RU2594462C1 - Вибровозбудитель колебаний механических конструкций - Google Patents

Вибровозбудитель колебаний механических конструкций Download PDF

Info

Publication number
RU2594462C1
RU2594462C1 RU2015118026/12A RU2015118026A RU2594462C1 RU 2594462 C1 RU2594462 C1 RU 2594462C1 RU 2015118026/12 A RU2015118026/12 A RU 2015118026/12A RU 2015118026 A RU2015118026 A RU 2015118026A RU 2594462 C1 RU2594462 C1 RU 2594462C1
Authority
RU
Russia
Prior art keywords
vibration exciter
elastic
rod
power drive
movable platform
Prior art date
Application number
RU2015118026/12A
Other languages
English (en)
Inventor
Юрий Александрович Азаров
Руслан Андреевич Черноволов
Original Assignee
Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") filed Critical Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority to RU2015118026/12A priority Critical patent/RU2594462C1/ru
Application granted granted Critical
Publication of RU2594462C1 publication Critical patent/RU2594462C1/ru

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом. При этом силовой привод установлен на другом упругом шарнире, имеющем вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен силовой привод, причем при продолжении сторон трапеции образуется угол, находящийся в диапазоне 70-100°, при этом его вершина расположена на оси штока силового привода, которая перпендикулярна геометрической оси колебаний упругого шарнира. 5 з.п. ф-лы, 10 ил.

Description

Изобретение относится к области авиастроения, ракетостроения, машиностроения, строительства мостов и высотных сооружений, в частности к экспериментальным исследованиям динамической устойчивости различных объектов как в натурных условиях эксплуатации, так и методом моделирования в аэродинамических трубах (АДТ) на динамически подобных моделях.
Особенно актуально изобретение для прогнозирования флаттера (как катастрофического явления) при испытаниях в АДТ аэродинамических динамически подобных моделей (ДПМ) несущих поверхностей летательных аппаратов (крыла, киля, стабилизатора) на больших дозвуковых скоростях потока и в трансзвуковом диапазоне чисел Маха (0,8÷1,2).
Целью применения силовозбудителей при испытаниях ДПМ в АДТ является исследование ее основных динамических характеристик (собственных частот, форм колебаний и коэффициентов демпфирования) при изменении скорости потока (числа Маха) и скоростного напора для прогнозирования по полученным данным границы области возникновения флаттера и соответственно в итоге определения допустимых безопасных режимов полета натурного ЛА.
Как известно, для создания возбуждающих колебания сил применяются различные типы вибровозбудителей: электродинамические, инерционные, струйные, пружинно-эксцентриковые и др. Основное требование, предъявляемое к ним, состоит в том, чтобы при передаче на конструкцию необходимых усилий они не оказывали существенного влияния на ее массово-инерционные, жесткостные и демпфирующие характеристики. Как правило, они имеют большой вес и крупные габариты и поэтому в большинстве случаев размещаются вне испытываемого объекта.
Известна полезная модель устройство для возбуждения механических колебаний (патент РФ №151220, МПК В06В 1/16, опубл. 27.03.2015) инерционного типа, которое помимо перечисленных выше недостатков является устройством кругового действия (вращающегося вектора силы), что неприемлемо для возбуждения и анализа колебаний ДИМ несущих поверхностей в потоке АДТ.
Наиболее широкое применение в практике проведения наземных частотных испытаний авиационных и ракетных конструкций нашли электродинамические силовозбудители направленного действия (Микишев Г.Н., Рабинович Б.И. Динамика тонкостенных конструкций с отсеками, содержащими жидкость. - М.: Машиностроение, 1979). Однако эти устройства имеют большие габариты, они относительно тяжелые по сравнению с трансзвуковыми динамически подобными моделями ЛА и при проведении частотных испытаний устанавливаются на неподвижном основании или подвешиваются на тросах.
Известны устройства импульсного (ударного) воздействия на элементы конструкции для возбуждения свободных колебаний моделей при испытаниях в АДТ, которые приводятся в действие с помощью пневмоприводов и электромагнитов (Бисплингхофф Р.А., Эшли X., Халфмэн Р.Л. Аэроупругость. - М.: Издательство иностранной литературы, 1958). Недостатками этих устройств являются:
- ограниченный объем информации (количества и качества возбуждаемых в потоке собственных тонов колебаний модели) для достоверного прогнозирования критической скорости и формы флаттера при испытаниях модели на безопасных докритических режимах,
- большие габариты пневмоприводов для получения необходимых усилий возбуждения колебаний модели и, как следствие, размещение их вне модели в потоке,
- большой вес электромагнитных приводов, что приводит к нарушению условия массового подобия модели при установке привода внутри модели,
- недостаточные усилия на штоке для совершения импульсного (ударного) воздействия, например, на элерон модели консоли крыла при проведении испытаний в АДТ на больших скоростных напорах.
Известно устройство для возбуждения колебаний модели в аэродинамической трубе и механизм передачи возвратно-поступательного перемещения (Патент №1172362, МПК G01M 9/08, G01M 7/00, опубл. 1994). Устройство содержит силовой привод в виде электродинамического возбудителя, помещенный в обтекаемый корпус, закрепленный на стойке с помощью упругого шарнира. Стойка закреплена неподвижно на стенке рабочей части АДТ за моделью. Усилие от вибровозбудителя передается на модель через упругую тонкую и гибкую тягу, перпендикулярную плоскости хорд и находящуюся в потоке, посредством механизма передачи возвратно-поступательного перемещения штока электродинамического возбудителя.
Недостатками устройства являются:
- большие габариты, расположение в потоке за моделью и, как следствие, нарушение структуры потока, обтекающего модель, при испытании модели на больших дозвуковых и трансзвуковых скоростях,
- сложная многоэлементная конструкция устройства, имеющая широкий спектр собственных колебаний, являющихся «паразитными» тонами для испытываемой модели в АДТ,
- увеличение коэффициента демпфирования модели за счет повышения конструкционного трения в устройстве при действии на него статической аэродинамической нагрузки и изменения температуры потока в рабочей части во время пуска АДТ.
Задачей изобретения является разработка конструкции малогабаритного внутримодельного силовозбудителя сравнительно небольшого веса и направленного действия, обеспечивающего возбуждение в потоке в требуемом диапазоне частот вынужденных собственных колебаний ДПМ несущих поверхностей как в направлении, перпендикулярном плоскости хорд, так и в плоскости хорд, а также изменение закона возбуждающей силы (гармоническое, полигармоническое и случайное возбуждение) для экспериментальных исследований характеристик флаттера на докритических режимах потока (чисел Маха и скоростного напора) в трансзвуковых и сверхзвуковых АДТ.
Техническим результатом является расширение экспериментальных возможностей по исследованию явлений динамической аэроупругости модели с сохранением условий подобия по массовым, жесткостным и геометрическим характеристикам без нарушения структуры потока, обтекающего модель.
Техническим результатом является повышение точности измерения собственных частот, форм колебаний и коэффициентов демпфирования колебаний модели при изменении числа Маха и скоростного напора для прогнозирования по полученным данным границы области флаттера.
Решение поставленной задачи и технический результат достигается тем, что в вибровозбудителе колебаний механических конструкций, состоящем из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой, шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом, при этом силовой привод установлен на другом упругом шарнире, имеющем вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен силовой привод, причем при продолжении сторон трапеции образуется угол, находящийся в диапазоне 70-100°, при этом его вершина расположена на оси штока силового привода, которая перпендикулярна геометрической оси колебаний упругого шарнира.
Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний механических конструкций корпус устройства, состоящий из жестких стенки и основания, имеет L-образную форму в поперечном сечении с ребрами жесткости в крайних сечениях и с посадочными местами для крепления к силовому элементу внутри модели (лонжерону или кессону) либо стенкой, либо основанием для изменения направления возбуждающей силы на 90°.
Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний механических конструкций тяга, соединяющая шток привода и подвижную платформу, представляет собой плоскую тонкую пластину с вырезом посредине для штока силового привода и две поперечные усиленные стенки для соединения штока привода со стенкой подвижной платформы.
Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний сменный груз, установленный на подвижную платформу, состоит из набора съемных пластин, изготовленных из материалов с различным удельным весом.
Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний в качестве силового привода установлен гидроцилиндр.
Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний упругий шарнир, имеющий вид равнобедренной трапеции, состоит из двух элементов в виде z-образных пружин.
На фиг. 1 представлен общий вид устройства для возбуждения вынужденных колебаний динамически подобных моделей.
На фиг. 2 схемы размещения вибровозбудителя в ДПМ консоли крыла.
На фиг. 3 представлен жесткий корпус вибровозбудителя.
На фиг. 4 представлен упругий шарнир гидропривода.
На фиг. 5 представлен упругий шарнир подвижной платформы.
На фиг. 6 представлена упругая тяга.
На фиг. 7 представлена амплитудно-частотная характеристика колебаний модели в потоке.
На фиг. 8 приведены зависимости собственных частот колебаний конструкции от величины скоростного напора потока.
На фиг. 9 приведены зависимости коэффициентов демпфирования от величины скоростного напора потока.
На фиг. 10 представлен прогноз границы флаттера.
Вибровозбудитель (фиг. 1) состоит из жесткого корпуса 1, силового привода, выполненного, например, в виде гидроцилиндра 2, установленного на упругом шарнире 3, подвижной платформы 4, установленной на упругом шарнире 5, сменного груза 6, закрепленного на подвижной платформе 4, и упругой тяги 7, соединяющей шток 8 гидроцилиндра 2 и платформу 4, акселерометра 9, установленного на конце штока 8 гидроцилиндра 2, тензометров 10 наклеенных на стойки упругого шарнира 5.
На фиг. 2 изображена схема установки вибровозбудителя 11 в ДПМ консоли крыла. Вибровозбудитель 11 подсоединен к блоку управления 12 с помощью гидротрассы 13, идущей от гидроцилиндра 2, и кабеля 14, идущего от тензометров 10, акселерометра 9 и гидроцилиндра 2.
Жесткий корпус 1 (фиг. 3) представляет из себя в поперечном сечении L-образную форму с ребрами жесткости 15 в крайних сечениях с приливом 16, расположение которого выбирают в зависимости от относительных размеров внутренних элементов конструкции, и посадочными местами 17 для крепления упругих шарниров 3 и 5 и местами 18 для крепления к силовому элементу (лонжерону или кессону) либо стенкой, либо основанием для изменения направления возбуждающей силы на 90°.
Упругий шарнир 3 имеет вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен гидроцилиндр 2 (силовой привод) (фиг. 1, 4). При продолжении сторон трапеции получается равнобедренный треугольник, угол при вершине которого выбирается в диапазоне 70-100°, а его вершина расположена на оси штока силового привода таким образом, чтобы геометрическая ось колебаний гидроцилиндра 2 на упругом шарнире 3 пересекалась с осью штока привода и была к ней перпендикулярна. Упругий шарнир 3, может состоять из двух Z-образных пластин 19 и 20 в сборе, закрепленных на основании корпуса 1.
Подвижная платформа вибровозбудителя (фиг. 5) установлена на упругом шарнире 5, состоящем из двух пересекающихся под углом 90° упругих пластин 21 и 22, одна из которых 22 расположена параллельно основанию корпуса 1 и одним концом крепится к приливу 17 основания корпуса 1 устройства, а другим - к нижней поверхности подвижной платформы 5, расположенной параллельно основанию корпуса 1, вторая упругая пластина 21 расположена перпендикулярно основанию корпуса 1 и одним концом крепится к его основанию, а другим - к поверхности подвижной платформы 4, перпендикулярной основанию корпуса 1.
Упругая тяга 7 (фиг. 1, 6), соединяющая шток 8 гидроцилиндра 2 и стенку подвижной платформы 4, перпендикулярной штоку 8 гидроцилиндра 2, состоит из двух поперечных усиленных стенок и плоской тонкой пластины с вырезом посредине для размещения штока 8 гидроцилиндра 2 и тяги 7 в одной плоскости, для регулирования штока 8 гидроцилиндра 2 со стенкой подвижной платформы 4 и уменьшения габаритов вибровозбудителя.
Груз 6 (фиг. 1, 6) изготавливают в виде пластин из материалов с различным удельным весом для изменения характеристик вибровозбудителя и обеспечения максимально компактных габаритов.
Описание работы при эксперименте в АДТ.
Процедура испытаний модели заключается в том, что сначала модель с встроенным вибровозбудителем колебаний механических конструкций устанавливают в рабочей части АДТ, затем устройство с помощью гибких гидравлических трасс 13 и кабелей 14 подсоединяют к блоку управления 12. Разработанная кинематическая схема и конструкция вибровозбудителя обеспечивают преобразование продольно-поступательного движения штока 8 гидроцилиндра 2 в плоскости хорд модели несущей поверхности в колебания инерционной массы в направлении, перпендикулярном плоскости хорд модели. При этом в системе отсутствуют люфты и трение. Рабочая жидкость подается по гидротрассе 13 в гидропривод 2 под давлением из расположенного вне контура АДТ блока управления 12. Вибровозбудитель управляется дистанционно из кабины управления АДТ. Требуемые диапазоны частот и законы изменения возбуждающей силы задают с помощью блока управления 12.
Перед пуском АДТ выполняют контрольную проверку функционирования всех подсистем (в «наземных» условиях). Для этого включают вибровозбудитель 11, затем определяют в заданном диапазоне частот амплитудно-частотные характеристики модели и регистрируют сигналы с датчиков. Далее выполняют программу испытаний. Каждый пуск АДТ выполняют по заданной траектории q(M) (M - число Маха, q - скоростной напор) в соответствии с программой испытаний. Пуск выполняют в пошаговом режиме. На заранее заданных фиксированных числах M включают вибровозбудитель и в заданном диапазоне частот вынужденных колебаний модели регистрируют сигналы с установленных датчиков. Для уменьшения погрешностей при обработке сигналов включение устройства и регистрацию сигналов выполняют несколько раз. Обработку и анализ полученной информации выполняют после пуска АДТ. Также после каждого пуска АДТ проводят контрольные частотные испытания модели и по результатам сравнения динамических характеристик модели до и после пуска принимают решение о пригодности модели для продолжения испытаний.
В ЦАГИ спроектирована и изготовлена трансзвуковая ДПМ крыла большого удлинения с установленным вибровозбудителем колебаний. Модель успешно прошла испытания на флаттер в трансзвуковой АДТ в диапазоне чисел М=0,3÷1,05.
На фиг. 7 представлена амплитудно-частотная характеристика модели в потоке в диапазоне частот от 0 до 150 Гц при возбуждении колебаний модели силовозбудителем. На фиг. 8 и 9 приведены зависимости собственных частот колебаний f (Гц) и коэффициентов демпфирования основных форм колебаний ДПМ от величины скоростного напора потока Q (кг/м2). По полученным данным выполнен прогноз границы флаттера, результаты которого показаны на фиг. 10.
Применение вибровозбудителя обеспечивает расширение диапазона возбуждаемых в потоке собственных колебаний ДПМ до 200 Гц, что обеспечивает увеличение количества исследуемых «чистых» тонов собственных колебаний ДПМ в 1,5÷2 раза больше, чем у прототипа и отсутствие в данном диапазоне частот «паразитных» (лишних) тонов резонансных колебаний элементов конструкции силовозбудителя, что повышает точность измерения собственных частот, форм колебаний и коэффициентов демпфирования колебаний.
В результате многократное повышение информативности и точности эксперимента позволяет на основании полученных качественно новых результатов по влиянию на динамические характеристики модели числа Маха и скоростного напора определить границу области флаттера, верифицировать математическую модель ДПМ и значительно увеличить объем более дешевых расчетных параметрических исследований для выдачи рекомендаций по обеспечению безопасности от флаттера натурного ЛА в процессе эксплуатации.

Claims (6)

1. Вибровозбудитель колебаний механических конструкций, состоящий из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой, отличающийся тем, что шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом, при этом силовой привод установлен на другом упругом шарнире, имеющем вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен силовой привод, причем при продолжении сторон трапеции образуется угол, находящийся в диапазоне 70-100°, при этом его вершина расположена на оси штока силового привода, которая перпендикулярна геометрической оси колебаний упругого шарнира.
2. Вибровозбудитель колебаний по п. 1, отличающийся тем, что корпус устройства, состоящий из жестких стенки и основания, имеет L-образную форму в поперечном сечении с ребрами жесткости в крайних сечениях и с посадочными местами для крепления к силовому элементу внутри модели (лонжерону или кессону) либо стенкой, либо основанием для изменения направления возбуждающей силы на 90°.
3. Вибровозбудитель колебаний по п. 1, отличающийся тем, что упругая тяга, соединяющая шток привода и подвижную платформу, представляет собой плоскую тонкую пластину с вырезом посредине для штока силового привода и две поперечные усиленные стенки для соединения штока привода со стенкой подвижной платформы.
4. Вибровозбудитель колебаний по п. 1, отличающийся тем, что сменный груз, установленный на подвижную платформу, состоит из набора съемных пластин, изготовленных из материалов с различным удельным весом.
5. Вибровозбудитель колебаний по п. 1, отличающийся тем, что в качестве силового привода установлен гидроцилиндр.
6. Вибровозбудитель колебаний по п. 1, отличающийся тем, что упругий шарнир, имеющий вид равнобедренной трапеции, состоит из двух элементов в виде z-образных пружин.
RU2015118026/12A 2015-05-14 2015-05-14 Вибровозбудитель колебаний механических конструкций RU2594462C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015118026/12A RU2594462C1 (ru) 2015-05-14 2015-05-14 Вибровозбудитель колебаний механических конструкций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015118026/12A RU2594462C1 (ru) 2015-05-14 2015-05-14 Вибровозбудитель колебаний механических конструкций

Publications (1)

Publication Number Publication Date
RU2594462C1 true RU2594462C1 (ru) 2016-08-20

Family

ID=56697076

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015118026/12A RU2594462C1 (ru) 2015-05-14 2015-05-14 Вибровозбудитель колебаний механических конструкций

Country Status (1)

Country Link
RU (1) RU2594462C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575518A (zh) * 2017-10-16 2018-01-12 河北建筑工程学院 一种主被动并行输入并联调姿隔振平台

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1704004A1 (ru) * 1989-08-22 1992-01-07 Конструкторское бюро "Южное" Устройство дл вывешивани издели при виброиспытани х
US20140021294A1 (en) * 2012-07-20 2014-01-23 Airbus Operations S.L. Measurement of the inertial properties of an aircraft movable control surface
CN104458169A (zh) * 2014-09-26 2015-03-25 燕山大学 高低频复合驱动并联二维转动平台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1704004A1 (ru) * 1989-08-22 1992-01-07 Конструкторское бюро "Южное" Устройство дл вывешивани издели при виброиспытани х
US20140021294A1 (en) * 2012-07-20 2014-01-23 Airbus Operations S.L. Measurement of the inertial properties of an aircraft movable control surface
CN104458169A (zh) * 2014-09-26 2015-03-25 燕山大学 高低频复合驱动并联二维转动平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575518A (zh) * 2017-10-16 2018-01-12 河北建筑工程学院 一种主被动并行输入并联调姿隔振平台

Similar Documents

Publication Publication Date Title
Yang et al. Analysis on the nonlinear response of cracked rotor in hover flight
Lalanne Mechanical vibration and shock analysis, sinusoidal vibration
EP1976760B1 (en) System for and method of monitoring free play of aircraft control surfaces
CN110095241B (zh) 分离式航天器舱间线缆刚度试验测定方法
Lavroff et al. Determination of wave slamming loads on high-speed catamarans by hydroelastic segmented model experiments
Jiao et al. Theoretical and experimental study on nonlinear hydroelastic responses and slamming loads of ship advancing in regular waves
Hagesteijn et al. Development of a six-component blade load measurement test setup for propeller-ice impact
RU2594462C1 (ru) Вибровозбудитель колебаний механических конструкций
Bartels et al. Computed and experimental flutter/LCO onset for the Boeing truss-braced wing wind tunnel model
Biot et al. Numerical and experimental analysis of the dynamic behavior of main engine foundations
Thomas et al. The vibratory damping of large high-speed catamarans
Bhattrai et al. Influence of hypersonic fluid-structure interaction on the control authority of a trailing-edge flap
Moro Structure borne noise due to marine diesel engines: experimental study and numerical simulation for the prediction of the dynamic behaviour of resilient mounts
Kovalovs et al. 437. Application of macro-fiber composite (MFC) as a piezoelectric actuator.
Zhang et al. The effect of pipeline layout parameters on mode and dynamic stress of “airframe-clamps-pipeline” structure
Sedghi et al. ESO ELT-vibration sources characterization: a step forward towards requirement and performance verification
Keller et al. Experimental/theoretical correlation of analysis for helicopter rotor blade/droop stop impacts
Krott Fluidic Flexible Matrix Composite Vibration Treatments for Helicopter Airframes and Rotor Blades
Tasdelen Shock Analysis of Onboard Equipment Submitted to Underwater Explosion
Jahanbakhsh et al. Comparative analysis between numerical and analytical methods to calculate added mass
Verstraelen Aeroelastic limit cycle oscillations mitigation using linear and nonlinear tuned mass dampers
Osawa et al. Study on Fatigue Strength of Welded Joints Subject to Intermittently Whipping Superimposed Wave Load
Samardžić et al. A forced oscillation system for damping derivative measurement in the T-38 trisonic wind tunnel
RU2748870C1 (ru) Способ моделирования параметрических колебаний и устройство для его реализации (варианты)
Arena et al. Dynamic morphing of elastic plates via principal parametric resonance

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180515