RU2596628C1 - Способ определения загрязнения морской поверхности - Google Patents

Способ определения загрязнения морской поверхности Download PDF

Info

Publication number
RU2596628C1
RU2596628C1 RU2015115570/28A RU2015115570A RU2596628C1 RU 2596628 C1 RU2596628 C1 RU 2596628C1 RU 2015115570/28 A RU2015115570/28 A RU 2015115570/28A RU 2015115570 A RU2015115570 A RU 2015115570A RU 2596628 C1 RU2596628 C1 RU 2596628C1
Authority
RU
Russia
Prior art keywords
meter
sea surface
autodyne
signal
correlation function
Prior art date
Application number
RU2015115570/28A
Other languages
English (en)
Inventor
Валерий Григорьевич Бондур
Владимир Евгеньевич Воробьев
Виктор Викторович Замшин
Вячеслав Федорович Давыдов
Анатолий Владимирович Корольков
Original Assignee
Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" (НИИ "АЭРОКОСМОС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" (НИИ "АЭРОКОСМОС") filed Critical Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" (НИИ "АЭРОКОСМОС")
Priority to RU2015115570/28A priority Critical patent/RU2596628C1/ru
Application granted granted Critical
Publication of RU2596628C1 publication Critical patent/RU2596628C1/ru

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к способам дистанционных исследований морских акваторий и может быть использовано для определения загрязнения морской поверхности. Сущность: по трассам, содержащим тестовые участки, проводят дистанционное зондирование морской поверхности автодинным радиоволновым измерителем, установленным на авиационном носителе. Выполняют частотное детектирование сигнала измерителя. Создают базу эталонных сигналов ветрового волнения поверхности в виде их автокорреляционных функций. Одновременно получают видеоизображения участков по трассе полета соосно установленной цифровой видеокамерой высокого пространственного разрешения. Привязывают полученные видеокадры к топографическим координатам посредством навигатора системы GPS. Восстанавливают пространственный спектр волнения методом Фурье-преобразования изображений видеокадров. Вычисляют взаимную корреляционную функцию сигнала автодинного измерителя и видеокамеры. Рассчитывают индекс загрязнения участков через отношение ширины взаимной корреляционной функции к ширине эталонной автокорреляционной функции на уровне 0,1 от их максимального значения. Формируют массив данных из указанных отношений. Методами пространственного дифференцирования выделяют изолинии контуров индекса загрязнения, наносят их на контурную карту прибрежной или шельфовой зоны. Технический результат: достоверное выделение загрязненных зон морской поверхности. 6 ил.

Description

Изобретение относится к области океанологии и может найти применение при контроле гидрологических процессов на морской поверхности, обнаружении течений и загрязнений морской поверхности.
Различные явления, в том числе обусловленные внутренними волнами, турбулентностью, антропогенными воздействиями на водную среду, приводят к деформациям пространственной структуры морского волнения (пространственно-частотных спектров морского волнения), в частности, к появлению аномальных зон с повышенной и пониженной дисперсией уклонов морской поверхности, которые могут быть обнаружены как на оптических, так и на радиолокационных изображениях дистанционного зондирования [см., например, Бондур В.Г. Аэрокосмические методы в современной океанологии. / В кн. «Новые идеи в океанологии. М.: Наука. Т1: Физика. Химия. Биология / 2004. С. 55 - 117+8 стр. цв. вклеек].
Для обнаружения аномалий подстилающей поверхности при дистанционном зондировании используют различные методы и средства.
Известен «Способ экологического зондирования территории», Патент RU №2132606, A.01.G, 15/00 G.01.W, 1/00 - аналог.
Способ-аналог включает получение спектрозональных снимков региона, содержащих контрольные промышленные площадки, в G, R диапазонах, преобразование аналоговых значений спектральной яркости I(x, y) в цифровые матрицы изображений, размерностью |m×n| элементов, проведение поэлементной логической сортировки пикселей в матрицах в соответствии с алгоритмом, если R>G, то R, если R<G, то R=Rmax-k·G, где k - коэффициент корреляции хроматических коэффициентов r, g, получают результирующую матрицу тех же размеров, осуществляют привязку изображения к географическим координатам, задают требуемый уровень градаций зонирования, выделяют алгоритмами пространственного дифференцирования контуры пограничных зон, вычисляют площади зон с максимальным уровнем результирующего вектора техногенных нагрузок, рассчитывают числовые характеристики электрического сигнала результирующей матрицы: математическое ожидание, дисперсию, огибающую пространственного спектра, автокорреляционную функцию, гистограмму распределения пикселей по яркости, осуществляют привязку относительного закона распределения пикселей к абсолютным значениям результирующего вектора техногенных нагрузок по его максимальным значениям и соответствующих максимальным значениям площади выделенных зон.
К недостаткам способа-аналога следует отнести:
- невозможность непосредственного использования из-за различия средств зондирования и измеряемых параметров;
- недостаточная достоверность результата, вследствие использования одного вида сигнала - коэффициента спектральной яркости (КСЯ) подстилающей поверхности.
Ближайшим аналогом по технической сущности к заявленному является «Способ обнаружения аномалий морской поверхности», Патент RU №2109304, G.01.S, 11/06, 13/89, 2008 г.
Способ ближайшего аналога включает получение изображения морской поверхности в виде матрицы цифровых отсчетов |m×n| элементов функции яркости I(x, y) от пространственных координат, обработку матрицы путем разбиения изображения на мозаику фрактальных участков, вычисление огибающей пространственного спектра и автокорреляционной функции сигнала каждого участка, расчет интегрального признака z=R/B и сравнение его с фоновым z0=R0/B0, вывод на отображение участков, для которых z/z0>2, синтезирование из последовательности проанализированных участков мозаичной картины аномалии, где В, B0 - максимальные значения автокорреляционных функций электрического сигнала матриц аномалии и фона соответственно, R, R0 - ширина автокорреляционных функций на уровне 0,1 их максимального значения для аномалии и фона.
Недостатками способа ближайшего аналога является:
- недостаточная достоверность результата из-за использования при зондировании одного вида сигнала - отраженного от поверхности светового потока;
- невозможность непосредственного использования из-за различия средств зондирования.
Задача, решаемая заявленным способом, состоит в достоверном выделении аномальных зон на морской поверхности путем комплексирования двух сигналов: отраженного от поверхности светового потока и радиосигнала зондирования автодинного излучателя СВЧ.
Поставленная задача решается тем, что способ определения загрязнения морской поверхности включает выбор трасс, содержащих тестовые участки, для дистанционного зондирования с авиационного носителя автодинным радиоволновым измерителем, частотное детектирование сигнала измерителя и создание базы эталонных сигналов ветрового волнения поверхности в виде их автокорреляционных функций, одновременное получение видеоизображений участков по трассе полета цифровой, соосно установленной, видеокамерой высокого пространственного разрешения с привязкой получаемых кадров к топографическим координатам посредством навигатора системы GPS, восстановление пространственного спектра волнения методом Фурье-преобразования изображения видеокадров, вычисление взаимной корреляционной функции сигнала автодинного измерителя и видеокамеры, расчет индекса загрязнения участков через отношение ширины взаимной корреляционной функции к ширине эталонной автокорреляционной функции на уровне 0,1 от их максимального значения, формирование массива данных из этих отношений, выделение, методами пространственного дифференцирования, изолиний контуров индекса загрязнений с нанесением их на контурную карту акватории.
Изобретение поясняется чертежами, где:
фиг. 1 - модуляционная характеристика автодинного излучателя в режиме затягивания частоты;
фиг. 2 - спектр волновой ряби, измеренный в лабораторных условиях а) тестовый участок, б) аномальный участок;
фиг. 3 - спектр ветрового волнения морской поверхности, восстановленный преобразованием Фурье видеоизображения а) тестовый участок, б) аномальный участок;
фиг. 4 - а) автокорреляционная функция сигнала тестового участка, б) взаимная корреляционная функция сигналов автодинного излучателя и цифровой видеокамеры текущего участка;
фиг. 5 - изолинии индекса загрязнения морской поверхности прибрежной зоны;
фиг. 6 - функциональная схема устройства, реализующая способ.
Техническая сущность изобретения состоит в следующем.
Известно явление затягивания частоты в автогенераторах СВЧ. Воздействие на автогенератор собственного отраженного от объекта сигнала приводит к автомодуляции генерируемых колебаний. При малых значениях коэффициента отражения (k) приближенное значение для девиации частоты автогенератора Δf имеет вид:
Figure 00000001
где:
ΔF - коэффициент затягивания частоты, паспортная характеристика электронного прибора, например, для СВЧ автогенератора на туннельном диоде Ганна Ф 225, ΔF≈50 МГц;
P - мощность сигнала автогенератора;
Pотр - мощность отраженного сигнала;
Figure 00000002
- фаза расстройки между падающей и отраженной волной автогенератора, зависящая от изменения длины радиоканала Δl (расстояния между автогенератором и объектом).
Модуляционная характеристика радиоволнового излучателя в режиме затягивания частоты иллюстрируется графиками фиг. 1. При дистанционном зондировании взволнованной морской поверхности подобным излучателем вся «шероховатость» поверхности однозначно переносится в девиацию частоты, т.е. отображается в частотном спектре автогенератора. О реализуемости рассмотренного режима [см., например, «Справочник по радиоэлектронике» т. 2, под ред. А.А. Куликовского, М, Энергия, 1968 г., стр. 32-34, рис. 12.50, а также С.И. Бычков «Стабилизация частоты генераторов СВЧ», Сов. Радио, М, 1962 г., стр. 73-83]. Такие измерители получили название автодинных [см., например, Автодинный СВЧ-модуль, http://www.ptechnology.ru/MainPart/Diagnostic/Diagnostic16.html].
Осуществляя частотное детектирование сигнала автогенератора, напряжение на входе которого пропорционально изменению длины радиоканала из-за «шероховатости», получают спектр волнения морской поверхности.
Проводился лабораторный эксперимент на производственной базе Научно-производственного объединения измерительной техники (НПО ИТ) с использованием лабораторной установки «Рифма», разработанной при внедрении авторского изобретения «Способ контроля состояния объекта», АС. СССР №141912, 1980 г. На рисунке фиг. 2 воспроизведены измеренные через следящий фильтр с полосой слежения 1,5 Гц (фирмы Брюль и Къер) а) спектры волновой ряби и б) аномалии. Из-за взаимодействия ветровой ряби с уединенной волной или изменения коэффициента поверхностного натяжения при загрязнениях нефтепродуктами (от ≈0,071 до 0,021 н/м) частотный спектр волнения сократился от 24 Гц до 8 Гц [см., также, Научное открытие №62 «Явление поглощения спектральных составляющих волнового процесса уединенной волной», РАЕН, М, 1997 г.]. Чем больше индекс модуляции, тем точнее результат измерений частотного спектра ветрового волнения морской поверхности. Последнее реализуемо при большой эффективной площади рассеяния зондирующего сигнала или широкой диаграмме направленности автодинного измерителя. Но при этом снижается разрешающая способность, поскольку внутри диаграммы направленности объекты неразрешимы.
С другой стороны, высокое пространственное разрешение изображения подстилающей поверхности обеспечивают современные цифровые камеры видимого диапазона. В заявленном способе используют комплексирование двух сигналов, автодинного измерителя и цифровой видеокамеры, при этом предполагается детектирование волн морской поверхности, длины которых составляют 0,3 м и выше.
В соответствии с теоремой отсчетов Котельникова-Шеннона, непрерывная функция однозначно определяется своими дискретными отсчетами через интервал
Figure 00000003
, где Fmax - максимальная частота спектра функции [см., например, Теоретические основы радиолокации, под ред. В.Е. Дулевича, Сов. Радио, М, 1964 г., стр. 212]. Наименьшая исследуемая длина волны морской поверхности составляет 0,3 м. Следовательно, для неискаженного восстановления спектра морского волнения по его изображению, пространственное разрешение цифровой видеокамеры должно составлять порядка 0,15 м на пиксель. Существующие средства дистанционного зондирования обеспечивают требуемое пространственное разрешение.
Амплитудно-частотный спектр G(Fx, Fy) волнения может быть восстановлен по его изображению расчетом Фурье-преобразования матрицы отсчетов из |m×n| элементов в соответствии с зависимостью:
Figure 00000004
где Fx, Fy - спектр волнения по координатам x, y;
I(x, y) - функция яркости изображения;
m, n - число строк, столбцов матрицы |m×n|.
Существуют пакеты специализированных программ цифровой обработки изображений типа ENVI+IDL, ER MAPPER и др. [см., например, Краткое описание, Пакет программ для обработки изображений в науках о Земле, ER MAPPER, VSA, GENASYS, 1995 г.]. На графиках фиг. 3 иллюстрируются восстановленные спектры морского волнения а) тестового участка, б) аномального участка.
Количественной мерой степени взволнованности (скорости флуктуаций) является корреляционная функция сигнала B(R). По определению, [см., например, A.M. Заездный «Основы расчетов по статистической радиотехнике», изд. Связь, М, 1969 г., стр. 93-94, формулы 7.30, 7.35]. Корреляционная функция сигнала вычисляется как обратное преобразование Фурье от его энергетического спектра S(F):
Figure 00000005
где энергетический спектр сигнала S(F) связан с амплитудным спектром G(F) соотношением S(F)≈G2(F). Прямое и обратное Фурье-преобразования входят в комплект специализированного программного обеспечения типа ENVI+IDL или ER MAPPER.
Предварительно, по изложенной процедуре, вычисляют автокорреляционные функции тестовых участков, используемые как эталонные. Для статистической устойчивости результата, при оценке степени загрязнения морской поверхности, вычисляют взаимную корреляционную функцию спектра сигнала автодинного измерителя и спектра сигнала изображения цифровой видеокамеры.
Расчетные значения корреляционных функций иллюстрируются графиками фиг. 4 а) автокорреляционная функция сигнала тестового участка, В0 б) взаимная корреляционная функция двух сигналов текущего (аномального) участка, B(1, 2)
Меру загрязнения участка оценивают индексом отношения ширины функции взаимной корреляции к ширине автокорреляционной функции сигнала тестового участка на уровне 0,1 от их максимального значения:
Figure 00000006
Из последовательно проанализированных кадров (участков) формируют массив данных расчетных значений индекса по всей трассе измерений. Затем, методами пространственного дифференцирования, выделяют изолинии контуров загрязнения морской поверхности с нанесением их на контурную карту акватории.
Выделение контуров является стандартной операцией [см., например, П.А. Минько, Обработка графики в Photoshop CS2, изд. Эксмо, М, 2007 г. гл. 3, Выделение областей, стр. 47-53].
Результат выделения изолиний контуров иллюстрируется фиг. 5.
Пример реализации способа
Заявленный способ может быть реализован на базе устройства по схеме фиг. 6. Структура технических средств включает авиационный носитель 1, на борту которого соосно установлены автодинный измеритель 2 с приемно-передающей рупорной антенной 3 и цифровая видеокамера 4, осуществляющие покадровую трассовую съемку морской поверхности с координатной привязкой кадров посредством бортового навигатора системы GPS 5. Результаты измерений бортовых средств записываются в буферное запоминающее устройство 6. После окончания трассовых измерений, информация с БЗУ 6 передается по наземным линиям связи в центр тематической обработки 7. Обработку полученной информации осуществляют на базе персональной ЭВМ 8 в стандартном наборе элементов: процессор 9, винчестер 10, оперативное ЗУ 11, дисплей 12, принтер 13, клавиатура 14. В центре создают базу эталонных сигналов 15 в виде автокорреляционных функций сигналов автодинного измерителя 2 в зависимости от бальности волнения. Для обработки сигналов на ПЭВМ предварительно записывают специализированное программное обеспечение типа ENVI+IDL или ER MAPPER. Затем, через устройство ввода 16, информация, записанная в БЗУ, перекачивается в ПЭВМ. Визуализацию Фурье-спектров осуществляют на дисплее 12 с распечаткой на принтере 13. Результаты трассовых измерений выводят на сайт сети ИНТЕРНЕТ 17. Для расчета функции взаимной корреляции сигналов автодинного измерителя и видеокамеры используют специально разработанную программу.
Программа расчета функции взаимной корреляции.
Figure 00000007
Figure 00000008
Figure 00000009
Результаты расчета корреляционных функций иллюстрируются графиками фиг. 4а, б. Ширина автокорреляционной функции фиг. 4а на уровне 0,1 max составляет: B(R)0,1max=3 м. Ширина взаимной корреляционной функции сигналов аномалии фиг. 4б составляет B(1,2)0,1max=10 M.
Индекс загрязнения поверхности аномальной зоны, отношение B(1,2)/B(R)=10/3≈3,3.
Результат выделения зон загрязнения по всей измеряемой трассе в виде изолиний загрязнения (в интервале 1…3,3) иллюстрируется рисунком фиг. 5.
Способ эффективен при условиях умеренного волнения и наблюдения неразрушенных гребней волн (бальность волнения: 0-3 балла по шкале Бофорта, скорость ветра 0-4 м/с). При скорости ветра около 4 м/с и волнении 3 балла по шкале Бофорта, гребни волн начинают разрушаться, появляются стекловидная пена и, изредка, барашки [см., например, Монин А.С., Красицкий В.П. Явления на поверхности океана. Л: "Гидрометиздат", 1985, 375 с.]. При больших бальности волнения и скорости ветра способ неприменим.
Способ реализуем на существующей технической базе. В качестве авиационного носителя измерительных средств могут быть задействованы летающие лаборатории, созданные в рамках Международной программы «Открытое небо».

Claims (1)

  1. Способ определения загрязнения морской поверхности, включающий выбор трасс, содержащих тестовые участки, для дистанционного зондирования с авиационного носителя автодинным радиоволновым измерителем, частотное детектирование сигнала измерителя и создание базы эталонных сигналов ветрового волнения поверхности в виде их автокорреляционных функций, одновременное получение видеоизображений участков по трассе полета цифровой соосно установленной видеокамерой высокого пространственного разрешения с привязкой получаемых кадров к топографическим координатам посредством навигатора системы GPS, восстановление пространственного спектра волнения методом Фурье-преобразования изображений видеокадров, вычисление взаимной корреляционной функции сигнала автодинного измерителя и видеокамеры, расчет индекса загрязнения участков через отношение ширины взаимной корреляционной функции к ширине эталонной автокорреляционной функции на уровне 0,1 от их максимального значения, формирование массива данных из этих отношений, выделение методами пространственного дифференцирования изолиний контуров индекса загрязнения с нанесением их на контурную карту прибрежной либо шельфовой зоны.
RU2015115570/28A 2015-04-24 2015-04-24 Способ определения загрязнения морской поверхности RU2596628C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015115570/28A RU2596628C1 (ru) 2015-04-24 2015-04-24 Способ определения загрязнения морской поверхности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015115570/28A RU2596628C1 (ru) 2015-04-24 2015-04-24 Способ определения загрязнения морской поверхности

Publications (1)

Publication Number Publication Date
RU2596628C1 true RU2596628C1 (ru) 2016-09-10

Family

ID=56892915

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015115570/28A RU2596628C1 (ru) 2015-04-24 2015-04-24 Способ определения загрязнения морской поверхности

Country Status (1)

Country Link
RU (1) RU2596628C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644628C1 (ru) * 2016-11-08 2018-02-13 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" (НИИ "АЭРОКОСМОС") Измеритель эталонных спектров волнения морской поверхности
RU2702423C1 (ru) * 2018-12-25 2019-10-08 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" Способ определения уровня загрязнения морской поверхности
RU2784788C1 (ru) * 2022-04-13 2022-11-29 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Способ определения аномалий морской поверхности по оптическим изображениям

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2109304C1 (ru) * 1997-01-15 1998-04-20 Московский государственный университет леса Способ обнаружения аномалий морской поверхности
RU2479852C1 (ru) * 2011-08-02 2013-04-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ дальнего определения нефтяного загрязнения морской поверхности с помощью свч-радиолокатора
RU2485544C1 (ru) * 2012-02-07 2013-06-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ определения аномалий морской поверхности

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2109304C1 (ru) * 1997-01-15 1998-04-20 Московский государственный университет леса Способ обнаружения аномалий морской поверхности
RU2479852C1 (ru) * 2011-08-02 2013-04-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ дальнего определения нефтяного загрязнения морской поверхности с помощью свч-радиолокатора
RU2485544C1 (ru) * 2012-02-07 2013-06-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ определения аномалий морской поверхности

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644628C1 (ru) * 2016-11-08 2018-02-13 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" (НИИ "АЭРОКОСМОС") Измеритель эталонных спектров волнения морской поверхности
RU2702423C1 (ru) * 2018-12-25 2019-10-08 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт аэрокосмического мониторинга "АЭРОКОСМОС" Способ определения уровня загрязнения морской поверхности
RU2784788C1 (ru) * 2022-04-13 2022-11-29 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Способ определения аномалий морской поверхности по оптическим изображениям

Similar Documents

Publication Publication Date Title
Romeiser et al. Current measurements by SAR along-track interferometry from a space shuttle
Quattrochi et al. Image characterization and modeling system (ICAMS): a geographic information system for the characterization and modeling of multiscale remote sensing data
Schulz-Stellenfleth et al. Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data
Titaud et al. Assimilation of image sequences in numerical models
Preusse et al. New perspectives on gravity wave remote sensing by spaceborne infrared limb imaging
Kantha et al. Dissipation rates of turbulence kinetic energy in the free atmosphere: MST radar and radiosondes
Nardelli et al. Multi-dimensional interpolation of SMOS sea surface salinity with surface temperature and in situ salinity data
Bandini et al. A drone‐borne method to jointly estimate discharge and Manning's roughness of natural streams
RU2444760C1 (ru) Способ съемки нижней поверхности ледяного покрова
Luznik et al. Distribution of energy spectra, Reynolds stresses, turbulence production, and dissipation in a tidally driven bottom boundary layer
Schäfer et al. Directional, horizontal inhomogeneities of cloud optical thickness fields retrieved from ground-based and airbornespectral imaging
Lenain et al. Modulation of surface gravity waves by internal waves
CN105241428A (zh) 一种利用高光谱进行水深反演的方法
Kanzow et al. On the variability of the deep meridional transports in the tropical North Atlantic
KR101784178B1 (ko) 해양변위 관측용 산란계 시스템
Chavanne Do high-frequency radars measure the wave-induced Stokes drift?
RU2596628C1 (ru) Способ определения загрязнения морской поверхности
Renga et al. SAR bathymetry in the Tyrrhenian Sea by COSMO-SkyMed data: A novel approach
Lacorata et al. FSLE analysis and validation of Lagrangian simulations based on satellite-derived GlobCurrent velocity data
Martin et al. Remote sensing of sea surface salinity from CAROLS L-band radiometer in the Gulf of Biscay
Essink et al. On characterizing ocean kinematics from surface drifters
RU2632176C1 (ru) Способ идентификации загрязнений морской поверхности
RU2436130C2 (ru) Способ и система радиолокационного зондирования земных недр
RU2304794C2 (ru) Способ гидрометеорологоакустического наблюдения за акваторией морского полигона
RU2435136C1 (ru) Способ измерения толщины льдин и устройство для измерения толщины льдин

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20170327

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180425