4 и сепаратором 8, происходит селективное разъединение соединения между устройствами для отбора проб 4, примененными на других основных трубопроводах, и сепаратором 8.
Когда выбрано соединение между устройством для отбора проб 4 и сепаратором 8, действие происходит за счет переключения соответствующего клапана 18а, гидравлически расположенного между сепаратором 8 и соответствующим устройством для отбора проб 4 между закрытыми условиями и открытыми условиями.
В случае, когда выбрано сообщение устройства для отбора проб 4 с сепаратором 8, проводится фаза отбора проб заранее заданного количества для определения дебита соответствующего многофазного потока С по площади сечения соответствующего основного трубопровода 2, в котором по существу есть изокинетические условия. Таким образом, сепаратор 8 принимает фракцию Р многофазного потока С одного единственного трубопровода 2.
После отбора проб фракцию отобранных проб Р подходящим образом подвергают разделению на фазы, образующие соответствующий многофазный поток, для измерения дебита каждой отделенной текучей среды, то есть газа, воды и нефти.
Затем последовательно измеряют дебит каждой отделенной в сепараторе 8 фазы.
Как только измерен дебит каждой фазы, последнюю обратно объединяют при использовании соответствующего соединения 13 для объединения для конечной подачи в основной трубопровод 2, из которого она была ранее извлечена.
Устройство и способ по настоящему изобретению решают проблемы предшествующего уровня техники и обеспечивают важные преимущества.
Первое из них состоит в том, что указанное выше устройство позволяет не проводить громоздкий, тяжелый и дорогостоящий отбор при использовании манифольда, заменив его множеством клапанов с ограниченными размерными параметрами. Такая замена возможна, потому что отбор фракции проводят из многофазных потоков, поступающих из соответствующих добывающих скважин в соответствии с ее аликвотой и варьирует относительно общего дебита соответствующего потока.
В частности, поскольку фракцию отбирают из каждого многофазного потока в соответствии с установленной аликвотой, которая предпочтительно варьирует от 1/5 до 1/10 идеального заранее заданного максимального дебита, отобранная аликвота варьирует относительно дебита каждого потока.
Для потоков, имеющих значительный дебит, близкий к или соответствующий идеальному заранее заданному максимальному дебиту, отобранная аликвота соответствует показателю в указанных выше пределах.
Для потоков с ограниченным дебитом отобранная аликвота соответствует максимальной аликвоте соответствующих многофазных потоков.
Таким образом, без инструментов для измерения дебита одной единственной фазы, которая покрывает различные пределы показателей, соотношение между нижним значением шкалы и самым низким полученным показателем, то есть пределы изменений регулируемой величины, могут быть расширены. Следовательно, конфигурация указанного выше устройства позволяет значительно снизить дебит отобранных проб фракций Р, подвергаемых разделению фаз. Следовательно, оба, и средства отбора с соответствующими клапанами, и сепаратор со средствами измерения и клапанами, соединенными с ним, имеют размерные параметры, позволяющие работать на общем дебите, который значительно снижен. Оба, и средства отбора, и сепаратор, следовательно, имеют снижение уровня трудозатрат и уменьшенную массу относительно таковых по предшествующему уровню техники, что в результате приводит к снижению общих трудозатрат и массы устройства для измерения.
Также следует отметить, что указанное выше устройство позволяет получить точные измерения дебита фаз с точки зрения значительного снижения общих расходов, поскольку средства отбора состоят из клапанов для каждого блока для измерения, при этом сепаратор имеет размерные параметры, подходящие для ограниченного исследуемого дебита.

Claims (6)

1. Устройство для измерения дебита различных текучих сред, присутствующих во множестве различных многофазных потоков, при прохождении каждого через соответствующий основной трубопровод, не являющийся частью указанного устройства, указанное устройство включает:
по меньшей мере, один блок для измерения, функционально соединенный с каждым основным трубопроводом, каждый блок для измерения коаксиально пересечен первой частью и последующей второй частью соответствующего основного трубопровода и включает: устройство для отбора проб, в частности, изокинетически, заранее заданного количества соответствующего многофазного потока, подходящим образом разделяющее указанный многофазный поток на фракцию, из которой отобраны пробы, и на фракцию, из которой не отобраны пробы; первые средства для измерения перепада давления между фракцией, из которой отобраны пробы, и фракцией, не прошедшей отбор проб, расположенные ниже по технологической линии соответствующего устройства для отбора проб; ограничение потока, имеющее уменьшенное проходное сечение по сравнению с проходным сечением соответствующего трубопровода, расположенное ниже по технологической линии соответствующего устройства для отбора проб; вторые средства для измерения перепада давления, функционально соединенные с соответствующим ограничением;
сепаратор, функционально соединенный с указанным блоком для измерения, для разделения фаз соответствующих отобранных проб фракций, собранных из соответствующих устройств для отбора проб;
средства отбора, функционально расположенные между указанными блоками для измерения и указанным сепаратором, для сообщения последнего по текучей среде с устройством для отбора проб, по меньшей мере, одного указанного блока для измерения, указанные средства отбора изменяемы, по меньшей мере, между условиями выключения, в которых предусмотренное устройство для отбора проб каждого блока для измерения не сообщается по текучей среде с указанным сепаратором, и условиями отбора, в которых, по меньшей мере, один предусмотренный блок для измерения сообщается по текучей среде с указанным сепаратором, при этом устройство для отбора проб других оставшихся блоков для измерения не сообщается по текучей среде с указанным сепаратором;
третьи средства для измерения, функционально соединенные с указанным сепаратором, для измерения выходящего дебита различных текучих сред, присутствующих в соответствующих отобранных образцах фракции, указанные третьи средства для измерения функционально расположены между указанным сепаратором и соединением для объединения разделенных текучих сред;
средства регулирования, функционально расположенные ниже по технологической линии указанного соединения, для контроля дебита отобранных образцов при использовании соответствующего устройства для отбора проб соответствующего блока для измерения, сообщающегося по текучей среде с указанным сепаратором;
средства обработки данных, подходящие для получения и обработки данных, собранных указанными первыми и вторыми средствами для измерения каждого блока для измерения, указанными третьими средствами для измерения указанного сепаратора и указанными средствами регулирования, расположенными ниже по технологической линии указанного соединения, указанные средства обработки данных подходят для передачи рабочих сигналов на указанные средства регулирования для варьирования дебита отобранных проб фракции в каждом устройстве для отбора проб каждого блока для измерения, указанные средства обработки данных управляют средствами отбора между условиями выключения и условиями отбора; общий подающий канал указанных фракций, отобранных устройством для отбора проб каждого блока для измерения, для сообщения указанного сепаратора и указанного блока для измерения по текучей среде.
2. Устройство по п. 1, включающее также: сливную трубу для каждого блока для измерения, проходящую от устройства для отбора проб соответствующего блока для измерения и сообщающуюся по текучей среде с указанным сепаратором через указанный подающий канал, при этом указанные средства отбора включают для каждого блока для измерения, по меньшей мере, один подающий клапан, функционально расположенный вдоль соответствующей сливной трубы выше по технологической линии указанного подающего канала указанного сепаратора.
3. Устройство по п. 1 или 2, включающее для каждого предусмотренного основного трубопровода соответствующий транспортирующий канал, сообщающийся по текучей среде с указанным соединением, каждый транспортирующий канал снабжен по меньшей мере одним клапаном, предпочтительно двумя, расположенными последовательно, изменяемыми между закрытыми условиями, в которых он блокирует соответствующий транспортирующий канал, и открытыми условиями, в которых он позволяет проходить текучим средам, выходящим из указанного соединения по направлению к соответствующему основному трубопроводу.
4. Устройство п. 1 или 2, где устройство для отбора проб каждого блока для измерения подходит для сбора из каждого многофазного потока аликвоты, варьируя от 1/5 до 1/10 заранее заданного идеального максимального дебита, при этом собранная аликвота варьирует относительно дебита, предпочтительно максимально для каждого многофазного потока.
5. Способ измерения дебита каждой фазы во множестве различных многофазных потоков, которые проходят в соответствующих различных основных трубопроводах, указанный способ включает следующие фазы:
сбор заранее заданного количества дебита соответствующего многофазного потока из площади сечения одного из указанных основных трубопроводов, в котором по существу подтверждены изокинетические условия, сбор указанного количества дебита проводится при использовании соответствующего устройства для изокинетического отбора проб;
обеспечение соответствующего устройства для отбора проб сообщением по текучей среде при использовании гидравлического соединения с сепаратором для разделения фаз собранного дебита, где при соединении между выбранным устройством для сбора и сепаратором происходит разъединение гидравлического соединения между устройством для отбора проб, используемым на других основных трубопроводах, и сепаратором;
измерение дебита каждой отделенной фазы в сепараторе;
объединение отделенных фаз после измерения их дебита;
подача объединенных фаз в соответствующий основной трубопровод;
при этом соединение между выбранным устройством для отбора проб и сепаратором происходит за счет переключения соответствующего клапана, гидравлически расположенного между указанным сепаратором и устройством для отбора проб, соединенным с соответствующим основным трубопроводом.
6. Способ по п. 5, где фаза отбора проб заранее заданного количества дебита соответствующего многофазного потока включает фазу сбора аликвот от каждого многофазного потока, варьирующих от 1/5 до 1/10 заранее заданного идеального максимального дебита, при этом собранная аликвота варьирует относительно дебита, предпочтительно максимально для каждого многофазного потока.
RU2013150666/28A 2011-04-19 2012-04-18 Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках RU2597019C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2011A000670 2011-04-19
IT000670A ITMI20110670A1 (it) 2011-04-19 2011-04-19 Apparato e metodo per la misura della portata di differenti fluidi presenti nelle correnti multifase
PCT/IB2012/051939 WO2012143866A1 (en) 2011-04-19 2012-04-18 Apparatus and method for measuring the flow-rate of different fluids present in multiphase streams

Publications (2)

Publication Number Publication Date
RU2013150666A RU2013150666A (ru) 2015-05-27
RU2597019C2 true RU2597019C2 (ru) 2016-09-10

Family

ID=45922761

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013150666/28A RU2597019C2 (ru) 2011-04-19 2012-04-18 Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках

Country Status (10)

Country Link
US (1) US9377336B2 (ru)
CN (1) CN103502779B (ru)
AU (1) AU2012245958B2 (ru)
BR (1) BR112013026696A2 (ru)
CA (1) CA2833084A1 (ru)
GB (1) GB2504893B (ru)
IT (1) ITMI20110670A1 (ru)
NO (1) NO343523B1 (ru)
RU (1) RU2597019C2 (ru)
WO (1) WO2012143866A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10698426B2 (en) * 2018-05-07 2020-06-30 Mks Instruments, Inc. Methods and apparatus for multiple channel mass flow and ratio control systems
US10983513B1 (en) * 2020-05-18 2021-04-20 Saudi Arabian Oil Company Automated algorithm and real-time system to detect MPFM preventive maintenance activities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031311A1 (en) * 2003-09-29 2005-04-07 Schlumberger Holdings Limited Isokinetic sampling
WO2006048418A1 (en) * 2004-11-01 2006-05-11 Shell Internationale Research Maatschappij B.V. Method and system for production metering of oil wells
WO2007060386A1 (en) * 2005-11-22 2007-05-31 Schlumberger Technology B.V. Isokinetic sampling method and system for multiphase flow from subterranean wells
WO2011039593A1 (en) * 2009-09-29 2011-04-07 Eni S.P.A. Apparatus and method for measuring the flow- rate of a multiphase fluid stream

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010028A1 (en) * 1993-10-05 1995-04-13 Atlantic Richfield Company Multiphase flowmeter for measuring flow rates and densities
FR2720498B1 (fr) * 1994-05-27 1996-08-09 Schlumberger Services Petrol Débitmètre multiphasique.
NO304085B1 (no) * 1994-06-29 1998-10-19 Bjoern Dybdahl Anvendelse av et prövetakingsapparat
US5693894A (en) * 1995-12-13 1997-12-02 The United States Of America As Represented By The Secretary Of The Interior Fluid controlled isokinetic fluid sampler
US5654502A (en) * 1995-12-28 1997-08-05 Micro Motion, Inc. Automatic well test system and method of operating the same
FR2772126B1 (fr) * 1997-12-05 2000-01-07 Schlumberger Services Petrol Procede et dispositif de prelevement isocinetique d'echantillons d'un fluide s'ecoulant dans une tuyauterie
US6062092A (en) * 1998-09-09 2000-05-16 Engine, Fuel, And Emissions Engineering, Incorporated System for extracting samples from a stream
WO2000049370A1 (en) * 1999-02-19 2000-08-24 Paolo Andreussi Method for measuring the flow rates of the single phases in a multiphase fluid stream and relevant apparatus
US6318156B1 (en) * 1999-10-28 2001-11-20 Micro Motion, Inc. Multiphase flow measurement system
CN101421489A (zh) * 2006-04-07 2009-04-29 国际壳牌研究有限公司 油井产量计量的方法
CN200979428Y (zh) * 2006-08-08 2007-11-21 寿焕根 油、水、气三相流自动计量装置
GB2447908B (en) * 2007-03-27 2009-06-03 Schlumberger Holdings System and method for spot check analysis or spot sampling of a multiphase mixture flowing in a pipeline
CN201429438Y (zh) * 2009-04-01 2010-03-24 寿焕根 原油多相流自动分离计量装置
NL2004820A (en) * 2009-06-30 2011-01-04 Asml Netherlands Bv Lithographic apparatus and a method of measuring flow rate in a two phase flow.
US8516900B2 (en) * 2010-05-12 2013-08-27 Rosemount Inc. Multiphase flowmeter with batch separation
US8869627B2 (en) * 2012-07-09 2014-10-28 King Fahd University Of Petroleum And Minerals Multi-phase flow metering system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031311A1 (en) * 2003-09-29 2005-04-07 Schlumberger Holdings Limited Isokinetic sampling
WO2006048418A1 (en) * 2004-11-01 2006-05-11 Shell Internationale Research Maatschappij B.V. Method and system for production metering of oil wells
WO2007060386A1 (en) * 2005-11-22 2007-05-31 Schlumberger Technology B.V. Isokinetic sampling method and system for multiphase flow from subterranean wells
WO2011039593A1 (en) * 2009-09-29 2011-04-07 Eni S.P.A. Apparatus and method for measuring the flow- rate of a multiphase fluid stream

Also Published As

Publication number Publication date
CA2833084A1 (en) 2012-10-26
AU2012245958A1 (en) 2013-12-05
CN103502779A (zh) 2014-01-08
BR112013026696A2 (pt) 2016-12-27
GB2504893A (en) 2014-02-12
NO20131515A1 (no) 2013-11-14
US20140060205A1 (en) 2014-03-06
GB201320133D0 (en) 2014-01-01
AU2012245958B2 (en) 2014-09-25
CN103502779B (zh) 2016-03-09
US9377336B2 (en) 2016-06-28
GB2504893B (en) 2018-02-21
NO343523B1 (no) 2019-04-01
RU2013150666A (ru) 2015-05-27
ITMI20110670A1 (it) 2012-10-20
WO2012143866A1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
US7311001B2 (en) Multiphase flow measurement apparatus and method
CN107850689B (zh) 模块化移动流量计系统
CN105987734B (zh) 分离器和多个多相计量系统和方法
EP2497556B1 (en) Water removing device for extremly high water content three-phase flow
CA1285790C (en) Flow meters
EP2569605B1 (en) Multiphase flowmeter with batch separation
CN101213426B (zh) 用于测量多组分流中的一个组分密度的方法和设备
Yang et al. Phase split of liquid–liquid two-phase flow at a horizontal T-junction
CA2965595C (en) A method and apparatus for the isokinetic sampling of a multiphase stream
CN105960509A (zh) 油井生产分析系统
Mak et al. The split of vertical two-phase flow at a small diameter T-junction
RU2597019C2 (ru) Устройство и способ измерения дебита различных текучих сред, присутствующих в многофазных потоках
CN102580354A (zh) 两相流或多相流分离的多层复合t形管分离器及分离方法
EP1175614B1 (en) Arrangement for improved water-oil ratio measurements
RU2531090C1 (ru) Способ испытания газосепараторов на газожидкостных смесях и стенд для его осуществления
WO2023033641A1 (en) System for monitoring solid particles in fluid flow
RU2557263C2 (ru) Установка для измерения дебита нефтяных и газовых скважин (варианты)
RU139201U1 (ru) Система и способ отбора проб для измерения расхода многофазного потока
RU2223399C1 (ru) Способ обвязки куста эксплуатационных газоконденсатонефтяных скважин
RU2778918C1 (ru) Устройство измерения дебита нефтяных скважин на групповых замерных установках и способ его использования
RU2375696C2 (ru) Способ и устройство для определения плотности одного компонента в многокомпонентном потоке текучей среды
RU2678736C1 (ru) Способ индивидуально-группового замера продукции куста нефтяных скважин и система для его осуществления
CN206581930U (zh) 一种多井自动切换式油水气三相计量装置
RU2578065C2 (ru) Способ измерения продукции нефтегазодобывающих скважин
CN210714656U (zh) 多相流分离计量装置

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20150420

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20150727